1
|
Irfan N, Vaithyanathan P, Anandaram H, Mohammed Zaidh S, Priya Varshini S, Puratchikody A. Active and allosteric site binding MM-QM studies of Methylidene tetracyclo derivative in PCSK9 protein intended to make a safe antilipidemic agent. J Biomol Struct Dyn 2024; 42:6813-6822. [PMID: 37493394 DOI: 10.1080/07391102.2023.2239928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Interaction of low-density lipoprotein receptors with proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a vital part in causing atherosclerosis. It is the hidden precursor of clinical myocardial infarction (MI), stroke, CVD and estimates 60% of deaths worldwide. The current need is to design small molecules to prevent the interaction between PCSK9 and LDL receptors. This study aims to evaluate the interaction between Methylidene tetracyclo derivative and PCSK9 protein through conceptual studies and compare the same with the interaction of the standard atorvastatin. Also, a comparative study was performed to analyze the interaction of molecules inside the active and allosteric sites of PCSK9. The RCSB downloaded pdb file 7S5H and the above said ligands were optimized to the level of local minima energy and configured inside the active and allosteric sites. The stability of non-bonded interactions of the complexes were analyzed using Desmond MD simulation studies. The results of docking showed that the Methylidene tetracyclo molecule possesses a two-fold higher affinity of -10.894 kcal/mol in the active site and -10.884 kcal/mol in the allosteric site. The Phe379 amino acid enabled the Methylidene tetracyclo molecule to orient inside the active site. Nine H-bonds with 6 amino acids of allosteric site increased the binding affinity compared to Atorvastatin. The MD simulation studies confirmed the stability of the nonbonded interaction of Methylidene tetracyclo molecule throughout 100 ns. This confirms that the Methylidene tetracyclo molecule will be the better hit as well as the lead molecule to modulate the behavior of PCSK9 protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N Irfan
- Crescent School of Pharmacy, B S Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | | | - Harishchander Anandaram
- Centre for Computational Engineering, Amrita School of Artificial Intelligence, Amrita Vishwa Vidyapeetham India, Coimbatore, India
| | - S Mohammed Zaidh
- Crescent School of Pharmacy, B S Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - S Priya Varshini
- Crescent School of Pharmacy, B S Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - A Puratchikody
- Department of Pharmaceutical Technology, University College of Engineering, BIT campus Anna University, Tiruchirappalli, India
| |
Collapse
|
2
|
Singh R, Chandi SK, Sran S, Aulakh SK, Nijjar GS, Singh K, Singh S, Tanvir F, Kaur Y, Sandhu APS. Emerging Therapeutic Strategies in Cardiovascular Diseases. Cureus 2024; 16:e64388. [PMID: 39131016 PMCID: PMC11317025 DOI: 10.7759/cureus.64388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Cardiovascular diseases (CVDs), including ischemic heart disease and stroke, are the leading cause of mortality worldwide, causing nearly 20 million deaths annually. Traditional therapies, while effective, have not curbed the rising prevalence of CVDs driven by aging populations and lifestyle factors. This review highlights innovative therapeutic strategies that show promise in improving patient outcomes and transforming cardiovascular care. Emerging pharmacological treatments, such as proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors and sodium-glucose co-transporter 2 (SGLT2) inhibitors, introduce novel mechanisms to complement existing therapies, significantly reducing cardiovascular events and mortality. These advancements emphasize the necessity of ongoing clinical trials and research to discover new therapeutic targets. Advanced biological therapies, including gene therapy, stem cell therapy, and RNA-based treatments, offer groundbreaking potential for repairing and regenerating damaged cardiovascular tissues. Despite being in various stages of clinical validation, early results are promising, suggesting these therapies could fundamentally change the CVD treatment landscape. Innovative medical devices and technologies, such as implantable devices, minimally invasive procedures, and wearable technology, are revolutionizing CVD management. These advancements facilitate early diagnosis, continuous monitoring, and effective treatment, driving care out of hospitals and into homes, improving patient outcomes and reducing healthcare costs. Personalized medicine, driven by genetic profiling and biomarker identification, allows for tailored therapies that enhance treatment efficacy and minimize adverse effects. However, the adoption of these emerging therapies faces significant challenges, including regulatory hurdles, cost and accessibility issues, and ethical considerations. Addressing these barriers and fostering interdisciplinary collaboration are crucial for accelerating the development and implementation of innovative treatments. Integrating emerging therapeutic strategies in cardiovascular care holds immense potential to transform CVD management. By prioritizing future research and overcoming existing challenges, a new era of personalized, effective, and accessible cardiovascular care can be achieved.
Collapse
Affiliation(s)
- Rajinderpal Singh
- Internal Medicine, Government Medical College Amritsar, Amritsar, IND
| | | | - Seerat Sran
- Internal Medicine, Sri Guru Ram Das University of Health Sciences and Research, Amritsar, IND
| | - Smriti K Aulakh
- Internal Medicine, Sri Guru Ram Das University of Health Sciences and Research, Amritsar, IND
| | | | | | - Sumerjit Singh
- Medicine, Government Medical College Amritsar, Amritsar, IND
| | - Fnu Tanvir
- Medicine, Government Medical College Amritsar, Amritsar, IND
| | - Yasmeen Kaur
- Medicine, Government Medical College Amritsar, Amritsar, IND
| | - Ajay Pal Singh Sandhu
- Medicine, Sri Guru Ram Das University of Health Sciences and Research, Amritsar, IND
| |
Collapse
|
3
|
Kim OM, Givens TK, Tang EG, Schimmer JJ, Ramsey T, Boyd K, Delate T. Real-World Outcomes of Proprotein Convertase Subtilisin Kexin-9 Inhibitor Use. J Cardiovasc Pharmacol 2023; 81:339-347. [PMID: 36795508 DOI: 10.1097/fjc.0000000000001404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023]
Abstract
ABSTRACT Although the proprotein convertase subtilisin kexin-9 inhibitors (PCSK9i) were shown to significantly lower low-density lipoprotein and reduce atherosclerotic cardiovascular disease events in clinical trials, there is a dearth of use data on these agents in real-world settings. This study compares PCSK9i use in a population of real-world patients with atherosclerotic cardiovascular disease or familial hypercholesterolemia. This was a matched cohort study of adult patients who were dispensed a PCSK9i along with adult patients who did not receive a PCSK9i. PCSK9i patients were matched on a propensity to have received a PCSK9i score up to 1:10 to non-PCSK9i patients. The primary outcomes were changes in cholesterol levels. Secondary outcomes included a composite outcome of all-cause mortality, major cardiovascular events, and ischemic strokes along with health care utilization during follow-up. Adjusted conditional, multivariate Cox proportional hazards, and negative binomial modeling were performed. Ninety-one PCSK9i patients were matched to 840 non-PCSK9i patients. Seventy-one percent of PCSK9i patients either discontinued or switched PCSK9i therapy. PCSK9i patients had greater median reductions in low-density lipoprotein (-73.0 mg/dL vs. -30.0 mg/dL) and total (-77.0 vs. -31.0) cholesterol (both P < 0.001). No adjusted between-group differences in the composite outcome or individual components of the composite outcome were identified (all P > 0.05). PCSK9i patients had a lower rate of medical office visits during follow-up (adjusted incidence rate ratio = 0.61, P = 0.019). These findings support the effectiveness of PCSK9i therapy in real-world settings but suggest that use may be limited by PCSK9i adverse reactions and patient cost barriers.
Collapse
Affiliation(s)
- Olivia M Kim
- Pharmacy Department, Kaiser Permanente Northwest, Portland, OR
| | - Tatyana K Givens
- Pharmacy Department, Kaiser Permanente Georgia, Atlanta, GA
- Pharmacy Department, VillageMD, Atlanta, GA; and
| | - Emily G Tang
- Pharmacy Department, Kaiser Permanente Colorado, Aurora, CO
- Pharmacy Department, Yale New Haven Hospital, New Haven, CT
| | | | - Tanya Ramsey
- Pharmacy Department, Kaiser Permanente Northwest, Portland, OR
| | - Kayla Boyd
- Pharmacy Department, Kaiser Permanente Georgia, Atlanta, GA
| | - Thomas Delate
- Pharmacy Outcomes Research Group, Kaiser Permanente National Pharmacy Services, Aurora, CO
| |
Collapse
|
4
|
Rabih AM, Niaj A, Raman A, Uprety M, Calero MJ, Villanueva MRB, Joshaghani N, Villa N, Badla O, Goit R, Saddik SE, Dawood SN, Mohammed L. Reduction of Cardiovascular Risk Using Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors in Patients With Acute Coronary Syndrome: A Systematic Review. Cureus 2023; 15:e34648. [PMID: 36895542 PMCID: PMC9990958 DOI: 10.7759/cureus.34648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/05/2023] [Indexed: 02/09/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a hepatic enzyme that regulates blood cholesterol levels by degrading low-density lipoprotein (LDL) receptors from the surface of hepatocytes. Studies have shown that inhibiting this molecule decreases the cardiovascular risk in individuals with atherosclerotic cardiovascular disease (ASCVD) by lowering low-density lipoprotein cholesterol (LDL-C). Two major cardiovascular outcome trials showed that the use of the PCSK9 inhibitors (alirocumab and evolocumab) in patients with recent acute coronary syndrome (ACS) is associated with a lower risk of further cardiovascular (CV) events. Information regarding the use of these monoclonal antibodies for primary prevention has also been reported by these trials. The goal of this systematic review is to describe the mechanism of PCSK9 inhibitors and further discuss their ability to reduce CV risk in high-risk populations. The search strategy was used in a systematic way using PubMed Central, Google Scholar, and ScienceDirect. We included randomized control trials (RCTs), systematic reviews, and narrative reviews in English published in the last five years. Observational studies, case reports, and case studies were excluded. The quality of the studies was evaluated using the Cochrane Collaboration Risk of Bias Tool, Assessment of Multiple Systematic Reviews 2, and Scale for the Assessment of Narrative Review Articles. A total of 10 articles were included in this systematic review. These included an RCT, a systematic review, and eight narrative reviews. Our study suggested that adding PCSK9 inhibitors to background statin therapy for selected patients with high-risk factors demonstrated substantial benefits in reducing overall CV morbidity and mortality after ACS. Multiple studies have demonstrated the short-term safety of low LDL-C levels caused by these drugs. However, long-term safety must be assessed with further studies.
Collapse
Affiliation(s)
- Ahmad M Rabih
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ahmad Niaj
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aishwarya Raman
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Manish Uprety
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maria Jose Calero
- Obstetrics and Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Narges Joshaghani
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nicole Villa
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Omar Badla
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Raman Goit
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Samia E Saddik
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sarah N Dawood
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
5
|
Abstract
Inter-individual variability in drug response, be it efficacy or safety, is common and likely to become an increasing problem globally given the growing elderly population requiring treatment. Reasons for this inter-individual variability include genomic factors, an area of study called pharmacogenomics. With genotyping technologies now widely available and decreasing in cost, implementing pharmacogenomics into clinical practice - widely regarded as one of the initial steps in mainstreaming genomic medicine - is currently a focus in many countries worldwide. However, major challenges of implementation lie at the point of delivery into health-care systems, including the modification of current clinical pathways coupled with a massive knowledge gap in pharmacogenomics in the health-care workforce. Pharmacogenomics can also be used in a broader sense for drug discovery and development, with increasing evidence suggesting that genomically defined targets have an increased success rate during clinical development.
Collapse
|
6
|
Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Ther 2022; 7:265. [PMID: 35918332 PMCID: PMC9344793 DOI: 10.1038/s41392-022-01125-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Disturbed cholesterol homeostasis plays critical roles in the development of multiple diseases, such as cardiovascular diseases (CVD), neurodegenerative diseases and cancers, particularly the CVD in which the accumulation of lipids (mainly the cholesteryl esters) within macrophage/foam cells underneath the endothelial layer drives the formation of atherosclerotic lesions eventually. More and more studies have shown that lowering cholesterol level, especially low-density lipoprotein cholesterol level, protects cardiovascular system and prevents cardiovascular events effectively. Maintaining cholesterol homeostasis is determined by cholesterol biosynthesis, uptake, efflux, transport, storage, utilization, and/or excretion. All the processes should be precisely controlled by the multiple regulatory pathways. Based on the regulation of cholesterol homeostasis, many interventions have been developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion. Herein, we summarize the historical review and research events, the current understandings of the molecular pathways playing key roles in regulating cholesterol homeostasis, and the cholesterol-lowering interventions in clinics or in preclinical studies as well as new cholesterol-lowering targets and their clinical advances. More importantly, we review and discuss the benefits of those interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes, nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.
Collapse
Affiliation(s)
- Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Suowen Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
7
|
Wong XK, Yeong KY. A Patent Review on the Current Developments of Benzoxazoles in Drug Discovery. ChemMedChem 2021; 16:3237-3262. [PMID: 34289258 DOI: 10.1002/cmdc.202100370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/11/2021] [Indexed: 12/11/2022]
Abstract
The benzoxazole moiety is widely found in various natural compounds, which are often found to be biologically active. Due to its versatile biological properties, benzoxazole has been incorporated as an essential pharmacophore and substructure in many medicinal compounds. In the past years, numerous benzoxazole derivatives have been synthesised and evaluated for their biological potential. The wide range in therapeutic potential of benzoxazole derivatives is related to the favourable interactions of the benzoxazole moiety with different protein targets. Herein we review the biological activities of benzoxazole derivatives patented within the past six years. Using the Lens database, granted patents issued from 2015 to 2020 were retrieved. The patented benzoxazole derivatives demonstrated excellent activity against various protein targets and diseases, with some reaching clinical trial stage. Pharmacological and medicinal aspects of patented benzoxazole derivatives are discussed. The recent development and drawbacks are also reviewed.
Collapse
Affiliation(s)
- Xi Khai Wong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| |
Collapse
|