1
|
McGraw KL, Larson DR. Implications for metabolic disturbances in myelodysplastic syndromes. Semin Hematol 2024; 61:470-478. [PMID: 39603905 PMCID: PMC11646176 DOI: 10.1053/j.seminhematol.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The Myelodysplastic Syndromes (MDS) are heterogeneous stem cell malignancies clinically characterized by bone marrow dysplasia, peripheral blood cytopenias, and a high risk for transformation to acute myeloid leukemia. In early stages of disease, differentiation defects and maturation blocks result in deficient hematopoiesis. In higher risk disease, unrestricted proliferation of immature blast cells leads to leukemogenesis. Disease pathogenesis can be attributed to many factors including chronic inflammation that is driven in part by commonly found somatic gene mutations (SGM) fostering expansion of malignant clones while suppressing normal hematopoiesis. Cellular metabolism that both directly and indirectly regulates hematopoietic stem cell (HSC) fate, is intimately connected to the immune system, is altered by MDS somatic gene mutations and is likely is a major contributor to disease pathophysiology. Despite this likely role in pathobiology, there is an underwhelming depth of literature on the subject and the precise metabolic dysregulations in these myeloid malignancies have yet to be fully delineated. In this review, we will provide a general overview of several major metabolic processes and how each directs HSC fate, provide a summary of metabolic studies in MDS, discuss how common SGM and inflammation influence metabolic pathways to drive bone marrow failure, and end with a discussion of standards of care and how these should be carefully considered in the context of metabolic dysregulation.
Collapse
Affiliation(s)
- Kathy L McGraw
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Immune Deficiencies-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, 20872.
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Immune Deficiencies-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, 20872
| |
Collapse
|
2
|
Motallebzadeh Khanmiri J, Alizadeh M, Esmaeili S, Gholami Z, Safarzadeh A, Khani-Eshratabadi M, Baghbanzadeh A, Alizadeh N, Baradaran B. Dendritic cell vaccination strategy for the treatment of acute myeloid leukemia: a systematic review. Cytotherapy 2024; 26:427-435. [PMID: 38483358 DOI: 10.1016/j.jcyt.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND AIMS Acute myeloid leukemia (AML) is classified as a hematologic malignancy characterized by the proliferation of immature blood cells within the bone marrow (BM), resulting in an aberrant and unregulated cellular growth. The primary therapeutic modalities for AML include chemotherapy and hematopoietic stem cell transplantation. However, it is important to note that these treatments are accompanied by important adverse effects and mortality rates. Therefore, the need for more effective treatment options seems necessary, and dendritic cell (DC) vaccine therapy can be one of these options. In this study, we aim to investigate the effectiveness of DC vaccination therapy for the management of AML. METHODS PubMed, Scopus, ProQuest, Web of Science, and Google Scholar databases were searched for this systematic review. The articles were evaluated based on the inclusion criteria of this study and initially compared in terms of titles or abstracts. Finally, the articles related to the topic of this review were obtained in full text. The complete remission and partial remission, survival, correlative immune assays, and health-related metrics were used to evaluate this cellular immunotherapy effectiveness. The quality of the studies was assessed independently using the Cochrane risk-of-bias tools. The compiled data were input into a standard Excel spreadsheet. Each domain was evaluated as having either a "low risk," "high risk," or "unclear risk" of bias. RESULTS Among the 3986 studies that were determined, a total of 11 correlated trials were selected for inclusion in this systematic review. DC vaccine therapy was effective in inducing complete and partial remission, and stabilization of the disease. Additionally, it was discovered that the treatment strengthened the immune system as seen by increased levels of CD4+ and CD8+ T cells, Th1 cytokines, WT1-specific T cells, and activated NK cells. CONCLUSION We conducted a systematic review that supports the use of DC vaccine therapy as an effective treatment for AML. The therapy demonstrated potentials in achieving remission, enhancing the immune system function, and increasing overall survival. However, more studies are required to improve the methods of preparing and delivering the DC vaccine, and to confirm its long-term safety and effectiveness.
Collapse
Affiliation(s)
- Jamal Motallebzadeh Khanmiri
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Esmaeili
- Student Research Committee, Shahed University, Tehran, Iran
| | - Zeinab Gholami
- Faculty of Medicine, University of Medical Sciences, Tabriz, Iran
| | - Ali Safarzadeh
- Department of Biology, University of Padova, Padova, Italy
| | | | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
WU J, HOU L, ZHANG X, Elizabeth G, GAO C, WANG J. Efficacy of Yisui granule on myelodysplastic syndromes in SKM-1 mouse xenograft model through suppressing Wnt/β-catenin signaling pathway. J TRADIT CHIN MED 2024; 44:78-87. [PMID: 38213242 PMCID: PMC10774724 DOI: 10.19852/j.cnki.jtcm.20231204.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/21/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To unmask the underlying mechanisms of Yisui granule (, YSG) for the treatment of Myelodysplastic syndromes (MDS). METHODS Our study used an SKM-1 mouse xenograft model of MDS to explore the anti-tumor potential of YSG and its safety, assess its effect on overall survival (OS), and evaluate whether its mechanism is associated with the demethylation of the secreted frizzled related protein 5 (sFRP5) gene and suppressing Wnt/β-catenin pathway. Bisulfite amplicon sequencing was applied to detect the level of methylation of the sFRP5 gene; western blotting, immunofluorescence staining, and real-time Polymerase Chain Reaction were performed to detect DNA methyltransferase 1 (DNMT1), sFRP5, and other Wnt/β-catenin pathway-related mRNA and protein expression. RESULTS The results showed that high-dosage YSG exerted an anti-tumor effect similar to that of decitabine, improved OS, and reduced long-term adverse effects in the long term. Mechanically, YSG reduced the expression of DNMT1 methyltransferase, decreased the methylation, and increased the expression of the Wnt/β-catenin pathway antagonist-sFRP5. Furthermore, components of the Wnt/β-catenin pathway, including Wnt3a, β-catenin, c-Myc, and cyclinD1, were down-regulated in response to YSG, suggesting that YSG could treat MDS by demethylating the sFRP5 gene and suppressing the Wnt/β-catenin pathway. CONCLUSIONS Our findings demonstrated that YSG could be used alone or in combination with decitabine to improve outcomes in the MDS animal model, providing an alternative solution for treating MDS.
Collapse
Affiliation(s)
- Jieya WU
- 1 Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Li HOU
- 1 Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiaoyuan ZHANG
- 1 Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Gullen Elizabeth
- 2 Department of Pharmacology, Yale Medical School, New Haven, CT 06510, USA
| | - Chong GAO
- 3 Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Jing WANG
- 1 Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
4
|
Zeidan AM, Ando K, Rauzy O, Turgut M, Wang MC, Cairoli R, Hou HA, Kwong YL, Arnan M, Meers S, Pullarkat V, Santini V, Malek K, Kiertsman F, Niolat J, Ramos PM, Menssen HD, Fenaux P, Miyazaki Y, Platzbecker U. Sabatolimab plus hypomethylating agents in previously untreated patients with higher-risk myelodysplastic syndromes (STIMULUS-MDS1): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Haematol 2024; 11:e38-e50. [PMID: 38065203 DOI: 10.1016/s2352-3026(23)00333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Sabatolimab is an immunotherapy targeting T-cell immunoglobulin domain and mucin domain-3 (TIM-3), an immuno-myeloid regulator expressed on immune cells and leukaemic stem cells. In this trial, we compared the efficacy and safety of sabatolimab plus hypomethylating agent with placebo plus hypomethylating agents in previously untreated patients with higher-risk myelodysplastic syndromes. METHODS STIMULUS-MDS1 was a multicentre, randomised, double-blind, placebo-controlled, phase 2 study done at 54 investigational sites in 17 countries. Adult patients (aged ≥18 years) with intermediate-risk, high-risk, and very high-risk myelodysplastic syndromes (according to Revised International Prognostic Scoring System criteria) who had not received previous treatment were included. Patients were randomly assigned (1:1) to intravenous sabatolimab (400 mg on day 8 and 22) or placebo plus a hypomethylating agent (intravenous decitabine 20 mg/m2 on day 1-5 or intravenous or subcutaneous azacitidine 75 mg/m2 on day 1-7 or day 1-5 and day 8 and 9) every 28 days until treatment discontinuation. The two primary endpoints were complete response rate and progression-free survival, assessed in the full analysis set, which included all randomly assigned patients. Complete response was analysed, as prespecified, 7 months after the last patient was randomly assigned. All other analyses presented, including progression-free survival, were done at the final data cutoff prespecified via a protocol amendment on Sept 2, 2021. Safety was assessed in in all patients who received at least one dose of study treatment. This study is registered with ClinicalTrials.gov, NCT03946670, and is ongoing. FINDINGS Between July 29, 2019, and Aug 10, 2020, 127 patients were randomly assigned to sabatolimab plus a hypomethylating agent group (sabatolimab group; n=65) or placebo plus a hypomethylating agent (placebo group; n=62). The median age of participants was 73 years (IQR 69-77), of whom 86 (68%) of 127 patients were male and 77 (61%) were White. The primary endpoints were not met. Complete response (cutoff date of March 10, 2021) was achieved in 14 (22%; 95% CI 12·3-33·5) of 65 patients in the sabatolimab group vs 11 (18%; 9·2-29·5) of 62 patients in the placebo group (p=0·77). At the cutoff date of the final analysis (March 1, 2022), median follow-up for progression-free survival was 17·8 months (IQR 16·6-19·4) in the sabatolimab group and 19·2 months (17·7-22·3) in the placebo group, and the median progression-free survival was 11·1 months (95% CI 7·6-17·6) in the sabatolimab group vs 8·5 months (6·9-11·3) in the placebo group (hazard ratio 0·75 [95% CI 0·48-1·17]; p=0·1022). The most common adverse events of any grade were neutropenia (35 [56%] of 62 patients in the sabatolimab group vs 43 [68%] of 63 patients in the placebo group), thrombocytopenia (30 [48%] vs 32 [51%]), constipation (29 [47%] vs 24 [38%]), diarrhoea (27 [44%] vs 14 [22%]), anaemia (22 [35%] vs 34 [54%]), febrile neutropenia (22 [35%] vs 15 [24%]), and leukopenia (15 [24%] vs 20 [32%]). One patient developed a serious potential treatment-related immune-mediated adverse event in the sabatolimab group. There was one treatment-related death in the sabatolimab group due to pneumonitis. INTERPRETATION The addition of sabatolimab to hypomethylating agents in this study did not result in a significant improvement in complete response rates or progression-free survival. Sabatolimab had a manageable safety in most patients with higher-risk myelodysplastic syndromes. A randomised phase 3 trial is ongoing to assess the potential benefit of sabatolimab plus azacitidine on overall survival in this setting. FUNDING Novartis Pharmaceuticals.
Collapse
Affiliation(s)
- Amer M Zeidan
- Yale Cancer Center, Yale University, New Haven, CT, USA.
| | - Kiyoshi Ando
- Tokai University School of Medicine, Isehara, Japan
| | - Odile Rauzy
- Institut Universitaire du Cancer Toulouse Oncopole, Toulouse University Hospital, Toulouse, France
| | | | - Ming-Chung Wang
- Kaohsiung-Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - Roberto Cairoli
- ASST Niguarda Hospital, Milan, Italy; Università degli Studi di Milano Bicocca, Milan, Italy
| | - Hsin-An Hou
- National Taiwan University Hospital, Taipei, Taiwan
| | - Yok-Lam Kwong
- University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Montserrat Arnan
- Institut Català d'Oncologia-Hospital Duran i Reynals, IDIBELL, Hospitalet Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | - Pierre Fenaux
- Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | | | | |
Collapse
|
5
|
Xu X, Wang H, Han H, Yao Y, Li X, Qi J, Cai C, Zhou M, Tang Y, Pan T, Zhang Z, Yang J, Wu D, Han Y. Clinical characteristics and prognostic significance of DNA methylation regulatory gene mutations in acute myeloid leukemia. Clin Epigenetics 2023; 15:54. [PMID: 36991512 PMCID: PMC10061765 DOI: 10.1186/s13148-023-01474-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND DNA methylation is a form of epigenetic modification that regulates gene expression. However, there are limited data on the comprehensive analysis of DNA methylation regulated gene mutations (DMRGM) in acute myeloid leukemia (AML) mainly referring to DNA methyltransferase 3α (DNMT3A), isocitrate dehydrogenase 1 (IDH1), isocitrate dehydrogenase 2 (IDH2), and Tet methylcytidine dioxygenase 2 (TET2). RESULTS A retrospective study of the clinical characteristics and gene mutations in 843 newly diagnosed non-M3 AML patients was conducted between January 2016 and August 2019. 29.7% (250/843) of patients presented with DMRGM. It was characterized by older age, higher white blood cell count, and higher platelet count (P < 0.05). DMRGM frequently coexisted with FLT3-ITD, NPM1, FLT3-TKD, and RUNX1 mutations (P < 0.05). The CR/CRi rate was only 60.3% in DMRGM patients, significantly lower than in non-DMRGM patients (71.0%, P = 0.014). In addition to being associated with poor overall survival (OS), DMRGM was also an independent risk factor for relapse-free survival (RFS) (HR: 1.467, 95% CI: 1.030-2.090, P = 0.034). Furthermore, OS worsened with an increasing burden of DMRGM. Patients with DMRGM may be benefit from hypomethylating drugs, and the unfavorable prognosis of DMRGM can be overcome by hematopoietic stem cell transplantation (HSCT). For external validation, the BeatAML database was downloaded, and a significant association between DMRGM and OS was confirmed (P < 0.05). CONCLUSION Our study provides an overview of DMRGM in AML patients, which was identified as a risk factor for poor prognosis.
Collapse
Affiliation(s)
- Xiaoyan Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Hong Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Haohao Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Yifang Yao
- Soochow Hopes Hematonosis Hospital, Suzhou, People's Republic of China
| | - Xueqian Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Jiaqian Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Chengsen Cai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Meng Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Yaqiong Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Tingting Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Ziyan Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Jingyi Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.
| |
Collapse
|
6
|
Geng S, Xu R, Huang X, Li M, Deng C, Lai P, Wang Y, Wu P, Chen X, Weng J, Du X. Dynamics of PD-1 expression are associated with treatment efficacy and prognosis in patients with intermediate/high-risk myelodysplastic syndromes under hypomethylating treatment. Front Immunol 2022; 13:950134. [PMID: 36003379 PMCID: PMC9393298 DOI: 10.3389/fimmu.2022.950134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Hypomethylating agents (HMAs) are widely used in patients with higher-risk MDS not eligible for stem cell transplantation. However, the general response rate by HMAs is lesser than 50% in MDS patients, while the relapse rate is high. Emerging evidence indicates that demethylating effects committed by HMAs may facilitate the up-regulation of a range of immune checkpoints or cancer suppressor genes in patients with MDS, among which the programmed death protein 1 (PD-1) and its ligands are demonstrated to be prominent and may contribute to treatment failure and early relapse. Although results from preliminary studies with a limited number of enrolled patients indicate that combined administration of PD-1 inhibitor may yield extra therapeutic benefit in some MDS patients, identifications of this subgroup of patients and optimal timing for the anti-PD-1 intervention remain significant challenges. Dynamics of immune checkpoints and associated predictive values during HMA-treatment cycles remained poorly investigated. In this present study, expression levels of immune checkpoints PD-1 and its ligands PD-L1 and PD-L2 were retrospectively analyzed by quantitative PCR (Q-PCR) in a total of 135 myelodysplastic syndromes (MDS) cohort with higher-risk stratification. The prognostic value of dynamics of these immune checkpoints during HMA cycles was validated in two independent prospective cohorts in our center (NCT01599325 and NCT01751867). Our data revealed that PD-1 expression was significantly higher than that in younger MDS patients (age ≤ 60) and MDS with lower IPSS risk stratification (intermediate risk-1). A significantly up-regulated expression of PD-1 was seen during the first four HMA treatment cycles in MDS patients, while similar observation was not seen concerning the expression of PD-L1 or PD-L2. By utilizing binary logistic regression and receiver operating characteristic (ROC) models, we further identified that higher or equal to 75.9 PD-1 expressions after 2 cycles of HMA treatment is an independent negative prognostic factor in predicting acute myeloid leukemia (AML) transformation and survival. Collectively, our data provide rationales for monitoring the expression of PD-1 during HMA treatment cycles, a higher than 75.9 PD-1 expression may identify patients who will potentially benefit from the combined therapy of HMA and PD-1 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xin Du
- *Correspondence: Xin Du, ; ; Jianyu Weng,
| |
Collapse
|
7
|
Abaza Y, Zeidan AM. Immune Checkpoint Inhibition in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Cells 2022; 11:cells11142249. [PMID: 35883692 PMCID: PMC9318025 DOI: 10.3390/cells11142249] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many solid tumors, with limited progress made in the area of myeloid malignancies. The low mutational burden of acute myeloid leukemia (AML) is one potential reason behind the lack of activity of T-cell harnessing ICIs, particularly CTLA-4 and PD-1 inhibitors. Innate immune checkpoints play a critical role in the immune escape of AML and myelodysplastic syndromes (MDS). The CD47 targeting agent, magrolimab, has shown promising activity when combined with azacitidine in early phase trials conducted in AML and higher-risk MDS, especially among patients harboring a TP53 mutation. Similarly, sabatolimab (an anti-TIM-3 monoclonal antibody) plus hypomethylating agents have shown durable responses in higher-risk MDS and AML in early clinical trials. Randomized trials are currently ongoing to confirm the efficacy of these agents. In this review, we will present the current progress and future directions of immune checkpoint inhibition in AML and MDS.
Collapse
Affiliation(s)
- Yasmin Abaza
- Department of Hematology and Oncology, Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA;
| | - Amer M. Zeidan
- Section of Hematology, Department of Medicine, Smilow Cancer Center, Yale University, New Haven, CT 06511, USA
- Correspondence:
| |
Collapse
|
8
|
Zeidan AM, Cook RJ, Bordoni R, Berenson JR, Edenfield WJ, Mohan S, Zhou G, Asatiani E, Srinivas N, Savona MR. A Phase 1/2 Study of the Oral Janus Kinase 1 Inhibitors INCB052793 and Itacitinib Alone or in Combination With Standard Therapies for Advanced Hematologic Malignancies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:523-534. [PMID: 35260349 DOI: 10.1016/j.clml.2022.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The Janus kinase (JAK)/signal transducers and activators of transcription pathway has been implicated in the pathogenesis and progression of various hematologic malignancies. JAK1-regulated cytokines stimulate proliferation and growth of malignant cells and resistance to certain therapies. PATIENTS AND METHODS This phase 1/2 study evaluated 2 oral, novel JAK1 inhibitors (INCB052793 and itacitinib) in advanced hematologic malignancies. Phase 1a assessed dose escalation and expansion of INCB052793 monotherapy. Phase 1b evaluated INCB052793 plus standard therapy in relapsed/refractory multiple myeloma, acute myeloid leukemia (AML), or myelodysplastic syndrome (MDS). Phase 2 evaluated INCB052793 or itacitinib plus azacitidine in DNA methyltransferase inhibitor (DNMTi)-refractory AML or MDS. Primary endpoints included safety and tolerability for phase 1, and objective response rate for phase 2. RESULTS Fifty-eight patients were enrolled, all received study treatment and discontinued either treatment or participation in the study. The most common reasons for treatment discontinuation were progressive disease (35.4% and 50.0%) and adverse events (22.9% and 20.0%) for INCB052793 and itacitinib plus azacitidine, respectively. In phase 1, 12 of 39 patients (31%) achieved an objective response; 35 mg once daily was selected as the phase 2 dose. Two patients with DNMTi-refractory disease had an objective response in phase 2. The study was terminated for lack of efficacy. CONCLUSION Inhibition of JAK1 with INCB052793 (monotherapy or combination therapy) or itacitinib plus azacitidine did not demonstrate clinically meaningful responses in these patients with hematopoietic malignancies.
Collapse
Affiliation(s)
- Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University and Yale Cancer Center, New Haven, CT
| | | | | | | | | | - Sanjay Mohan
- Department of Internal Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | | | | | | | - Michael R Savona
- Department of Internal Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN.
| |
Collapse
|
9
|
Garcia-Manero G, Ribrag V, Zhang Y, Farooqui M, Marinello P, Smith BD. Pembrolizumab for myelodysplastic syndromes after failure of hypomethylating agents in the phase 1b KEYNOTE-013 study. Leuk Lymphoma 2022; 63:1660-1668. [PMID: 35244520 DOI: 10.1080/10428194.2022.2034155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The phase 1b multicohort KEYNOTE-013 study assessed the safety and antitumor activity of pembrolizumab given at 10 mg/kg/day every 2 weeks for up to 2 years in hematologic malignancies, including myelodysplastic syndromes (MDS) refractory to a hypomethylating agent (HMA). Primary outcomes were safety and objective response rate per International Working Group 2006 criteria. By June 26, 2020, 28 patients were enrolled; median duration of follow-up was 5.6 months (range, 1-78), and 25 patients (89%) had died. Treatment-related adverse events occurred in 10 patients (36%), including 2 (7%) treatment-related discontinuations. No patient achieved complete or partial response. Five patients (19%) had bone marrow complete response, 12 (44%) stable disease, 10 (37%) progressive disease, 6 (22%) cytogenetic response, and 5 (19%) hematologic improvement. Median overall survival (OS) was 6.0 months (95% CI, 4-12); the overall 2-year OS rate was 17%. Pembrolizumab had manageable safety and clinical activity in patients with HMA-refractory MDS.This trial was registered at www.clinicaltrials.gov as #NCT01953692.
Collapse
Affiliation(s)
| | - Vincent Ribrag
- Department of Hematology, Gustave Roussy, Villejuif, France
| | - Yayan Zhang
- Department of Medical Oncology, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Mohammed Farooqui
- Department of Medical Oncology, Merck & Co., Inc, Kenilworth, NJ, USA
| | | | - B Douglas Smith
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
10
|
Paracatu LC, Monlish DA, Greenberg ZJ, Fisher DAC, Walter MJ, Oh ST, Schuettpelz LG. Toll-like receptor and cytokine expression throughout the bone marrow differs between patients with low- and high-risk myelodysplastic syndromes. Exp Hematol 2022; 110:47-59. [PMID: 35367529 PMCID: PMC9590644 DOI: 10.1016/j.exphem.2022.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 11/20/2022]
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders, the pathogenesis of which involves enhanced immune signaling that promotes or selects for mutant hematopoietic stem and progenitor cells (HSPCs). In particular, toll-like receptor (TLR) expression and signaling are enhanced in MDS, and their inhibition is an attractive therapeutic strategy. Although prior studies have reported increased expression of TLR2 and its binding partners TLR1 and TLR6 in the CD34+ cells of patients with MDS (especially those with low-risk disease), TLR expression in other cell types throughout the bone marrow is largely unknown. To address this, we used mass cytometry to assess the expression of TLR1, TLR2, and TLR6 and cytokines in the bone marrow hematopoietic cells of six low/intermediate-risk and six high-risk unmatched MDS bone marrow samples, as well as healthy controls, both at baseline and in response to TLR agonists. We observed several consistent differences between the groups. Most notably, TLR expression was upregulated in multiple cell populations in the low/intermediate-risk, but not high-risk, patients. In addition, many cytokines, including interleukin-6, interleukin-8, tumor necrosis factor α, transforming growth factor β, macrophage inflammatory protein 1β, and granzyme B, were highly expressed from various cell types in low/intermediate-risk patients. However, these same cytokines, with the exception of transforming growth factor β, were expressed at lower levels in high-risk MDS. Together, these findings highlight the differential role of inflammation, and specifically TLR expression, in low/intermediate- versus high-risk MDS, and suggest that elevated TLR expression and cytokine production in multiple cell types likely influences the pathogenesis of MDS in lower-risk patients.
Collapse
Affiliation(s)
- Luana Chiquetto Paracatu
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO
| | - Darlene A Monlish
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO
| | - Zev J Greenberg
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO
| | - Daniel A C Fisher
- Department of Medicine, Division of Hematology, Washington University School of Medicine, St. Louis, MO
| | - Matthew J Walter
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Stephen T Oh
- Department of Medicine, Division of Hematology, Washington University School of Medicine, St. Louis, MO
| | - Laura G Schuettpelz
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
11
|
Platzbecker U, Chromik J, Krönke J, Handa H, Strickland S, Miyazaki Y, Wermke M, Sakamoto W, Tachibana Y, Taube T, Germing U. Volasertib as a monotherapy or in combination with azacitidine in patients with myelodysplastic syndrome, chronic myelomonocytic leukemia, or acute myeloid leukemia: summary of three phase I studies. BMC Cancer 2022; 22:569. [PMID: 35597904 PMCID: PMC9124414 DOI: 10.1186/s12885-022-09622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This report summarizes three phase I studies evaluating volasertib, a polo-like kinase inhibitor, plus azacitidine in adults with myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia, or acute myeloid leukemia. METHODS Patients received intravenous volasertib in 28-day cycles (dose-escalation schedules). In Part 1 of 1230.33 (Study 1; NCT01957644), patients received 250-350 mg volasertib on day (D)1 and D15; in Part 2, patients received different schedules [A, D1: 170 mg/m2; B, D7: 170 mg/m2; C, D1 and D7: 110 mg/m2]. In 1230.35 (Study 2; NCT02201329), patients received 200-300 mg volasertib on D1 and D15. In 1230.43 (Study 3; NCT02721875), patients received 110 mg/m2 volasertib on D1 and D8. All patients in Studies 1 and 2, and approximately half of the patients in Study 3, were scheduled to receive subcutaneous azacitidine 75 mg/m2 on D1-7. RESULTS Overall, 22 patients were treated (17 with MDS; 12 previously untreated). Across Studies 1 and 2 (n = 21), the most common drug-related adverse events were hematological (thrombocytopenia [n = 11]; neutropenia [n = 8]). All dose-limiting toxicities were grade 4 thrombocytopenia. The only treated patient in Study 3 experienced 18 adverse events following volasertib monotherapy. Studies 1 and 2 showed preliminary activity (objective response rates: 25 and 40%). CONCLUSIONS The safety of volasertib with azacitidine in patients with MDS was consistent with other volasertib studies. All studies were terminated prematurely following the discontinuation of volasertib for non-clinical reasons by Boehringer Ingelheim; however, safety information on volasertib plus azacitidine are of interest for future studies in other diseases.
Collapse
Affiliation(s)
- Uwe Platzbecker
- Medical Clinic and Policlinic I, Hematology and Cellular Therapy, University Hospital Leipzig, Johannisallee 32, D-04103, Leipzig, Germany.
| | - Joerg Chromik
- Department of Hematology and Medical Oncology, University Hospital Frankfurt, Frankfurt, Germany
| | - Jan Krönke
- Department of Internal Medicine, University Hospital of Ulm, Ulm, Germany
| | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Stephen Strickland
- Division of Hematology and Oncology, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Yasushi Miyazaki
- Department of Hematology, Nagasaki University Hospital, Nagasaki City, Japan
| | - Martin Wermke
- NCT/UCC Early Clinical Trial Unit, Technical University Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Wataru Sakamoto
- Biostatistics and Data Science Japan, Medical Division, Nippon Boehringer Ingelheim, Tokyo, Japan
| | | | - Tillmann Taube
- Therapeutic Area Oncology Medicine, Boehringer Ingelheim International, Biberach, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, Dusseldorf, Germany
| |
Collapse
|
12
|
Lu PF, Deng LN, Meng FK, Wang Y, Xiao M, Li DJ. Platelet Doubling After First Decitabine Cycle Predicts Response and Survival of Myelodysplastic Syndrome Patients. Curr Med Sci 2022; 42:77-84. [PMID: 35089492 DOI: 10.1007/s11596-022-2533-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Although the effect of decitabine on myelodysplastic syndrome (MDS) has been demonstrated, merely a proportion of patients respond to therapy, and no well-recognized predictors have been identified. This study was conducted to investigate the effectiveness of decitabine in real-world clinical practice, and determine the predictive factors of response and overall survival (OS) in MDS patients. METHODS Clinical and pathological data were collected from 94 patients and analyzed. These patients were reclassified according to the 2016 World Health Organization classification criteria, and restratified by International Prognostic Scoring System prognostic scores. The response evaluation was performed according to the 2006 modified International Working Group response criteria. RESULTS In this study, 62% of patients responded to decitabine. Among these patients, 15 patients (16%) obtained complete remission (CR), 15 patients (16%) obtained marrow CR with hematologic improvement (HI), 20 patients (21%) obtained marrow CR without HI, and 8 patients (9%) only obtained HI, and no patient botained partial remission. The OS of the responders was significantly longer than that of non-responders (67 months vs. 7 months, P<0.001). The OS in patients with and without platelet doubling was significantly different in both the low/intermediate and high/very high risk groups (P=0.0398 and P=0.0330). The multivariate analysis revealed that platelet doubling after the first decitabine cycle is an independent predictor of response and OS in MDS patients (P=0.002 and P=0.008). CONCLUSION Decitabine is effective for treating MDS patients in real-world clinical practice. Furthermore, platelet doubling after the first decitabine cycle can be used as a predictor of response and survival in MDS patients.
Collapse
Affiliation(s)
- Ping-Fan Lu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Nan Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan-Kai Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Deng-Ju Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Chen X, Zhou W, Song RH, Liu S, Wang S, Chen Y, Gao C, He C, Xiao J, Zhang L, Wang T, Liu P, Duan K, Cheng Z, Zhang C, Zhang J, Sun Y, Jackson F, Lan F, Liu Y, Xu Y, Wong JJL, Wang P, Yang H, Xiong Y, Chen T, Li Y, Ye D. Tumor suppressor CEBPA interacts with and inhibits DNMT3A activity. SCIENCE ADVANCES 2022; 8:eabl5220. [PMID: 35080973 PMCID: PMC8791617 DOI: 10.1126/sciadv.abl5220] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
DNA methyltransferases (DNMTs) catalyze DNA methylation, and their functions in mammalian embryonic development and diseases including cancer have been extensively studied. However, regulation of DNMTs remains under study. Here, we show that CCAAT/enhancer binding protein α (CEBPA) interacts with the long splice isoform DNMT3A, but not the short isoform DNMT3A2. CEBPA, by interacting with DNMT3A N-terminus, blocks DNMT3A from accessing DNA substrate and thereby inhibits its activity. Recurrent tumor-associated CEBPA mutations, such as preleukemic CEBPAN321D mutation, which is particularly potent in causing AML with high mortality, disrupt DNMT3A association and cause aberrant DNA methylation, notably hypermethylation of PRC2 target genes. Consequently, leukemia cells with the CEBPAN321D mutation are hypersensitive to hypomethylation agents. Our results provide insights into the functional difference between DNMT3A isoforms and the regulation of de novo DNA methylation at specific loci in the genome. Our study also suggests a therapeutic strategy for the treatment of CEBPA-mutated leukemia with DNA-hypomethylating agents.
Collapse
Affiliation(s)
- Xiufei Chen
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Target Discovery Institute, NDM Research Building, Oxford Ludwig Institute of Cancer Research, Oxford University, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Wenjie Zhou
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ren-Hua Song
- Epigenetics and RNA Biology Program, Centenary Institute, The University of Sydney, Camperdown 2050, Australia
| | - Shuang Liu
- MOE Key Laboratory of Model Animals for Disease Study, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Shu Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yujia Chen
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chao Gao
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chenxi He
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianxiong Xiao
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lei Zhang
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Tianxiang Wang
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Peng Liu
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kunlong Duan
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhouli Cheng
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chen Zhang
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jinye Zhang
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiping Sun
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Felix Jackson
- Department of Computer Science, University of Oxford, 15 Parks Rd, Oxford OX1 3QD, UK
| | - Fei Lan
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanhui Xu
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Justin Jong-Leong Wong
- Epigenetics and RNA Biology Program, Centenary Institute, The University of Sydney, Camperdown 2050, Australia
| | - Pu Wang
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tong Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
- Corresponding author. (T.C.); (Yan Li); (D.Y.)
| | - Yan Li
- MOE Key Laboratory of Model Animals for Disease Study, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
- Corresponding author. (T.C.); (Yan Li); (D.Y.)
| | - Dan Ye
- Huashan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Corresponding author. (T.C.); (Yan Li); (D.Y.)
| |
Collapse
|
14
|
Votavova H, Belickova M. Hypoplastic myelodysplastic syndrome and acquired aplastic anemia: Immune‑mediated bone marrow failure syndromes (Review). Int J Oncol 2021; 60:7. [PMID: 34958107 PMCID: PMC8727136 DOI: 10.3892/ijo.2021.5297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/01/2021] [Indexed: 11/06/2022] Open
Abstract
Hypoplastic myelodysplastic syndrome (hMDS) and aplastic anemia (AA) are rare hematopoietic disorders characterized by pancytopenia with hypoplastic bone marrow (BM). hMDS and idiopathic AA share overlapping clinicopathological features, making a diagnosis very difficult. The differential diagnosis is mainly based on the presence of dysgranulopoiesis, dysmegakaryocytopoiesis, an increased percentage of blasts, and abnormal karyotype, all favouring the diagnosis of hMDS. An accurate diagnosis has important clinical implications, as the prognosis and treatment can be quite different for these diseases. Patients with hMDS have a greater risk of neoplastic progression, a shorter survival time and a lower response to immunosuppressive therapy compared with patients with AA. There is compelling evidence that these distinct clinical entities share a common pathophysiology based on the damage of hematopoietic stem and progenitor cells (HSPCs) by cytotoxic T cells. Expanded T cells overproduce proinflammatory cytokines (interferon-γ and tumor necrosis factor-α), resulting in decreased proliferation and increased apoptosis of HSPCs. The antigens that trigger this abnormal immune response are not known, but potential candidates have been suggested, including Wilms tumor protein 1 and human leukocyte antigen class I molecules. Our understanding of the molecular pathogenesis of these BM failure syndromes has been improved by next-generation sequencing, which has enabled the identification of a large spectrum of mutations. It has also brought new challenges, such as the interpretation of variants of uncertain significance and clonal hematopoiesis of indeterminate potential. The present review discusses the main clinicopathological differences between hMDS and acquired AA, focuses on the molecular background and highlights the importance of molecular testing.
Collapse
Affiliation(s)
- Hana Votavova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague 128 00, Czech Republic
| | - Monika Belickova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague 128 00, Czech Republic
| |
Collapse
|
15
|
Baroud M, Lepeltier E, El-Makhour Y, Lautram N, Bejaud J, Thepot S, Duval O. Azacitidine Omega-3 Self-Assemblies: Synthesis, Characterization, and Potent Applications for Myelodysplastic Syndromes. Pharmaceuticals (Basel) 2021; 14:1317. [PMID: 34959720 PMCID: PMC8706301 DOI: 10.3390/ph14121317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/30/2022] Open
Abstract
5-Azacitidine, a cytidine analogue used as a hypomethylating agent, is one of the main drugs for the treatment of myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML) in the elderly. However, after administration, it exhibits several limitations, including restricted diffusion and cellular internalization due to its hydrophilicity, and a rapid enzymatic degradation by adenosine deaminase. The aim of this study was to improve the drug cell diffusion and protect it from metabolic degradation via the synthesis of amphiphilic prodrugs and their potential self-assembly. Azacitidine was conjugated to two different omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The carboxylic acid group of the omega-3 fatty acids was effectively conjugated to the amine group of the azacitidine base, yielding two amphiphilic prodrugs. Nanoprecipitation of the obtained prodrugs was performed and self-assemblies were successfully obtained for both prodrugs, with a mean diameter of 190 nm, a polydispersity index below 0.2 and a positive zeta potential. The formation of self-assemblies was confirmed using pyrene as a fluorescent dye, and the critical aggregation concentrations were determined: 400 µM for AzaEPA and 688 µM for AzaDHA. Additionally, the stability of the obtained self-assemblies was studied and after 5 days their final stable arrangement was reached. Additionally, cryo-TEM revealed that the self-assemblies attain a multilamellar vesicle supramolecular structure. Moreover, the obtained self-assemblies presented promising cytotoxicity on a leukemia human cell line, having a low IC50 value, comparable to that of free azacitidine.
Collapse
Affiliation(s)
- Milad Baroud
- Micro & Nanomedecines Translationnelles (MINT), Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, University of Angers, 49000 Angers, France; (M.B.); (E.L.); (N.L.); (J.B.)
| | - Elise Lepeltier
- Micro & Nanomedecines Translationnelles (MINT), Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, University of Angers, 49000 Angers, France; (M.B.); (E.L.); (N.L.); (J.B.)
| | - Yolla El-Makhour
- Environmental Health Research Lab, Faculty of Science, Lebanese University, Nabatieh 1700, Lebanon;
| | - Nolwenn Lautram
- Micro & Nanomedecines Translationnelles (MINT), Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, University of Angers, 49000 Angers, France; (M.B.); (E.L.); (N.L.); (J.B.)
| | - Jerome Bejaud
- Micro & Nanomedecines Translationnelles (MINT), Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, University of Angers, 49000 Angers, France; (M.B.); (E.L.); (N.L.); (J.B.)
| | - Sylvain Thepot
- Department of Hematology, University Hospital of Angers, 49933 Angers, France;
- Federation Hospital of Universitaire Grand Ouest Acute Leukemia (FHU GOAL), 49933 Angers, France
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), INSERM, University of Angers, 49933 Angers, France
| | - Olivier Duval
- Micro & Nanomedecines Translationnelles (MINT), Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, University of Angers, 49000 Angers, France; (M.B.); (E.L.); (N.L.); (J.B.)
- Department of Hematology, University Hospital of Angers, 49933 Angers, France;
| |
Collapse
|
16
|
Lee P, Yim R, Yung Y, Chu HT, Yip PK, Gill H. Molecular Targeted Therapy and Immunotherapy for Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:10232. [PMID: 34638574 PMCID: PMC8508686 DOI: 10.3390/ijms221910232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous, clonal hematological disorder characterized by ineffective hematopoiesis, cytopenia, morphologic dysplasia, and predisposition to acute myeloid leukemia (AML). Stem cell genomic instability, microenvironmental aberrations, and somatic mutations contribute to leukemic transformation. The hypomethylating agents (HMAs), azacitidine and decitabine are the standard of care for patients with higher-risk MDS. Although these agents induce responses in up to 40-60% of patients, primary or secondary drug resistance is relatively common. To improve the treatment outcome, combinational therapies comprising HMA with targeted therapy or immunotherapy are being evaluated and are under continuous development. This review provides a comprehensive update of the molecular pathogenesis and immune-dysregulations involved in MDS, mechanisms of resistance to HMA, and strategies to overcome HMA resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Harinder Gill
- Division of Haematology, Medical Oncology and Haemopoietic Stem Cell Transplantation, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.)
| |
Collapse
|
17
|
Platzbecker U, Kubasch AS, Homer-Bouthiette C, Prebet T. Current challenges and unmet medical needs in myelodysplastic syndromes. Leukemia 2021; 35:2182-2198. [PMID: 34045662 PMCID: PMC8324480 DOI: 10.1038/s41375-021-01265-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 01/29/2023]
Abstract
Myelodysplastic syndromes (MDS) represent a heterogeneous group of myeloid neoplasms that are characterized by ineffective hematopoiesis, variable cytopenias, and a risk of progression to acute myeloid leukemia. Most patients with MDS are affected by anemia and anemia-related symptoms, which negatively impact their quality of life. While many patients with MDS have lower-risk disease and are managed by existing treatments, there currently is no clear standard of care for many patients. For patients with higher-risk disease, the treatment priority is changing the natural history of the disease by delaying disease progression to acute myeloid leukemia and improving overall survival. However, existing treatments for MDS are generally not curative and many patients experience relapse or resistance to first-line treatment. Thus, there remains an unmet need for new, more effective but tolerable strategies to manage MDS. Recent advances in molecular diagnostics have improved our understanding of the pathogenesis of MDS, and it is becoming clear that the diverse nature of genetic abnormalities that drive MDS demands a complex and personalized treatment approach. This review will discuss some of the challenges related to the current MDS treatment landscape, as well as new approaches currently in development.
Collapse
Affiliation(s)
- Uwe Platzbecker
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany.
- German MDS Study Group (D-MDS), Leipzig, Germany.
- The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.
| | - Anne Sophie Kubasch
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
- German MDS Study Group (D-MDS), Leipzig, Germany
- The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany
| | | | | |
Collapse
|
18
|
Abstract
A fixed dose oral combination (FDC) of decitabine and cedazuridine (Inqovi®), is being developed by Astex Pharmaceuticals (a subsidiary of Otsuka Pharmaceuticals) for the treatment of various cancers like myelodysplastic syndromes (MDS), chronic myelomonocytic leukaemia (CMML), acute myeloid leukaemia (AML), glioma and solid tumours. Decitabine, a DNA methyltransferase inhibitor approved for the treatment of MDS and CMML, is degraded by cytidine deaminase in the gastrointestinal tract and liver, thereby limiting oral bioavailability. Cedazuridine is a proprietary, patented cytidine deaminase inhibitor that, when added to decitabine, increases oral bioavailability of the drug. In July 2020, decitabine/cedazuridine received its first approval in the USA and Canada for the treatment of MDS and CMML. In the USA, it is indicated for use in adults with MDS and CMML, including previously treated and untreated, de novo and secondary MDS with the following French–American–British subtypes (refractory anaemia, refractory anaemia with ringed sideroblasts, refractory anaemia with excess blasts and CMML) and intermediate-1, intermediate-2 and high-risk International Prognostic Scoring System groups. Clinical studies for AML, glioma and solid tumours are underway in several countries worldwide. This article summarizes the milestones in the development of decitabine/cedazuridine leading to this first approval for the treatment of MDS and CMML.
Collapse
Affiliation(s)
- Sohita Dhillon
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
19
|
Amberger DC, Schmetzer HM. Dendritic Cells of Leukemic Origin: Specialized Antigen-Presenting Cells as Potential Treatment Tools for Patients with Myeloid Leukemia. Transfus Med Hemother 2021; 47:432-443. [PMID: 33442338 DOI: 10.1159/000512452] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022] Open
Abstract
The prognosis of elderly patients with acute myeloid leukemia (AML) and high-grade myelodysplastic syndrome (MDS) is limited due to the lack of therapy options and high relapse rates. Dendritic cell (DC)-based immunotherapy seems to be a promising treatment tool. DC are potent antigen-presenting cells and play a pivotal role on the interface of the innate and the adaptive immune system. Myeloid leukemia blasts can be converted to DC of leukemic origin (DCleu), expressing costimulatory molecules along with the whole leukemic antigen repertoire of individual patients. These generated DCleu are potent stimulators of various immune reactive cells and increase antileukemic immunity ex vivo. Here we review the generating process of DC/DCleu from leukemic peripheral blood mononuclear cells as well as directly from leukemic whole blood with "minimized" Kits to simulate physiological conditions ex vivo. The purpose of adoptive cell transfer of DC/DCleu as a vaccination strategy is discussed. A new potential therapy option with Kits for patients with myeloid leukemia, which would render an adoptive DC/DCleu transfer unnecessary, is presented. In summary, DC/DCleu-based therapies seem to be promising treatment tools for patients with AML or MDS but ongoing research including trials in animals and humans have to be performed.
Collapse
Affiliation(s)
| | - Helga Maria Schmetzer
- Department of Medicine III, University Hospital, Hematopoetic Cell Transplantation, Munich, Germany
| |
Collapse
|
20
|
Gonzalez-Lugo JD, Chakraborty S, Verma A, Shastri A. The evolution of epigenetic therapy in myelodysplastic syndromes and acute myeloid leukemia. Semin Hematol 2020; 58:56-65. [PMID: 33509444 DOI: 10.1053/j.seminhematol.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 01/03/2023]
Abstract
Mutations in the group of epigenetic modifiers are the largest group of mutated genes in Myelodysplastic Syndromes (MDS) and are very frequently found in Acute Myeloid Leukemia (AML). Our advancements in the understanding of epigenetics in these diseases have helped develop groundbreaking therapeutics that have changed the treatment landscape of MDS and AML, significantly improving outcomes. In this review we describe the most common epigenetic aberrations in MDS and AML, and current treatments that target mutations in epigenetic modifiers, as well as novel treatment combinations, from standard therapies to investigational treatments.
Collapse
Affiliation(s)
- Jesus D Gonzalez-Lugo
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY
| | - Samarpana Chakraborty
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Amit Verma
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Aditi Shastri
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
21
|
Ramos Perez J, Montalban-Bravo G. Emerging drugs for the treatment of chronic myelomonocytic leukemia. Expert Opin Emerg Drugs 2020; 25:515-529. [PMID: 33280448 DOI: 10.1080/14728214.2020.1854224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Introduction: Chronic myelomonocytic leukemia (CMML) is a clonal hematologic disorder with heterogenous prognosis, but with no curative therapies with exception of allogeneic transplant. Therapeutic options for patients with CMML are limited, and although hypomethylating agents such as azacitidine and decitabine are the standard of care, only 40% of patients achieve a response, and most responses are transient. Over the last 5 years, significant advances have been made in the understanding of the clonal landscape of CMML, some of the mechanisms associated to resistance to HMA, and other key biological processes involved in disease pathogenesis. Areas covered: The current article reviews the most relevant emerging therapies currently undergoing clinical trials for the treatment of previously untreated or relapsed CMML. Expert opinion: The presence of recurrent somatic mutations in CMML represents therapeutic opportunities to utilize specific small molecule inhibitors such as IDH, FLT3, MEK/ERK, PLK1, or splicing inhibitors and modulators. In addition, other novel agents such as immune therapies, BCL2 or MCL1 inhibitors and other monoclonal antibodies could lead to therapeutic advances. Identifying specific patient populations likely to benefit from some of these interventions, and development of optimal combinations will remain the challenge when determining their role in therapy.
Collapse
Affiliation(s)
- Jorge Ramos Perez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | | |
Collapse
|
22
|
Unravelling the Epigenome of Myelodysplastic Syndrome: Diagnosis, Prognosis, and Response to Therapy. Cancers (Basel) 2020; 12:cancers12113128. [PMID: 33114584 PMCID: PMC7692163 DOI: 10.3390/cancers12113128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Myelodysplastic syndrome (MDS) is a type of blood cancer that mostly affects older individuals. Invasive tests to obtain bone samples are used to diagnose MDS and many patients do not respond to therapy or stop responding to therapy in the short-term. Less invasive tests to help diagnose, prognosticate, and predict response of patients is a felt need. Factors that influence gene expression without changing the DNA sequence (epigenetic modifiers) such as DNA methylation, micro-RNAs and long-coding RNAs play an important role in MDS, are potential biomarkers and may also serve as targets for therapy. Abstract Myelodysplastic syndrome (MDS) is a malignancy that disrupts normal blood cell production and commonly affects our ageing population. MDS patients are diagnosed using an invasive bone marrow biopsy and high-risk MDS patients are treated with hypomethylating agents (HMAs) such as decitabine and azacytidine. However, these therapies are only effective in 50% of patients, and many develop resistance to therapy, often resulting in bone marrow failure or leukemic transformation. Therefore, there is a strong need for less invasive, diagnostic tests for MDS, novel markers that can predict response to therapy and/or patient prognosis to aid treatment stratification, as well as new and effective therapeutics to enhance patient quality of life and survival. Epigenetic modifiers such as DNA methylation, long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs) are perturbed in MDS blasts and the bone marrow micro-environment, influencing disease progression and response to therapy. This review focusses on the potential utility of epigenetic modifiers in aiding diagnosis, prognosis, and predicting treatment response in MDS, and touches on the need for extensive and collaborative research using single-cell technologies and multi-omics to test the clinical utility of epigenetic markers for MDS patients in the future.
Collapse
|
23
|
Yang Y, Li J, Geng Y, Liu L, Li D. Azacitidine regulates DNA methylation of GADD45γ in myelodysplastic syndromes. J Clin Lab Anal 2020; 35:e23597. [PMID: 33080073 PMCID: PMC7891504 DOI: 10.1002/jcla.23597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Background Myelodysplastic syndrome (MDS) is a heterogeneous clonal disease originated from hematopoietic stem cells. Epigenetic studies had demonstrated that DNA methylation and histone acetylation were abnormal in MDS. Azacitidine is an effective drug in the treatment of demethylation. Methods RT‐PCR was performed to determine GADD45γ in 15 MDS clinical samples. Myelodysplastic syndrome cell lines SKM‐1 and HS‐5 were transfected with GADD45γ eukaryotic expression vector and/or GADD45γ shRNA interference plasmid, and treated with azacitidine. Proliferation and apoptosis were examined by CCK‐8 and Western blot analysis to confirm the function role of GADD45γ and azacitidine. The methylation level of GADD45γ gene was detected by bisulfite conversion and PCR. Results This study found that GADD45γ gene was down‐expressed in MDS patients' bone marrow and MDS cell lines, and the down‐regulation of GADD45γ in MDS could inhibit MDS cell apoptosis and promote proliferation. Azacitidine, a demethylation drug, could restore the expression of GADD45γ in MDS cells and inhibit the proliferation of MDS cells by inducing apoptosis, which was related to prognosis and transformation. Conclusion This study indicated that GADD45γ was expected to become a new target of MDS‐targeted therapy. The findings of this study provided a new direction for the research and development of new MDS clinical drugs, and gave a new idea for the development of MDS demethylation drug to realize precise treatment.
Collapse
Affiliation(s)
- Yanli Yang
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| | - Jun Li
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| | - Yinghua Geng
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| | - Dianming Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
24
|
TLR2/6 signaling promotes the expansion of premalignant hematopoietic stem and progenitor cells in the NUP98-HOXD13 mouse model of MDS. Exp Hematol 2020; 88:42-55. [PMID: 32652111 PMCID: PMC7673652 DOI: 10.1016/j.exphem.2020.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 01/23/2023]
Abstract
Toll-like receptor 2 (TLR2) expression is increased on hematopoietic stem and progenitor cells (HSPCs) of patients with myelodysplastic syndromes (MDS), and enhanced TLR2 signaling is thought to contribute to MDS pathogenesis. Notably, TLR2 heterodimerizes with TLR1 or TLR6, and while high TLR2 is associated with lower-risk disease, high TLR6, but not TLR1, correlates with higher-risk disease. This raises the possibility of heterodimer-specific effects of TLR2 signaling in MDS, and in the work described here, we tested the effects of specific modulation of TLR1/2 versus TLR2/6 signaling on premalignant HSPCs. Indeed, chronic stimulation of TLR2/6, but not TLR1/2, accelerates leukemic transformation in the NHD13 mouse model of MDS, and conversely, loss of TLR6, but not TLR1, slows this process. TLR2/6 stimulation expands premalignant HSPCs, and chimeric mouse studies revealed that cell-autonomous signaling contributes to this expansion. Finally, TLR2/6 stimulation is associated with an enrichment of Myc and mTORC1 activities. While Myc inhibition partially suppressed the TLR2/6 agonist-mediated expansion of premalignant HSPCs, inhibition of mTORC1 exacerbated it, suggesting that these pathways play opposite roles in regulating the effects of TLR2/6 ligation on HSPCs. Together, these data reveal heterodimer-specific effects of TLR2 signaling on premalignant HSPCs, with TLR2/6 signaling promoting their expansion and leukemic transformation.
Collapse
|
25
|
Paracatu LC, Schuettpelz LG. Contribution of Aberrant Toll Like Receptor Signaling to the Pathogenesis of Myelodysplastic Syndromes. Front Immunol 2020; 11:1236. [PMID: 32625214 PMCID: PMC7313547 DOI: 10.3389/fimmu.2020.01236] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Toll like receptors (TLRs) are a family of pattern recognition receptors that play a central role in the innate immune response. These receptors are expressed on a wide variety of immune and non-immune cells, and they help shape the immune response to infection and injury through the recognition of pathogen-associated molecular patterns (PAMPs) as well as endogenous damage-associated molecular patterns (DAMPs). Accumulating evidence suggests that, in addition to regulating mature effector immune cells, TLRs can influence the immune response from the level of the hematopoietic stem cell (HSC). HSCs express TLRs, and exposure to TLR ligands influences the cycling, differentiation, and function of HSCs, with chronic TLR stimulation leading to impairment of normal HSC repopulating activity. Moreover, enhanced TLR expression and signaling is associated with myelodysplastic syndromes (MDS), a heterogenous group of HSC disorders characterized by ineffective hematopoiesis and a high risk of transformation to acute leukemias. In this review, we will discuss the role of TLR signaling in the pathogenesis of MDS, focusing on the known direct and indirect effects of this type of signaling on HSCs, the mechanisms of TLR signaling upregulation in MDS, the changes in TLR expression with disease progression, and the therapeutic implications for modulating TLR signaling in the treatment of MDS.
Collapse
Affiliation(s)
- Luana Chiquetto Paracatu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Laura G Schuettpelz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
26
|
Potential of immunotherapies in the mediation of antileukemic responses for patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) - With a focus on Dendritic cells of leukemic origin (DC leu). Clin Immunol 2020; 217:108467. [PMID: 32464186 DOI: 10.1016/j.clim.2020.108467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/11/2020] [Accepted: 05/16/2020] [Indexed: 11/23/2022]
Abstract
New (non-immunotherapeutic) treatment-strategies for AML/MDS-patients are under development. Dendritic cells (DCs) and 'leukemia-derived DC' (DCleu) connect the innate and the adaptive immunesystem and (re-)activate it, in their capacity as professional antigen-presenting cells (APCs). They can be generated ex vivo from peripheral blood mononuclear cells (PBMNCs) or whole blood (WB), containing the -physiological-cellular/soluble microenvironment of individual patients using various DC/DCleu-generating methods or (for WB) minimalized 'Kits', containing granulocyte-macrophage-colony-stimulating-factor (GM-CSF) and a second response-modifier. Proof for DC/DCleu-mediated activation of the immune-system after T-cell-enriched mixed lymphocyte culture (MLC) is done by flowcytometry, demonstrating increased fractions of certain activated, leukemia-specific or antileukemic cell-subsets of the innate and the adaptive immune-system. Generation of DC/DCleu is possible independent of patients' age, MHC-, mutation- or transplantation-status. In vivo-treatment of AML-/MDS-patients with blast-modulating, DC/DCleu- inducing 'Kits' could contribute to create migratory DCs, as well as antileukemically reactivated and memory-mediating immune-cells, which patrol tissue and blood and could contribute to stabilizing disease or remissions.
Collapse
|
27
|
Updates on DNA methylation modifiers in acute myeloid leukemia. Ann Hematol 2020; 99:693-701. [DOI: 10.1007/s00277-020-03938-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/24/2020] [Indexed: 12/14/2022]
|
28
|
Long-Lasting Remission in De Novo Breast Myeloid Sarcoma Treated with Decitabine and Radiotherapy. Diagnostics (Basel) 2019; 9:diagnostics9030084. [PMID: 31357576 PMCID: PMC6787642 DOI: 10.3390/diagnostics9030084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
Myeloid sarcoma (MS) represents a rare disease with an adverse clinical outcome for patients not candidate to acute myeloid leukemia (AML)-like chemotherapies. Here we present the case of an elderly patient affected by a bilateral breast localization of MS treated with the hypomethylating agent decitabine associated to radiotherapy. The association of the two treatment modalities has allowed an optimal and long-lasting disease control.
Collapse
|