1
|
Volz M, Wyse-Sookoo KR, Travascio F, Huang CY, Best TM. MECHANOBIOLOGICAL APPROACHES FOR STIMULATING CHONDROGENESIS OF STEM CELLS. Stem Cells Dev 2022; 31:460-487. [PMID: 35615879 DOI: 10.1089/scd.2022.0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chondrogenesis is the process of differentiation of stem cells into mature chondrocytes. Such a process consists of chemical, functional, and structural changes which are initiated and mediated by the host environment of the cells. To date, the mechanobiology of chondrogenesis has not been fully elucidated. Hence, experimental activity is focused on recreating specific environmental conditions for stimulating chondrogenesis, and to look for a mechanistic interpretation of the mechanobiological response of cells in the cartilaginous tissues. There are a large number of studies on the topic that vary considerably in their experimental protocols used for providing environmental cues to cells for differentiation, making generalizable conclusions difficult to ascertain. The main objective of this contribution is to review the mechanobiological stimulation of stem cell chondrogenesis and methodological approaches utilized to date to promote chondrogenesis of stem cells in-vitro. In-vivo models will also be explored, but this area is currently limited. An overview of the experimental approaches used by different research groups may help the development of unified testing methods that could be used to overcome existing knowledge gaps, leading to an accelerated translation of experimental findings to clinical practice.
Collapse
Affiliation(s)
- Mallory Volz
- University of Miami, 5452, Biomedical Engineering, Coral Gables, Florida, United States;
| | | | - Francesco Travascio
- University of Miami, 5452, Mechanical and Aerospace Engineering, 1251 Memorial Drive, MEB 217B, Coral Gables, Florida, United States, 33146;
| | - Chun-Yuh Huang
- University of Miami, 5452, Biomedical Engineering, Coral Gables, Florida, United States;
| | - Thomas M Best
- University of Miami Miller School of Medicine, 12235, School of Medicine, Miami, Florida, United States;
| |
Collapse
|
2
|
Bhogoju S, Khan S, Subramanian A. Continuous Low-Intensity Ultrasound Preserves Chondrogenesis of Mesenchymal Stromal Cells in the Presence of Cytokines by Inhibiting NFκB Activation. Biomolecules 2022; 12:434. [PMID: 35327626 PMCID: PMC8946190 DOI: 10.3390/biom12030434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Proinflammatory joint environment, coupled with impeded chondrogenic differentiation of mesenchymal stromal cells (MSCs), led to inferior cartilage repair outcomes. Nuclear translocation of phosphorylated-NFκB downregulates SOX9 and hinders the chondrogenesis of MSCs. Strategies that minimize the deleterious effects of NFκB, while promoting MSC chondrogenesis, are of interest. This study establishes the ability of continuous low-intensity ultrasound (cLIUS) to preserve MSC chondrogenesis in a proinflammatory environment. MSCs were seeded in alginate:collagen hydrogels and cultured for 21 days in an ultrasound-assisted bioreactor (5.0 MHz, 2.5 Vpp; 4 applications/day) in the presence of IL1β and evaluated by qRT-PCR and immunofluorescence. The differential expression of markers associated with the NFκB pathway was assessed upon a single exposure of cLIUS and assayed by Western blotting, qRT-PCR, and immunofluorescence. Mitochondrial potential was evaluated by tetramethylrhodamine methyl ester (TMRM) assay. The chondroinductive potential of cLIUS was noted by the increased expression of SOX9 and COLII. cLIUS extended its chondroprotective effects by stabilizing the NFκB complex in the cytoplasm via engaging the IκBα feedback mechanism, thus preventing its nuclear translocation. cLIUS acted as a mitochondrial protective agent by restoring the mitochondrial potential and the mitochondrial mRNA expression in a proinflammatory environment. Altogether, our results demonstrated the potential of cLIUS for cartilage repair and regeneration under proinflammatory conditions.
Collapse
Affiliation(s)
| | | | - Anuradha Subramanian
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899, USA; (S.B.); (S.K.)
| |
Collapse
|
3
|
Zhong Y, Caplan AI, Welter JF, Baskaran H. Glucose Availability Affects Extracellular Matrix Synthesis During Chondrogenesis In Vitro. Tissue Eng Part A 2021; 27:1321-1332. [PMID: 33499734 PMCID: PMC8610032 DOI: 10.1089/ten.tea.2020.0144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/22/2021] [Indexed: 01/09/2023] Open
Abstract
Understanding in vitro chondrogenesis of human mesenchymal stem cells (hMSCs) is important as it holds great promise for cartilage tissue engineering and other applications. The current technology produces the end tissue quality that is highly variable and dependent on culture conditions. We investigated the effect of nutrient availability on hMSC chondrogenesis in a static aggregate culture system by varying the medium-change frequency together with starting glucose levels. Glucose uptake and lactate secretion profiles were obtained to monitor the metabolism change during hMSC chondrogenesis with different culture conditions. Higher medium-change frequency led to increases in cumulative glucose uptake for all starting glucose levels. Furthermore, increase in glucose uptake by aggregates led to increased end tissue glycosaminoglycan (GAG) and hydroxyproline (HYP) content. The results suggest that increased glucose availability either through increased medium-change frequency or higher initial glucose levels lead to improved chondrogenesis. Also, cumulative glucose uptake and lactate secretion were found to correlate well with GAG and HYP content, indicating both molecules are promising biomarkers for noninvasive assessment of hMSC chondrogenesis. Collectively, our results can be used to design optimal culture conditions and develop dynamic assessment strategies for cartilage tissue engineering applications. Impact statement In this study, we investigated how culture conditions, medium-change frequency and glucose levels, affect chondrogenesis of human mesenchymal stem cells in an aggregate culture model. Doubling the medium-change frequency significantly increased the biochemical quality of the resultant tissue aggregates, as measured by their glycosaminoglycan and hydroxyproline content. We attribute this to increased glucose uptake through the glycolysis pathway, as secretion of lactate, a key endpoint product of the glycolysis pathway, increased concurrently. These findings can be used to design optimal culture conditions for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- CWRU Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, USA
| | - Arnold I. Caplan
- CWRU Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biology and Case Western Reserve University, Cleveland, Ohio, USA
| | - Jean F. Welter
- CWRU Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biology and Case Western Reserve University, Cleveland, Ohio, USA
| | - Harihara Baskaran
- CWRU Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Conservation of Zebrafish MicroRNA-145 and Its Role during Neural Crest Cell Development. Genes (Basel) 2021; 12:genes12071023. [PMID: 34209401 PMCID: PMC8306979 DOI: 10.3390/genes12071023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
The neural crest is a multipotent cell population that develops from the dorsal neural fold of vertebrate embryos in order to migrate extensively and differentiate into a variety of tissues. A number of gene regulatory networks coordinating neural crest cell specification and differentiation have been extensively studied to date. Although several publications suggest a common role for microRNA-145 (miR-145) in molecular reprogramming for cell cycle regulation and/or cellular differentiation, little is known about its role during in vivo cranial neural crest development. By modifying miR-145 levels in zebrafish embryos, abnormal craniofacial development and aberrant pigmentation phenotypes were detected. By whole-mount in situ hybridization, changes in expression patterns of col2a1a and Sry-related HMG box (Sox) transcription factors sox9a and sox9b were observed in overexpressed miR-145 embryos. In agreement, zebrafish sox9b expression was downregulated by miR-145 overexpression. In silico and in vivo analysis of the sox9b 3′UTR revealed a conserved potential miR-145 binding site likely involved in its post-transcriptional regulation. Based on these findings, we speculate that miR-145 participates in the gene regulatory network governing zebrafish chondrocyte differentiation by controlling sox9b expression.
Collapse
|
5
|
Sahu N, Miller A, Viljoen HJ, Subramanian A. Continuous Low-Intensity Ultrasound Promotes Native-to-Native Cartilage Integration. Tissue Eng Part A 2019; 25:1538-1549. [PMID: 31190618 DOI: 10.1089/ten.tea.2018.0355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Failure of the host/graft interface to integrate impedes the success of cartilage repair protocols. Continuous low-intensity ultrasound (cLIUS) at the resonant frequency of 5 MHz is proposed as a treatment modality for promoting native-to-native cartilage integration in vitro. Cylindrical incisions (4 mm) simulating chondral discontinuity were made in bovine cartilage and osteochondral explants, and maintained under cLIUS stimulation (14 kPa [5 MHz, 2.5 Vpp], 20 min, four times/day) for 28 days. Incised cartilage and osteochondral explants were categorized into three study groups; Group I: cLIUS was applied immediately upon incision; Group II: cLIUS was applied after 14 days following incision; Group-III: after 14 days following incision, explants were treated with 0.1% hyaluronidase and 30 U/mL collagenase VII. As a separate study group, incised osteochondral explants were treated immediately with cLIUS at a nonresonant frequency of 2 MHz (14 kPa [2 MHz, 6 Vpp], 20 min, four times/day). Cellular migration was analyzed by scratch assays, and by visualizing migrating cells into the hydrogel core of cartilage/hydrogel constructs. Explants under cLIUS (5 MHz) displayed higher percent apposition along with gap closures when compared with untreated controls and explants treated with cLIUS at 2 MHz. cLIUS (5 MHz)-treated explants were immunopositive for type II collagen. The strength of native-to-native cartilage integration was higher (p = 0.005) in cLIUS-treated cartilage explants at 0.19 ± 0.08 MPa as compared with 0.05 ± 0.03 MPa in untreated controls. Enhanced cartilage phenotype coupled with increased cellular migration were noted under cLIUS (5 MHz), alluding to the observed integration between cartilage interfaces. Collectively, cLIUS at cell resonant frequency promoted integrative cartilage repair, therefore, has the potential to improve cartilage repair outcomes. Impact Statement Lack of integration between the host and graft cartilage interfaces impedes the success of cartilage repair techniques. Continuous low-intensity ultrasound (cLIUS) is documented to induce chondrogenesis and chondrocyte phenotype. However, integrative cartilage repair under cLIUS has not been evaluated. Our results demonstrated integration between cartilage interfaces, increased percent apposition, increased strength of integration, and maintenance of cartilage phenotype under cLIUS (5 MHz). Integrative repair under cLIUS (5 MHz) stemmed from enhanced migration of cells and increased expression of cartilage-specific genes, namely SOX9 and COL2A1. Thus, cLIUS has the potential to improve the outcomes of grafting protocols for cartilage repair.
Collapse
Affiliation(s)
- Neety Sahu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - April Miller
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York
| | - Hendrik J Viljoen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Anuradha Subramanian
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, Alabama
| |
Collapse
|
6
|
Jin GZ, Kim HW. Chondrogenic Potential of Dedifferentiated Rat Chondrocytes Reevaluated in Two- and Three-Dimensional Culture Conditions. Tissue Eng Regen Med 2018; 15:163-172. [PMID: 30603544 PMCID: PMC6171694 DOI: 10.1007/s13770-017-0094-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/25/2017] [Accepted: 11/01/2017] [Indexed: 01/22/2023] Open
Abstract
For the cartilage repair, the cell sources currently adopted are primarily chondrocytes or mesenchymal stem cells (MSCs). Due to the fact that chondrocytes dedifferentiate during 2-dimensional (2D) expansion, MSCs are generally more studied and considered to have higher potential for cartilage repair purposes. Here we question if the dedifferentiated chondrocytes can regain the chondrogenic potential, to find potential applications in cartilage repair. For this we chose chondrocytes at passage 12 (considered to have sufficiently dedifferentiated) and the expression of chondrogenic phenotypes and matrix syntheses were examined over 14 days. In particular, the chondrogenic potential of MSCs was also compared. Results showed that the dedifferentiated chondrocytes proliferated actively over 14 days with almost 2.5-fold increase relative to MSCs. Moreover, the chondrogenic ability of chondrocytes was significantly higher than that of MSCs, as confirmed by the expression of a series of mRNA levels and the production of cartilage extracellular matrix molecules in 2D-monolayer and 3-dimensional (3D)-spheroid cultures. Of note, the significance was higher in 3D-culture than in 2D-culture. Although more studies are needed such as the use of different cell passages and human cell source, and the chondrogenic confirmation under in vivo conditions, this study showing that the dedifferentiated chondrocytes can also be a suitable cell source for the cell-based cartilage repair, as a counterpart of MSCs, will encourage further studies regarding this issue.
Collapse
Affiliation(s)
- Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116 Korea
| |
Collapse
|
7
|
Liu Q, Jia Z, Duan L, Xiong J, Wang D, Ding Y. Functional peptides for cartilage repair and regeneration. Am J Transl Res 2018; 10:501-510. [PMID: 29511444 PMCID: PMC5835815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/10/2018] [Indexed: 06/08/2023]
Abstract
Cartilage repair after degeneration or trauma continues to be a challenge both in the clinic and for scientific research due to the limited regenerative capacity of this tissue. Cartilage tissue engineering, involving a combination of cells, scaffolds, and growth factors, is increasingly used in cartilage regeneration. Due to their ease of synthesis, robustness, tunable size, availability of functional groups, and activity, peptides have emerged as the molecules with the most potential in drug development. A number of peptides have been engineered to regenerate cartilage by acting as scaffolds, functional molecules, or both. In this paper, we will summarize the application of peptides in cartilage tissue engineering and discuss additional possibilities for peptides in this field.
Collapse
Affiliation(s)
- Qisong Liu
- Department of Orthopedic, Memorial Hospital of Sun Yat-sen UniversityGuangzhou 510120, Guangdong Province, China
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, Guangdong Province, China
| | - Zhaofeng Jia
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, Guangdong Province, China
| | - Li Duan
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, Guangdong Province, China
| | - Jianyi Xiong
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, Guangdong Province, China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, Guangdong Province, China
| | - Yue Ding
- Department of Orthopedic, Memorial Hospital of Sun Yat-sen UniversityGuangzhou 510120, Guangdong Province, China
| |
Collapse
|
8
|
Budhiraja G, Sahu N, Subramanian A. Low-Intensity Ultrasound Upregulates the Expression of Cyclin-D1 and Promotes Cellular Proliferation in Human Mesenchymal Stem Cells. Biotechnol J 2018; 13:e1700382. [PMID: 29283212 DOI: 10.1002/biot.201700382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 12/07/2017] [Indexed: 11/09/2022]
Abstract
Human mesenchymal stem cells (hMSCs) hold great potential for cellular based therapeutics and tissue engineering applications and their expansion is an interesting prospect due to their low availability from in vivo sources. Therefore, this study investigated the effect of continuous-wave low-intensity ultrasound (LIUS) at 5.0-MHz and 14.0-kPa (<20 mW cm-2 ) on the proliferative capacity, colony-formation efficiency, genetic stability, and differentiation potential of hMSCs. Additionally, potential signaling pathways involved in LIUS-mediated proliferation of hMSCs are studied. Compared to non-stimulated controls, LIUS-treated hMSCs shows a 1.9-fold greater colony-forming efficiency and 2.5-fold higher rate of cell proliferation, respectively. Differential staining and qRT-PCR analysis for selective chondrogenic, osteogenic, and adipogenic markers further confirmed that the LIUS treatment did not impact the multipotency of hMSCs. LIUS-treated hMSCs expressed normal male karyotype. The synthesis of cyclin-D1, a master regulator of cellular proliferation, is upregulated under LIUS and its enhanced mRNA expression under LIUS is noted to be mediated by the activation of both MAPK/ERK and PI3K/AKT pathways. In conclusion, LIUS promotes proliferation and self-renewal capacity of hMSCs.
Collapse
Affiliation(s)
- Gaurav Budhiraja
- Department of Chemical and Biomolecular Engineering University of Nebraska-Lincoln, Lincoln, NE, 68588-0643, USA
| | - Neety Sahu
- Department of Chemical and Biomolecular Engineering University of Nebraska-Lincoln, Lincoln, NE, 68588-0643, USA
| | - Anuradha Subramanian
- Department of Chemical and Biomolecular Engineering University of Nebraska-Lincoln, Lincoln, NE, 68588-0643, USA
| |
Collapse
|
9
|
Jin GZ, Kim HW. Effects of Type I Collagen Concentration in Hydrogel on the Growth and Phenotypic Expression of Rat Chondrocytes. Tissue Eng Regen Med 2017; 14:383-391. [PMID: 30603494 PMCID: PMC6171609 DOI: 10.1007/s13770-017-0060-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022] Open
Abstract
It is controversial whether type I collagen itself can maintain and improve chondrogenic phenotype of chondrocytes in a three-dimensional (3D) environment. In this study, we examined the effect of type I collagen concentration in hydrogel (0.5, 1, and 2 mg/ml) on the growth and phenotype expression of rat chondrocytes in vitro. All collagen hydrogels showed substantial contractions during culture, in a concentration-dependent manner, which was due to the cell proliferation. The cell viability was shown to be the highest in 2 mg/ml collagen gel. The mRNA expression of chondrogenic phenotypes, including SOX9, type II collagen, and aggrecan, was significantly up-regulated, particularly in 1 mg/ml collagen gel. Furthermore, the production of type II collagen and glycosaminoglycan (GAG) content was also enhanced. The results suggest that type I collagen hydrogel is not detrimental to, but may be useful for, the chondrocyte culture for cartilage tissue engineering.
Collapse
Affiliation(s)
- Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116 Korea
| |
Collapse
|
10
|
Chondro-protective effects of low intensity pulsed ultrasound. Osteoarthritis Cartilage 2016; 24:1989-1998. [PMID: 27364595 PMCID: PMC5071131 DOI: 10.1016/j.joca.2016.06.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Cartilage is a highly mechano-responsive tissue. Chondrocytes undergo a series of complex changes, including proliferation and metabolic alteration as the target of external biomechanical and biochemical stimuli. IL-1β is known to regulate chondrocyte metabolism and plays an important role in the pathogenesis of osteoarthritis (OA). The objective of this study was to employ low-intensity pulsed ultrasound (LIPUS) as a localized mechanical stimulus and assess its effects on chondrocyte migration, proliferation, metabolism, and differentiation, as well as its ability to suppress IL-1β mediated catabolism in cartilage. METHODS Human cartilage explants and chondrocytes were stimulated by LIPUS in the presence and absence of IL-1β to asses cartilage degradation, chondrocytes metabolism, migration, and proliferation. Western blot analyses were conducted to study IL-1β the associated NFκB pathway in chondrocytes. RESULTS LIPUS stimulation increased the proteoglycan content in human cartilage explants and inhibited IL-1β induced loss of proteoglycans. LIPUS stimulation increased rates of chondrocyte migration and proliferation, and promoted chondrogenesis in mesenchymal stem cells (MSC). Further, LIPUS suppressed IL-1β induced activation of phosphorylation of NFκB-p65 and IĸBα leading to reduced expression of MMP13 and ADAMT5 in chondrocytes. CONCLUSIONS Collectively, these data demonstrate the potential therapeutic effects of LIPUS in preventing cartilage degradation and treating OA via a mechanical stimulation that inhibits the catabolic action of IL-1β and stimulates chondrocyte migration, proliferation, and differentiation.
Collapse
|
11
|
Mahapatra C, Jin GZ, Kim HW. Alginate-hyaluronic acid-collagen composite hydrogel favorable for the culture of chondrocytes and their phenotype maintenance. Tissue Eng Regen Med 2016; 13:538-546. [PMID: 30603434 PMCID: PMC6170835 DOI: 10.1007/s13770-016-0059-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/15/2016] [Accepted: 06/01/2016] [Indexed: 12/21/2022] Open
Abstract
Articular cartilage has limited regeneration capacity, thus significant challenge has been made to restore the functions. The development of hydrogels that can encapsulate and multiply cells, and then effectively maintain the chondrocyte phenotype is a meaningful strategy to this cartilage repair. In this study, we prepared alginate-hyaluronic acid based hydrogel with type I collagen being incorporated, namely Alg-HA-Col composite hydrogel. The incorporation of Col enhanced the chemical interaction of molecules, and the thermal stability and dynamic mechanical properties of the resultant hydrogels. The primary chondrocytes isolated from rat cartilage were cultured within the composite hydrogel and the cell viability recorded revealed active proliferation over a period of 21 days. The mRNA levels of chondrocyte phenotypes, including SOX9, collagen type II, and aggrecan, were significantly up-regulated when the cells were cultured within the Alg-HA-Col gel than those cultured within the Alg-HA. Furthermore, the secretion of sulphated glycosaminoglycan, a cartilage-specific matrix molecule, was recorded higher in the collagen-added composite hydrogel. Although more in-depth studies are required such as the in vivo functions, the currently-prepared Alg-HA-Col composite hydrogel is considered to provide favorable 3-dimensional matrix conditions for the cultivation of chondrocytes. Moreover, the cell-cultured constructs may be useful for the cartilage repair and tissue engineering.
Collapse
Affiliation(s)
- Chinmaya Mahapatra
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Korea
| |
Collapse
|
12
|
Jin L, Xu Q, Wu S, Kuddannaya S, Li C, Huang J, Zhang Y, Wang Z. Synergistic Effects of Conductive Three-Dimensional Nanofibrous Microenvironments and Electrical Stimulation on the Viability and Proliferation of Mesenchymal Stem Cells. ACS Biomater Sci Eng 2016; 2:2042-2049. [DOI: 10.1021/acsbiomaterials.6b00455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Lin Jin
- The
Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, P. R. China
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qinwei Xu
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Shuyi Wu
- Department
of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| | - Shreyas Kuddannaya
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cheng Li
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jingbin Huang
- The
Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Yilei Zhang
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zhenling Wang
- The
Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, P. R. China
| |
Collapse
|
13
|
Thakurta SG, Sahu N, Miller A, Budhiraja G, Akert L, Viljoen H, Subramanian A. Long-term culture of human mesenchymal stem cell-seeded constructs under ultrasound stimulation: evaluation of chondrogenesis. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/5/055016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Ding S, Kingshott P, Thissen H, Pera M, Wang PY. Modulation of human mesenchymal and pluripotent stem cell behavior using biophysical and biochemical cues: A review. Biotechnol Bioeng 2016; 114:260-280. [DOI: 10.1002/bit.26075] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/27/2016] [Accepted: 08/07/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sheryl Ding
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | | | - Martin Pera
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
- CSIRO Manufacturing; Clayton Victoria Australia
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
- Graduate Institute of Nanomedicine and Medical Engineering; College of Biomedical Engineering; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
15
|
Chung CY, Heebner J, Baskaran H, Welter JF, Mansour JM. Ultrasound Elastography for Estimation of Regional Strain of Multilayered Hydrogels and Tissue-Engineered Cartilage. Ann Biomed Eng 2015; 43:2991-3003. [PMID: 26077987 DOI: 10.1007/s10439-015-1356-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/05/2015] [Indexed: 01/07/2023]
Abstract
Tissue-engineered (TE) cartilage constructs tend to develop inhomogeneously, thus, to predict the mechanical performance of the tissue, conventional biomechanical testing, which yields average material properties, is of limited value. Rather, techniques for evaluating regional and depth-dependent properties of TE cartilage, preferably non-destructively, are required. The purpose of this study was to build upon our previous results and to investigate the feasibility of using ultrasound elastography to non-destructively assess the depth-dependent biomechanical characteristics of TE cartilage while in a sterile bioreactor. As a proof-of-concept, and to standardize an assessment protocol, a well-characterized three-layered hydrogel construct was used as a surrogate for TE cartilage, and was studied under controlled incremental compressions. The strain field of the construct predicted by elastography was then validated by comparison with a poroelastic finite-element analysis (FEA). On average, the differences between the strains predicted by elastography and the FEA were within 10%. Subsequently engineered cartilage tissue was evaluated in the same test fixture. Results from these examinations showed internal regions where the local strain was 1-2 orders of magnitude greater than that near the surface. These studies document the feasibility of using ultrasound to evaluate the mechanical behaviors of maturing TE constructs in a sterile environment.
Collapse
Affiliation(s)
- Chen-Yuan Chung
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 2123 Martin Luther King Jr. Drive, Glennan Building Room 616A, Cleveland, OH, 44106, USA.,Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan
| | - Joseph Heebner
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 2123 Martin Luther King Jr. Drive, Glennan Building Room 616A, Cleveland, OH, 44106, USA
| | - Harihara Baskaran
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Jean F Welter
- Department of Biology (Skeletal Research Center), Case Western Reserve University, Cleveland, OH, USA
| | - Joseph M Mansour
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 2123 Martin Luther King Jr. Drive, Glennan Building Room 616A, Cleveland, OH, 44106, USA.
| |
Collapse
|