1
|
Nganya C, Bryant S, Alnakhalah A, Allen-Boswell T, Cunningham S, Kanu S, Williams A, Philio D, Dang K, Butler E, Player A. Analyses of the MYBL1 Gene in Triple Negative Breast Cancer: Evidence of Regulation of the VCPIP1 Gene and Identification of a Specific Exon Overexpressed in Tumor Cell Lines. Int J Mol Sci 2024; 26:279. [PMID: 39796135 PMCID: PMC11719811 DOI: 10.3390/ijms26010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Previous data show that the knockdown of the MYBL1 gene in the MDA-MB-231 cell line leads to the downregulation of VCPIP1 gene expression. In addition, MYBL1 and VCPIP1 genes are co-expressed and dysregulated in some of the same triple negative breast cancer patient samples. We propose that the co-expression of the two genes is attributed to the MYBL1 transcription factor regulation of the VCPIP1 gene. We identify the MYBL1 transcription factor binding site upstream of the VCPIP1 start site and show that the MYBL1 protein can bind to the sequence identified in the VCPIP1 promoter region. Combined with the results from the knockdown study, these data support the ability of MYBL1 to regulate the VCPIP1 gene. The VCPIP1 gene functions as a deubiquitinating enzyme involved in DNA repair, protein positioning, and the assembly of the Golgi apparatus during mitotic signaling. The transcriptional regulation of VCPIP1 by the MYBL1 gene could implicate MYBL1 in these processes, which might contribute to tumor processes in TNBC. Although both genes are involved in cell cycle regulatory mechanisms, converging signaling mechanisms have not been identified. In a separate study, we performed sequence alignment of the MYBL1 transcript variants and identified an exon unique to the canonical variant. Probes that specifically target the unique MYBL1 exon show that the exon is overexpressed in tumor cell lines compared to non-tumor breast cells. We are classifying this unique MYBL1 exon as a tumor-associated exon.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Audrey Player
- Department of Biology, Texas Southern University, Houston, TX 77004, USA; (C.N.); (S.B.); (A.A.); (T.A.-B.); (S.C.); (S.K.); (A.W.); (D.P.); (K.D.); (E.B.)
| |
Collapse
|
2
|
Hwa JC, Wong AMC, Jung SM, Wu CT. Pediatric-type diffuse low-grade glioma with T2-FLAIR mismatch sign: a case report and literature review. Childs Nerv Syst 2024; 40:2271-2278. [PMID: 38884778 DOI: 10.1007/s00381-024-06487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 06/01/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Pediatric-type diffuse low-grade gliomas are a new entity that was introduced in the fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System, which was published in 2021. Notably, the information regarding the radiophenotypes of this new entity is limited. OBJECTIVE T2-FLAIR mismatch sign has been mostly studied in adult-type diffuse gliomas so far. We aimed to present more pediatric cases for future research about T2-FLAIR mismatch signs in pediatric-type diffuse low-grade gliomas. CASE PRESENTATION The current study presents a case of a 2-year-old boy who has a subcortical tumor at the right precentral frontal region. This tumor exhibited a T2-fluid-attenuated inversion recovery (FLAIR) mismatch sign that was identified as specific for isocitrate dehydrogenase (IDH)-mutant 1p/19q non-co-deleted astrocytomas. The tumor was pathologically identified as pediatric-type diffuse low-grade gliomas, and it tested negative for IDH-1 immunohistochemistry. The whole-exome sequencing of tumor tissue revealed negative results for IDH mutation, 1p/19q co-deletion, MYB rearrangement, and all other potential pathogenic mutations. CONCLUSION The T2-FLAIR mismatch sign may not be 100% specific for IDH-mutant gliomas, especially in children, and researchers must further investigate the pathophysiology of the T2-FLAIR mismatch sign in brain tumors and the radiophenotypes of entities of pediatric brain tumors.
Collapse
Affiliation(s)
- Jia-Ching Hwa
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Alex Mun-Ching Wong
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Keelung and Linkou, Chang Gung University College of Medicine, Keelung and Linkou, Taiwan
| | - Shih-Ming Jung
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan, Linkou, Taiwan
| | - Chieh-Tsai Wu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Linkou, Taiwan.
| |
Collapse
|
3
|
Dagher SA, Lochner RH, Ozkara BB, Schomer DF, Wintermark M, Fuller GN, Ucisik FE. The T2-FLAIR mismatch sign in oncologic neuroradiology: History, current use, emerging data, and future directions. Neuroradiol J 2024; 37:441-453. [PMID: 37924213 PMCID: PMC11366202 DOI: 10.1177/19714009231212375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023] Open
Abstract
The T2-Fluid-Attenuated Inversion Recovery (T2-FLAIR) mismatch sign is a radiogenomic marker that is easily discernible on preoperative conventional MR imaging. Application of strict criteria (adult population, cerebral hemisphere location, and classic imaging morphology) permits the noninvasive preoperative diagnosis of isocitrate dehydrogenase (IDH)-mutant 1p/19q-non-codeleted diffuse astrocytoma with near-perfect specificity, albeit with variably low sensitivity. This leads to improved preoperative planning and patient counseling. More recent research has shown that the application of less strict criteria compromises the near-perfect specificity of the sign but remains adequate for ruling out IDH-wildtype (glioblastoma) phenotype, which bears a far grimmer prognosis compared to IDH-mutant diffuse astrocytic disease. In this review, we elaborate on the various definitions of the T2-FLAIR mismatch sign present in the literature, illustrate these with images obtained at a comprehensive cancer center, discuss the potential of the mismatch sign for application to certain pediatric-type brain tumors, namely dysembryoplastic neuroepithelial tumor and diffuse midline glioma, and elaborate upon the clinical, histologic, and molecular associations of the T2-FLAIR mismatch sign as recognized to date. Finally, the sign's correlates in diffusion- and perfusion-weighted imaging are presented, and opportunities to further maximize the diagnostic and prognostic applications of the sign in the context of the 2021 revision of the WHO Classification of Central Nervous System Tumors are discussed.
Collapse
Affiliation(s)
- Samir A Dagher
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Riley Hideo Lochner
- Section of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Burak Berksu Ozkara
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donald F Schomer
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory N Fuller
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Section of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - F Eymen Ucisik
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
van Maren EA, Dankbaar JW, Wesseling P, Plasschaert S, Muhlebner A, Hoving EW, Robe PA, Snijders TJ, Hoogendijk R, Kranendonk MEG, Lequin MH. T2-FLAIR Mismatch: An Imaging Biomarker for Children's MYB/MYBL1-Altered Diffuse Astrocytoma or Angiocentric Glioma. AJNR Am J Neuroradiol 2024; 45:747-752. [PMID: 38724203 PMCID: PMC11288608 DOI: 10.3174/ajnr.a8203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/23/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND AND PURPOSE T2-FLAIR mismatch is a highly specific imaging biomarker of IDH-mutant diffuse astrocytoma in adults. It has however also been described in MYB/MYBL1-altered low grade tumors. Our aim was to assess the diagnostic power of the T2-FLAIR mismatch in IDH-mutant astrocytoma and MYB/MYBL1-altered low-grade tumors in children and correlate this mismatch with histology. MATERIALS AND METHODS We evaluated MR imaging examinations of all pediatric patients, performed at the Princess Máxima Center for Pediatric Oncology and the University Medical Center Utrecht between January 2012 and January 2023, with the histomolecular diagnosis of IDH-mutant astrocytoma, diffuse astrocytoma MYB/MYBL1-altered, or angiocentric glioma, and the presence of T2-FLAIR mismatch was assessed. Histologically, the presence of microcysts in the tumor (a phenomenon suggested to be correlated with T2-FLAIR mismatch in IDH-mutant astrocytomas in adults) was evaluated. RESULTS Nineteen pediatric patients were diagnosed with either IDH-mutant astrocytoma (n = 8) or MYB/MYBL1-altered tumor (n = 11: diffuse astrocytoma, MYB- or MYBL1-altered n = 8; or angiocentric glioma n = 3). T2-FLAIR mismatch was present in 11 patients, 3 (38%) in the IDH-mutant group and 8 (73%) in the MYB/MYBL1 group. No correlation was found between T2-FLAIR mismatch and the presence of microcysts or an enlarged intercellular space in either IDH-mutant astrocytoma (P = .38 and P = .56, respectively) or MYB/MYBL1-altered tumors (P = .36 and P = .90, respectively). CONCLUSIONS In our pediatric population, T2-FLAIR mismatch was more often found in MYB/MYBL1-altered tumors than in IDH-mutant astrocytomas. In contrast to what has been reported for IDH-mutant astrocytomas in adults, no correlation was found with microcystic changes in the tumor tissue. This finding challenges the hypothesis that such microcystic changes and/or enlarged intercellular spaces in the tissue of these tumors are an important part of explaining the occurrence of the T2-FLAIR mismatch.
Collapse
Affiliation(s)
- E A van Maren
- From the Department of Radiology and Nuclear Medicine (E.A.v.M., J.W.D., M.H.L.), University Medical Center Utrecht, Utrecht, the Netherlands
| | - J W Dankbaar
- From the Department of Radiology and Nuclear Medicine (E.A.v.M., J.W.D., M.H.L.), University Medical Center Utrecht, Utrecht, the Netherlands
| | - P Wesseling
- Princess Máxima Center for Pediatric Oncology (P.W., S.P., E.W.H., R.H., M.E.G.K., M.H.L.), Utrecht, the Netherlands
- Department of Pathology (P.W.), Amsterdam University Medical Centers/VU Medical Center, Amsterdam, the Netherlands
| | - S Plasschaert
- Princess Máxima Center for Pediatric Oncology (P.W., S.P., E.W.H., R.H., M.E.G.K., M.H.L.), Utrecht, the Netherlands
| | - A Muhlebner
- Department of Pathology (A.M.), University Medical Center Utrecht, Utrecht, the Netherlands
| | - E W Hoving
- Princess Máxima Center for Pediatric Oncology (P.W., S.P., E.W.H., R.H., M.E.G.K., M.H.L.), Utrecht, the Netherlands
- Department of Neurosurgery (E.W.H., P.A.R.), University Medical Center Utrecht, Utrecht, the Netherlands
| | - P A Robe
- Department of Neurosurgery (E.W.H., P.A.R.), University Medical Center Utrecht, Utrecht, the Netherlands
| | - T J Snijders
- Department of Neurology (T.J.S.), UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - R Hoogendijk
- Princess Máxima Center for Pediatric Oncology (P.W., S.P., E.W.H., R.H., M.E.G.K., M.H.L.), Utrecht, the Netherlands
| | - M E G Kranendonk
- Princess Máxima Center for Pediatric Oncology (P.W., S.P., E.W.H., R.H., M.E.G.K., M.H.L.), Utrecht, the Netherlands
| | - M H Lequin
- From the Department of Radiology and Nuclear Medicine (E.A.v.M., J.W.D., M.H.L.), University Medical Center Utrecht, Utrecht, the Netherlands
- Princess Máxima Center for Pediatric Oncology (P.W., S.P., E.W.H., R.H., M.E.G.K., M.H.L.), Utrecht, the Netherlands
| |
Collapse
|
5
|
Player A, Cunningham S, Philio D, Roy R, Haynes C, Dixon C, Thirston L, Ibikunle F, Boswell TA, Alnakhalah A, Contreras J, Bell M, McGuffery T, Bryant S, Nganya C, Kanu S. Characterization of MYBL1 Gene in Triple-Negative Breast Cancers and the Genes' Relationship to Alterations Identified at the Chromosome 8q Loci. Int J Mol Sci 2024; 25:2539. [PMID: 38473786 DOI: 10.3390/ijms25052539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The MYBL1 gene is a strong transcriptional activator involved in events associated with cancer progression. Previous data show MYBL1 overexpressed in triple-negative breast cancer (TNBC). There are two parts to this study related to further characterizing the MYBL1 gene. We start by characterizing MYBL1 reference sequence variants and isoforms. The results of this study will help in future experiments in the event there is a need to characterize functional variants and isoforms of the gene. In part two, we identify and validate expression and gene-related alterations of MYBL1, VCIP1, MYC and BOP1 genes in TNBC cell lines and patient samples selected from the Breast Invasive Carcinoma TCGA 2015 dataset available at cBioPortal.org. The four genes are located at chromosomal regions 8q13.1 to 8q.24.3 loci, regions previously identified as demonstrating a high percentage of alterations in breast cancer. We identify alterations, including changes in expression, deletions, amplifications and fusions in MYBL1, VCPIP1, BOP1 and MYC genes in many of the same patients, suggesting the panel of genes is involved in coordinated activity in patients. We propose that MYBL1, VCPIP1, MYC and BOP1 collectively be considered as genes associated with the chromosome 8q loci that potentially play a role in TNBC pathogenesis.
Collapse
Affiliation(s)
- Audrey Player
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Sierra Cunningham
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Deshai Philio
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Renata Roy
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Cydney Haynes
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Christopher Dixon
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Lataja Thirston
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Fawaz Ibikunle
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | | | - Ayah Alnakhalah
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Juan Contreras
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Myra Bell
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Treveon McGuffery
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Sahia Bryant
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Chidinma Nganya
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Samuel Kanu
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| |
Collapse
|
6
|
Wagner MW, Jabehdar Maralani P, Bennett J, Nobre L, Lim-Fat MJ, Dirks P, Laughlin S, Tabori U, Ramaswamy V, Hawkins C, Ertl-Wagner BB. Brain Tumor Imaging in Adolescents and Young Adults: 2021 WHO Updates for Molecular-based Tumor Types. Radiology 2024; 310:e230777. [PMID: 38349246 DOI: 10.1148/radiol.230777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Published in 2021, the fifth edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS) introduced new molecular criteria for tumor types that commonly occur in either pediatric or adult age groups. Adolescents and young adults (AYAs) are at the intersection of adult and pediatric care, and both pediatric-type and adult-type CNS tumors occur at that age. Mortality rates for AYAs with CNS tumors have increased by 0.6% per year for males and 1% per year for females from 2007 to 2016. To best serve patients, it is crucial that both pediatric and adult radiologists who interpret neuroimages are familiar with the various pediatric- and adult-type brain tumors and their typical imaging morphologic characteristics. Gliomas account for approximately 80% of all malignant CNS tumors in the AYA age group, with the most common types observed being diffuse astrocytic and glioneuronal tumors. Ependymomas and medulloblastomas also occur in the AYA population but are seen less frequently. Importantly, biologic behavior and progression of distinct molecular subgroups of brain tumors differ across ages. This review discusses newly added or revised gliomas in the fifth edition of the CNS WHO classification, as well as other CNS tumor types common in the AYA population.
Collapse
Affiliation(s)
- Matthias W Wagner
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Pejman Jabehdar Maralani
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Julie Bennett
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Liana Nobre
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Mary Jane Lim-Fat
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Peter Dirks
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Suzanne Laughlin
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Uri Tabori
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Vijay Ramaswamy
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Cynthia Hawkins
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Birgit B Ertl-Wagner
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| |
Collapse
|
7
|
Chen J, Qi X, Zhang M, Zhang J, Han T, Wang C, Cai C. Review on neuroimaging in pediatric-type diffuse low-grade gliomas. Front Pediatr 2023; 11:1149646. [PMID: 37920791 PMCID: PMC10619148 DOI: 10.3389/fped.2023.1149646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023] Open
Abstract
The fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS5) has identified a new classification system for tumors of the brain and spinal cord, highlighting the pivotal role of molecular diagnosis in accurately categorizing neoplasms. In addition to previous classifications, one of the key distinctions lies in categorizing pediatric-type diffuse low-grade gliomas (pDLGGs) and pediatric-type diffuse high-grade gliomas (pDHGGs) as distinct tumor types. Although similar in histology and morphology, pediatric diffuse gliomas are completely different from the adult type with respect to the molecular genetic characteristics, prognosis, and treatment strategies. pDLGG includes four tumor types, namely, diffuse astrocytoma, MYB- or MYBL1-altered; angiocentric glioma; polymorphous low-grade neuroepithelial tumor of the young (PLNTY); and diffuse low-grade glioma, MAPK pathway-altered, three types of which are newly recognized tumor types. Herein, we review the clinical characteristics, histopathological and molecular genetic characteristics, neuroimaging features, and prognosis of pDLGG and summarize the neuroimaging key points in diagnosing different tumor types. This review aims to evaluate and update the relevant pDLGG features and advances in neuroimaging that may assist in differential diagnosis, surgery planning, and prognostic determination of these tumor types and provide accurate diagnostic information for clinical colleagues.
Collapse
Affiliation(s)
- Jing Chen
- Department of Medical Imaging, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Xin Qi
- Department of Medical Imaging, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Mengjie Zhang
- Department of Medical Imaging, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, China
| | - Chunxiang Wang
- Department of Medical Imaging, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| |
Collapse
|
8
|
Storz C, Sankowski R, Roelz R, Prinz M, Urbach H, Erny D, Taschner CA. Freiburg Neuropathology Case Conference : Recurrent Speech Arrest, Neologistic Jargon Aphasia, and Impaired Memory Function in a 39-year-old Patient. Clin Neuroradiol 2023; 33:869-876. [PMID: 37462746 PMCID: PMC10450002 DOI: 10.1007/s00062-023-01335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/26/2023]
Affiliation(s)
- C Storz
- Department of Neuroradiology, Medical Centre-University of Freiburg, Breisacherstraße 64, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - R Sankowski
- Department of Neuropathology, Medical Centre-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - R Roelz
- Department of Neurosurgery, Medical Centre-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M Prinz
- Department of Neuropathology, Medical Centre-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - H Urbach
- Department of Neuroradiology, Medical Centre-University of Freiburg, Breisacherstraße 64, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - D Erny
- Department of Neuropathology, Medical Centre-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - C A Taschner
- Department of Neuroradiology, Medical Centre-University of Freiburg, Breisacherstraße 64, 79106, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Park YW, Vollmuth P, Foltyn-Dumitru M, Sahm F, Ahn SS, Chang JH, Kim SH. The 2021 WHO Classification for Gliomas and Implications on Imaging Diagnosis: Part 2-Summary of Imaging Findings on Pediatric-Type Diffuse High-Grade Gliomas, Pediatric-Type Diffuse Low-Grade Gliomas, and Circumscribed Astrocytic Gliomas. J Magn Reson Imaging 2023; 58:690-708. [PMID: 37069764 DOI: 10.1002/jmri.28740] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
The fifth edition of the World Health Organization (WHO) classification of central nervous system tumors published in 2021 advances the role of molecular diagnostics in the classification of gliomas by emphasizing integrated diagnoses based on histopathology and molecular information and grouping tumors based on genetic alterations. This Part 2 review focuses on the molecular diagnostics and imaging findings of pediatric-type diffuse high-grade gliomas, pediatric-type diffuse low-grade gliomas, and circumscribed astrocytic gliomas. Each tumor type in pediatric-type diffuse high-grade glioma mostly harbors a distinct molecular marker. On the other hand, in pediatric-type diffuse low-grade gliomas and circumscribed astrocytic gliomas, molecular diagnostics may be extremely complicated at a glance in the 2021 WHO classification. It is crucial for radiologists to understand the molecular diagnostics and imaging findings and leverage the knowledge in clinical practice. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Philipp Vollmuth
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Martha Foltyn-Dumitru
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
Pinto SN, Chiang J, Qaddoumi I, Livingston D, Bag A. Pediatric diencephalic tumors: a constellation of entities and management modalities. Front Oncol 2023; 13:1180267. [PMID: 37519792 PMCID: PMC10374860 DOI: 10.3389/fonc.2023.1180267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The diencephalon is a complex midline structure consisting of the hypothalamus, neurohypophysis, subthalamus, thalamus, epithalamus, and pineal body. Tumors arising from each of these diencephalic components differ significantly in terms of biology and prognosis. The aim of this comprehensive review is to describe the epidemiology, clinical symptoms, imaging, histology, and molecular markers in the context of the 2021 WHO classification of central nervous system neoplasms. We will also discuss the current management of each of these tumors.
Collapse
Affiliation(s)
- Soniya N. Pinto
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Jason Chiang
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ibrahim Qaddoumi
- Departments of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - David Livingston
- Department of Radiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Asim Bag
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
11
|
Wagner MW, Nobre L, Namdar K, Khalvati F, Tabori U, Hawkins C, Ertl-Wagner BB. T2-FLAIR Mismatch Sign in Pediatric Low-Grade Glioma. AJNR Am J Neuroradiol 2023; 44:841-845. [PMID: 37348970 PMCID: PMC10337621 DOI: 10.3174/ajnr.a7916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND AND PURPOSE No qualitative imaging feature currently predicts molecular alterations of pediatric low-grade gliomas with high sensitivity or specificity. The T2-FLAIR mismatch sign predicts IDH-mutated 1p19q noncodeleted adult gliomas with high specificity. We aimed to assess the significance of the T2-FLAIR mismatch sign in pediatric low-grade gliomas. MATERIALS AND METHODS Pretreatment MR images acquired between January 2001 and August 2018 in pediatric patients with pediatric low-grade gliomas were retrospectively identified. Inclusion criteria were the following: 1) 0-18 years of age, 2) availability of molecular information in histopathologically confirmed cases, and 3) availability of preoperative brain MR imaging with non-motion-degraded T2-weighted and FLAIR sequences. Spinal cord tumors were excluded. RESULTS Three hundred forty-nine patients were included (187 boys; mean age, 8.7 [SD, 4.8] years; range, 0.5-17.7 years). KIAA1549-B-Raf proto-oncogene (BRAF) fusion and BRAF p.V600E mutation were the most common molecular markers (n = 148, 42%, and n = 73, 20.7%, respectively). The T2-FLAIR mismatch sign was present in 25 patients (7.2%). Of these, 9 were dysembryoplastic neuroepithelial tumors; 8, low-grade astrocytomas; 5, diffuse astrocytomas; 1, a pilocytic astrocytoma; 1, a glioneuronal tumor; and 1, an angiocentric glioma. None of the 25 T2-FLAIR mismatch pediatric low-grade gliomas were BRAF p.V600E-mutated. Fourteen of 25 pediatric low-grade gliomas with the T2-FLAIR mismatch sign had rare molecular alterations, while the molecular subtype was unknown for 11 tumors. CONCLUSIONS The T2-FLAIR mismatch sign was not observed in the common molecular alterations, BRAF p.V600E-mutated and KIAA1549-BRAF fused pediatric low-grade gliomas, while it was encountered in pediatric low-grade gliomas with rare pediatric molecular alterations.
Collapse
Affiliation(s)
- M W Wagner
- From the Division of Neuroradiology (M.W.W., F.K., B.B.E.-W.), Department of Diagnostic Imaging
- Neurosciences & Mental Health Research Program (M.W.W., F.K., B.B.E.-W.), SickKids Research Institute, Toronto, Ontario, Canada
- Department of Medical Imaging (M.W.W., K.N., F.K., B.B.E.-W.)
- Department of Neuroradiology (M.W.W.), University Hospital Augsburg, Augsburg, Germany
| | - L Nobre
- Department of Neurooncology (L.N., U.T.)
| | - K Namdar
- Department of Medical Imaging (M.W.W., K.N., F.K., B.B.E.-W.)
- Department of Computer Science (K.N., F.K.)
- Department of Mechanical and Industrial Engineering (K.N., F.K.), University of Toronto, Toronto, Ontario, Canada
| | - F Khalvati
- From the Division of Neuroradiology (M.W.W., F.K., B.B.E.-W.), Department of Diagnostic Imaging
- Neurosciences & Mental Health Research Program (M.W.W., F.K., B.B.E.-W.), SickKids Research Institute, Toronto, Ontario, Canada
- Department of Medical Imaging (M.W.W., K.N., F.K., B.B.E.-W.)
- Institute of Medical Science (F.K.)
- Department of Computer Science (K.N., F.K.)
- Department of Mechanical and Industrial Engineering (K.N., F.K.), University of Toronto, Toronto, Ontario, Canada
- Vector Institute (F.K.), Toronto, Ontario, Canada
| | - U Tabori
- Department of Neurooncology (L.N., U.T.)
| | - C Hawkins
- Department of Paediatric Laboratory Medicine (C.H.), Division of Pathology, The Hospital for Sick Children (SickKids), Toronto, Ontario, Canada
| | - B B Ertl-Wagner
- From the Division of Neuroradiology (M.W.W., F.K., B.B.E.-W.), Department of Diagnostic Imaging
- Neurosciences & Mental Health Research Program (M.W.W., F.K., B.B.E.-W.), SickKids Research Institute, Toronto, Ontario, Canada
- Department of Medical Imaging (M.W.W., K.N., F.K., B.B.E.-W.)
| |
Collapse
|
12
|
Chen W, Jin S, Liu Q, Wang H, Xia Y, Guo X, Guo S, Wang Y, Shi Y, Liu D, Li Y, Wang Y, Xing H, Li J, Wu J, Liang T, Qu T, Li H, Yang T, Zhang K, Wang Y, Ma W. Spotlights on adult patients with pediatric-type diffuse gliomas in accordance with the 2021 WHO classification of CNS tumors. Front Neurosci 2023; 17:1144559. [PMID: 37214395 PMCID: PMC10196618 DOI: 10.3389/fnins.2023.1144559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction The fifth edition of the World Health Organization (WHO) classification of central nervous system (CNS) tumors released in 2021 formally defines pediatric-type diffuse gliomas. However, there is still little understanding of pediatric-type diffuse gliomas, and even less attention has been paid to adult patients. Therefore, this study describes the clinical radiological, survival, and molecular features of adult patients with pediatric-type glioma. Methods Adult patients who underwent surgery from January 2011 to January 2022, classified as pediatric-type glioma, were included in this study. Clinical, radiological, histopathological, molecular pathological, and survival data were collected for analysis. Results Among 596 adult patients, 20 patients with pediatric-type glioma were screened, including 6 with diffuse astrocytoma, MYB- or MYBL1-altered, 2 with diffuse midline glioma, H3 K27-altered, and 12 with diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype. Pediatric high-grade glioma (pHGG) frequently showed tumor enhancement, peritumoral edema, and intratumoral necrosis. Adult patients with pHGG showed a longer life expectancy than adult patients with glioblastoma. Common molecular alterations included chromosome alterations and CDKN2A/B, PIK3CA, and PTEN, while altered KMT5B and MET were found to affect the overall survival. Conclusion Our study demonstrated adult patients with pediatric-type glioma. Notably, our research aims to expand the current understanding of adult patients with pediatric-type diffuse gliomas. Furthermore, personalized therapies consisting of targeted molecular inhibitors for MET and VEGFA may exhibit beneficial effects in the corresponding population.
Collapse
Affiliation(s)
- Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- ‘4+4’ Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- ‘4+4’ Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| |
Collapse
|