1
|
Kanniyappan H, Sundaram MK, Ravikumar A, Chakraborty S, Gnanamani A, Mani U, Kumar N, Muthuvijayan V. Enhancing bone repair through improved angiogenesis and osteogenesis using mesoporous silica nanoparticle-loaded Konjac glucomannan-based interpenetrating network scaffolds. Int J Biol Macromol 2024; 279:135182. [PMID: 39216566 DOI: 10.1016/j.ijbiomac.2024.135182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
We have fabricated and characterized novel bioactive nanocomposite interpenetrating polymer network (IPN) scaffolds to treat bone defects by loading mesoporous silica nanoparticles (MSNs) into blends of Konjac glucomannan, polyvinyl alcohol, and polycaprolactone. By loading MSNs, we developed a porous nanocomposite scaffold with mechanical strengths comparable to cancellous bone. In vitro cell culture studies proved the cytocompatibility of the nanocomposite scaffolds. RT-PCR studies confirmed that these scaffolds significantly upregulated major osteogenic markers. The in vivo chick chorioallantoic membrane (CAM) assay confirmed the proangiogenic activity of the nanocomposite IPN scaffolds. In vivo studies were performed using Wistar rats to evaluate the scaffolds' compatibility, osteogenic activity, and proangiogenic properties. Liver and renal function tests confirmed that these scaffolds were nontoxic. X-ray and μ-CT results show that the bone defects treated with the nanocomposite scaffolds healed at a much faster rate compared to the untreated control and those treated with IPN scaffolds. H&E and Masson's trichrome staining showed angiogenesis near the newly formed bone and the presence of early-stage connective tissues, fibroblasts, and osteoblasts in the defect region at 8 weeks after surgery. Hence, these advantageous physicochemical and biological properties confirm that the nanocomposite IPN scaffolds are ideal for treating bone defects.
Collapse
Affiliation(s)
- Hemalatha Kanniyappan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Manoj Kumar Sundaram
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Akhil Ravikumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sudip Chakraborty
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - A Gnanamani
- Microbiology Lab, CSIR-Central Leather Research Institute, Chennai 600020, India
| | - U Mani
- Animal House, CSIR-Central Leather Research Institute, Chennai 600020, India
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Vignesh Muthuvijayan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
2
|
Nikody M, Kessels L, Morejón L, Schumacher M, Wolfs TGAM, Rademakers T, Delgado JA, Habibovic P, Moroni L, Balmayor ER. In vitro osteogenic and in ovo angiogenic effects of a family of natural origin P 2O 5-free bioactive glasses. RSC Adv 2024; 14:34708-34717. [PMID: 39479482 PMCID: PMC11523078 DOI: 10.1039/d4ra04731a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024] Open
Abstract
Bioactive glasses (BGs) belong to a group of ceramic biomaterials having numerous applications due to their excellent biocompatibility and bioactivity. Depending on their composition, properties of BGs can be finely tuned. In this study, we investigated both angiogenic and osteogenic properties of a novel family of BGs from the SiO2-CaO-Na2O system. Three BGs were synthesised from calcite minerals and silica sands extracted from natural deposits. Silica sands used for the synthesis of each glass were obtained from different depths of the deposit, resulting in a different colour and elemental composition. The composition and structural properties of the obtained BGs were determined. Direct culture of human mesenchymal stromal cells (hMSCs) with BG particles at different concentrations was used to investigate the biocompatibility as well as the osteogenic and angiogenic properties of the BGs. In addition, BGs' effect on angiogenesis was further studied in a chick chorioallantoic membrane (CAM) model. Material characterisation confirmed the amorphous character of BGs. Investigated BGs were biocompatible and stimulated early upregulation of RUNX2, ALPL, COL1A1, OCN, and OPN. All BGs tested in a CAM model positively influenced the number, distribution, and branching of the blood vessels. Furthermore, our study revealed that the depth of sand deposit, at which the raw material was collected, had an impact on the osteogenic and angiogenic properties of the resulting glasses. On the one hand, silica sand collected at the deepest layer of the deposit, featuring a higher content of Fe2O3 and Al2O3, originated BGs with potent stimulative capacity of osteogenic and angiogenic gene expression. On the other hand, sand with high silica content and titanium ions resulted in a glass that better supported vessel structure. The BGs presented in this study showed the potential to promote osteogenesis and angiogenesis during bone tissue regeneration, and thus, they will be further studied as part of composite materials for the development of 3D implantable scaffolds.
Collapse
Affiliation(s)
- Martyna Nikody
- Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University 6229 ER Maastricht The Netherlands
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University Maastricht The Netherlands
| | - Lilian Kessels
- Department of Paediatrics, Research Institute for Oncology and Reproduction (GROW), Maastricht University Maastricht The Netherlands
| | - Lizette Morejón
- Center of Biomaterials, University of Havana 10400 Havana Cuba
| | - Matthias Schumacher
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University Maastricht The Netherlands
| | - Tim G A M Wolfs
- Department of Paediatrics, Research Institute for Oncology and Reproduction (GROW), Maastricht University Maastricht The Netherlands
| | - Timo Rademakers
- Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University 6229 ER Maastricht The Netherlands
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University Maastricht The Netherlands
- Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University 6229 ER Maastricht The Netherlands
| | - José A Delgado
- Center of Biomaterials, University of Havana 10400 Havana Cuba
- Universitat Internacional de Catalunya 08195 Barcelona Spain
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University Maastricht The Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University 6229 ER Maastricht The Netherlands
| | - Elizabeth R Balmayor
- Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University 6229 ER Maastricht The Netherlands
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital 52074 Aachen Germany
| |
Collapse
|
3
|
Yan L, Wang Y, Wang W, Luo J, Cheng B, Yang J, Li B, Wang X. A poly (lactic-co-glycolic acid) self-pumping Janus dressing with bidirectional biofluid transport for diabetic wound healing via anti-bacteria and pro-angiogenesis. Int J Biol Macromol 2024; 275:133361. [PMID: 38960245 DOI: 10.1016/j.ijbiomac.2024.133361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Diabetic wound healing poses a substantial challenge owing to bacterial infections, insufficient angiogenesis, and excessive exudates. Currently, most of the clinical dressings used for diabetic wounds are still conventional dressings such as gauze. In this study, a three-layer Janus dressing was developed via continuous electrostatic spinning. The top-layer was composed of polylactic acid-glycolic acid and hydroxyapatite doped with silver ions and silicate. The hydrophobic top-layer prevented the adhesion of foreign bacteria. The mid-layer was composed of polyethylene glycol, polylactic acid-glycolic acid and hydroxyapatite doped with silver ions and silicate facilitated exudate absorption and bioactive ion release. The modified sub-layer containing polylactic acid-glycolic acid, hydroxyapatite doped with silver ions and silicate and sodium alginate microspheres enabled both the transport of wound exudate from the wound bed to dressing and the backflow of bioactive silver ions and silicate to the wound bed, thereby reducing infection and stimulating angiogenesis. Through in vivo and in vivo experiments, the Janus dressing showed to have antimicrobial, angiogenic, and exudate-control properties that accelerate healing in diabetic wounds. As a novel dressing, the multifunctional, self-pumping Janus wound dressing with bi-directional biofluidic transport offers a new approach to diabetic wound healing.
Collapse
Affiliation(s)
- Lisi Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Wenyuan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jing Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430060, PR China
| | - Jing Yang
- School of Foreign Languages, Wuhan University of Technology, Wuhan 430070, PR China
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Hainan Institute, Wuhan University of Technology, Sanya 572000, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan 528200, PR China; Hainan Institute, Wuhan University of Technology, Sanya 572000, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China; Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
4
|
Cheng X, Li Y, Liang Y, Meng K, Li G, Lu Q, Liu M, Zheng Z. Mechanical biomimetic silk nano fiber-magnesium ion complex/hydroxyethylcellulose/glycerol hydrogel dressing with angiogenic capacity for accelerating scarless diabetic wound healing. J Colloid Interface Sci 2024; 667:624-639. [PMID: 38663278 DOI: 10.1016/j.jcis.2024.03.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 05/12/2024]
Abstract
Quick scarless healing remains a key issue for diabetic wounds. Here, a stretchable elastomeric hydrogel dressing composed of hydroxyethylcellulose (HEC), silk nano fiber-magnesium ion complex (Mg2+-SNF) and glycerol (Gly) was developed to optimize mechanical niche, anti-inflammatory and angiogenic behavior simultaneously. The composite hydrogel dressing exhibited skin-like elasticity (175.1 ± 23.9 %) and modulus (156.7 ± 2.5 KPa) while Mg2+-SNF complex endowed the dressing with angiogenesis, both favoring quick scarless skin regeneration. In vitro cell studies revealed that the hydrogel dressing stimulated fibroblast proliferation, endothelial cell migration and vessel-like tube formation, and also induced anti-inflammatory behavior of macrophages. In vivo results revealed accelerated healing of diabetic wounds. The improved granulation ingrowth and collagen deposition suggested high quality repair. Both thinner epidermal layer and low collagen I/III ratio of the regenerated skin confirmed scarless tissue formation. This bioactive hydrogel dressing has promising potential to address the multifaceted challenges of diabetic wound management.
Collapse
Affiliation(s)
- Xinyu Cheng
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Yuqi Li
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Yu Liang
- Sanitation & Environment Technology Institute of Soochow University Ltd., No.88, Zhenbei Road, Gaoxin District, Suzhou, Jiangsu 215153, China
| | - Kai Meng
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China; State Key Laboratory of Radiation Medicine and Radiation Protection Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China.
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China.
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China.
| |
Collapse
|
5
|
Choi S, Kim JH, Kang TH, An YH, Lee SJ, Hwang NS, Kim SH. Biomimetic Marine-Sponge-Derived Spicule-Microparticle-Mediated Biomineralization and YAP/TAZ Pathway for Bone Regeneration In Vivo. Biomater Res 2024; 28:0056. [PMID: 39055902 PMCID: PMC11268990 DOI: 10.34133/bmr.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Marine-sponge-derived spicule microparticles (SPMs) possess unique structural and compositional features suitable for bone tissue engineering. However, significant challenges remain in establishing their osteogenic mechanism and practical application in animal models. This study explores the biomimetic potential of SPM in orchestrating biomineralization behavior and modulating the Yes-associated protein 1/transcriptional coactivator with PDZ-binding motif (YAP/TAZ) pathway both in vitro and in vivo. Characterization of SPM revealed a structure comprising amorphous silica oxide mixed with collagen and trace amounts of calcium and phosphate ions, which have the potential to facilitate biomineralization. Structural analysis indicated dynamic biomineralization from SPM to hydroxyapatite, contributing to both in vitro and in vivo osteoconductions. In vitro assessment demonstrated dose-dependent increases in osteogenic gene expression and bone morphogenetic protein-2 protein in response to SPM. In addition, focal adhesion mediated by silica diatoms induced cell spreading on the surface of SPM, leading to cell alignment in the direction of SPM. Mechanical signals from SPM subsequently increased the expression of YAP/TAZ, thereby inducing osteogenic mechanotransduction. The osteogenic activity of SPM-reinforced injectable hydrogel was evaluated in a mouse calvaria defect model, demonstrating rapid vascularized bone regeneration. These findings suggest that biomimetic SPM holds significant promise for regenerating bone tissue.
Collapse
Affiliation(s)
- Sumi Choi
- Department of Chemical Engineering (BK21 FOUR),
Dong-A University, Busan 49315, Republic of Korea
| | - Jung Hun Kim
- School of Chemical and Biological Engineering,
Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hoon Kang
- Interdisciplinary Program in Bioengineering,
Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering,
Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio,
Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Jin Lee
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry,
The University of Hong Kong, Sai Ying Pun, Hong Kong Special Administrative Region
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering,
Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering,
Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio,
Seoul National University, Seoul 08826, Republic of Korea
| | - Su-Hwan Kim
- Department of Chemical Engineering (BK21 FOUR),
Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
6
|
Afshar M, Rezaei A, Eghbali S, Nasirizadeh S, Alemzadeh E, Alemzadeh E, Shadi M, Sedighi M. Nanomaterial strategies in wound healing: A comprehensive review of nanoparticles, nanofibres and nanosheets. Int Wound J 2024; 21:e14953. [PMID: 38949185 PMCID: PMC11215686 DOI: 10.1111/iwj.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/06/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Wound healing is a complex process that orchestrates the coordinated action of various cells, cytokines and growth factors. Nanotechnology offers exciting new possibilities for enhancing the healing process by providing novel materials and approaches to deliver bioactive molecules to the wound site. This article elucidates recent advancements in utilizing nanoparticles, nanofibres and nanosheets for wound healing. It comprehensively discusses the advantages and limitations of each of these materials, as well as their potential applications in various types of wounds. Each of these materials, despite sharing common properties, can exhibit distinct practical characteristics that render them particularly valuable for healing various types of wounds. In this review, our primary focus is to provide a comprehensive overview of the current state-of-the-art in applying nanoparticles, nanofibres, nanosheets and their combinations to wound healing, serving as a valuable resource to guide researchers in their appropriate utilization of these nanomaterials in wound-healing research. Further studies are necessary to gain insight into the application of this type of nanomaterials in clinical settings.
Collapse
Affiliation(s)
- Mohammad Afshar
- Department of Anatomy, Faculty of MedicineBirjand University of Medical SciencesBirjandIran
- Medical Toxicology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Alireza Rezaei
- Anatomical Clinical PathologistIslamic Azad University of Medical SciencesMashhadIran
| | - Samira Eghbali
- Department of Pharmacognosy and Traditional PharmacySchool of Pharmacy, Birjand University of Medical SciencesBirjandIran
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| | - Samira Nasirizadeh
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
- Department of Pharmaceutics and NanotechnologySchool of Pharmacy, Birjand university of Medical SciencesBirjandIran
| | - Effat Alemzadeh
- Infectious Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Esmat Alemzadeh
- Department of Medical BiotechnologyFaculty of Medicine, Birjand University of Medical SciencesBirjandIran
| | - Mehri Shadi
- Department of Anatomy, Faculty of MedicineBirjand University of Medical SciencesBirjandIran
| | - Mahsa Sedighi
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
- Department of Pharmaceutics and NanotechnologySchool of Pharmacy, Birjand university of Medical SciencesBirjandIran
| |
Collapse
|
7
|
Lv N, Zhou Z, Hong L, Li H, Liu M, Qian Z. Zinc-energized dynamic hydrogel accelerates bone regeneration via potentiating the coupling of angiogenesis and osteogenesis. Front Bioeng Biotechnol 2024; 12:1389397. [PMID: 38633665 PMCID: PMC11022217 DOI: 10.3389/fbioe.2024.1389397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Insufficient initial vascularization plays a pivotal role in the ineffectiveness of bone biomaterials for treating bone defects. Consequently, enhancing the angiogenic properties of bone repair biomaterials holds immense importance in augmenting the efficacy of bone regeneration. In this context, we have successfully engineered a composite hydrogel capable of promoting vascularization in the process of bone regeneration. To achieve this, the researchers first prepared an aminated bioactive glass containing zinc ions (AZnBg), and hyaluronic acid contains aldehyde groups (HA-CHO). The composite hydrogel was formed by combining AZnBg with gelatin methacryloyl (GelMA) and HA-CHO through Schiff base bonding. This composite hydrogel has good biocompatibility. In addition, the composite hydrogel exhibited significant osteoinductive activity, promoting the activity of ALP, the formation of calcium nodules, and the expression of osteogenic genes. Notably, the hydrogel also promoted umbilical vein endothelial cell migration as well as tube formation by releasing zinc ions. The results of in vivo study demonstrated that implantation of the composite hydrogel in the bone defect of the distal femur of rats could effectively stimulate bone generation and the development of new blood vessels, thus accelerating the bone healing process. In conclusion, the combining zinc-containing bioactive glass with hydrogels can effectively promote bone growth and angiogenesis, making it a viable option for the repair of critical-sized bone defects.
Collapse
Affiliation(s)
- Nanning Lv
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People’s Hospital of Lianyungang), Lianyungang, China
| | - Zhangzhe Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lihui Hong
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People’s Hospital of Lianyungang), Lianyungang, China
| | - Hongye Li
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People’s Hospital of Lianyungang), Lianyungang, China
| | - Mingming Liu
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People’s Hospital of Lianyungang), Lianyungang, China
| | - Zhonglai Qian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Aytekin E, Vurat MT, Elçin AE, Elçin YM. Decellularized Bone Matrix/45S5 Bioactive Glass Biocomposite Hydrogel-Based Constructs with Angiogenic and Osteogenic Properties: Ex Ovo and Ex Vivo Evaluations. Macromol Biosci 2024; 24:e2300295. [PMID: 38102878 DOI: 10.1002/mabi.202300295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Decellularized extracellular matrix is often used to create an in vivo-like environment that supports cell growth and proliferation, as it reflects the micro/macrostructure and molecular composition of tissues. On the other hand, bioactive glasses (BG) are surface-reactive glass-ceramics that can convert to hydroxyapatite in vivo and promote new bone formation. This study is designed to evaluate the key properties of a novel angiogenic and osteogenic biocomposite graft made of bovine decellularized bone matrix (DBM) hydrogel and 45S5 BG microparticles (10 and 20 wt%) to combine the existing superior properties of both biomaterial classes. Morphological, physicochemical, mechanical, and thermal characterizations of DBM and DBM/BG composite hydrogels are performed. Their in vitro biocompatibility is confirmed by cytotoxicity and hemocompatibility analyses. Ex vivo chick embryo aortic arch and ex ovo chick chorioallantoic membrane (CAM) assays reveal that the present pro-angiogenic property of DBM hydrogels is enhanced by the incorporation of BG. Histochemical stainings (Alcian blue and Alizarin red) and digital image analysis of ossification on hind limbs of embryos used in the CAM model reveal the osteogenic potential of biomaterials. The findings support the notion that the developed DBM/BG composite hydrogel constructs have the potential to be a suitable graft for bone repair.
Collapse
Affiliation(s)
- Ekin Aytekin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, 06100, Turkey
| | - Murat Taner Vurat
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, 06100, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, 06100, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, 06100, Turkey
- Biovalda Health Technologies, Inc., Ankara, 06830, Turkey
| |
Collapse
|
9
|
Yu Y, Wang C, Fu Q, Wan Y, Yu A. Multi-crosslinked hydrogel built with hyaluronic acid-tyramine, thiolated glycol chitosan and copper-doped bioglass nanoparticles for expediting wound healing. Carbohydr Polym 2024; 327:121635. [PMID: 38171654 DOI: 10.1016/j.carbpol.2023.121635] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
The migration of fibroblasts and endothelial cells is a critical determinant of wound-healing outcomes for skin injuries. Here, hyaluronic acid-tyramine (HAT) and thiolated glycol chitosan (TGC) conjugates were combined with copper-doped bioglass (ACuBG) nanoparticles to build a novel type of multi-crosslinked hydrogel for stimulating the migration of cells, and thus, expediting wound healing. The optimally devised HAT/TGC/ACuBG gels had markedly improved strength and stiffness compared to the gels built from either HAT or TGC while showing sufficient elasticity, which contributes to stimulating the migration of fibroblasts. The sustainable release of silicon and copper ions from the gels was found to jointly induce the migration of human umbilical vein endothelial cells. The results based on mouse full-thickness skin defects demonstrated that they were able to fully restore the skin defects with formation of complete appendages within two weeks, suggesting their promising potency for use in expediting wound healing.
Collapse
Affiliation(s)
- Yifeng Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430071, PR China
| | - Congcong Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qiaoqin Fu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
10
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
11
|
Lin YC, Wang HY, Tang YC, Lin WR, Tseng CL, Hu CC, Chung RJ. Enhancing wound healing and adhesion through dopamine-assisted gelatin-silica hybrid dressings. Int J Biol Macromol 2024; 258:128845. [PMID: 38141693 DOI: 10.1016/j.ijbiomac.2023.128845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Gelatin, widely employed in hydrogel dressings, faces limitations when used in high fluid environments, hindering effective material adhesion to wound sites and subsequently reducing treatment efficacy. The rapid degradation of conventional hydrogels often results in breakdown before complete wound healing. Thus, there is a pressing need for the development of durable adhesive wound dressings. In this study, 3-glycidoxypropyltrimethoxysilane (GPTMS) was utilized as a coupling agent to create gelatin-silica hybrid (G-H) dressings through the sol-gel method. The coupling reaction established covalent bonds between gelatin and silica networks, enhancing structural stability. Dopamine (DP) was introduced to this hybrid (G-H-D) dressing to further boost adhesiveness. The efficacy of the dressings for wound management was assessed through in-vitro and in-vivo tests, along with ex-vivo bioadhesion testing on pig skin. Tensile bioadhesion tests demonstrated that the G-H-D material exhibited approximately 2.5 times greater adhesion to soft tissue in wet conditions compared to pure gelatin. Moreover, in-vitro and in-vivo wound healing experiments revealed a significant increase in wound healing rates. Consequently, this material shows promise as a viable option for use as a moist wound dressing.
Collapse
Affiliation(s)
- Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Huey-Yuan Wang
- Department of Stomatology, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Yao-Chun Tang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Wan-Rong Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; International Ph. D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan.
| |
Collapse
|
12
|
Ciliveri S, Bandyopadhyay A. Additively Manufactured SiO 2 and Cu-Added Ti Implants for Synergistic Enhancement of Bone Formation and Antibacterial Efficacy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3106-3115. [PMID: 38214659 DOI: 10.1021/acsami.3c14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Commercially pure titanium (CpTi), a bioinert metal, is used as an implant material at low load-bearing sites and as a porous coating on Ti6Al4V at high load-bearing sites. There is an unmet need for metallic biomaterials to improve osseointegration and inherent antimicrobial resistance. In this study, we have added 1 wt % SiO2 and 3 wt % Cu to the CpTi matrix and processed via metal additive manufacturing (AM). Si4+ ions promote angiogenesis and osteogenesis. CpTi-SiO2 composition exhibited 4.5 times higher bone formation at the bone-implant interface over CpTi in an in vivo study with a rat distal femur model. In vitro bacterial studies with Gram-positive Staphylococcus aureus bacterium revealed 85% antibacterial efficacy by CpTi-SiO2-3Cu than CpTi. CpTi-SiO2-3Cu did not show any inflammatory markers in vivo, indicating the absence of cytotoxicity, but displayed delayed osseointegration compared to CpTi-SiO2. CpTi-SiO2-3Cu displayed 3-fold higher mineralized bone formation than CpTi. Our results emphasize the synergistic effect of SiO2 and Cu addition in CpTi, promoting enhanced early stage osseointegration and inherent antibacterial efficacy, contributing toward implant longevity and stability in vivo.
Collapse
Affiliation(s)
- Sushant Ciliveri
- W. M. Keck Biomedical Materials Research Laboratory School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
13
|
Lv N, Zhou Z, Hou M, Hong L, Li H, Qian Z, Gao X, Liu M. Research progress of vascularization strategies of tissue-engineered bone. Front Bioeng Biotechnol 2024; 11:1291969. [PMID: 38312513 PMCID: PMC10834685 DOI: 10.3389/fbioe.2023.1291969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/06/2023] [Indexed: 02/06/2024] Open
Abstract
The bone defect caused by fracture, bone tumor, infection, and other causes is not only a problematic point in clinical treatment but also one of the hot issues in current research. The development of bone tissue engineering provides a new way to repair bone defects. Many animal experimental and rising clinical application studies have shown their excellent application prospects. The construction of rapid vascularization of tissue-engineered bone is the main bottleneck and critical factor in repairing bone defects. The rapid establishment of vascular networks early after biomaterial implantation can provide sufficient nutrients and transport metabolites. If the slow formation of the local vascular network results in a lack of blood supply, the osteogenesis process will be delayed or even unable to form new bone. The researchers modified the scaffold material by changing the physical and chemical properties of the scaffold material, loading the growth factor sustained release system, and combining it with trace elements so that it can promote early angiogenesis in the process of induced bone regeneration, which is beneficial to the whole process of bone regeneration. This article reviews the local vascular microenvironment in the process of bone defect repair and the current methods of improving scaffold materials and promoting vascularization.
Collapse
Affiliation(s)
- Nanning Lv
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Zhangzhe Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingzhuang Hou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lihui Hong
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Hongye Li
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Zhonglai Qian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuzhu Gao
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Mingming Liu
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| |
Collapse
|
14
|
Salehi Abar E, Vandghanooni S, Torab A, Jaymand M, Eskandani M. A comprehensive review on nanocomposite biomaterials based on gelatin for bone tissue engineering. Int J Biol Macromol 2024; 254:127556. [PMID: 37884249 DOI: 10.1016/j.ijbiomac.2023.127556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
The creation of a suitable scaffold is a crucial step in the process of bone tissue engineering (BTE). The scaffold, acting as an artificial extracellular matrix, plays a significant role in determining the fate of cells by affecting their proliferation and differentiation in BTE. Therefore, careful consideration should be given to the fabrication approach and materials used for scaffold preparation. Natural polypeptides such as gelatin and collagen have been widely used for this purpose. The unique properties of nanoparticles, which vary depending on their size, charge, and physicochemical properties, have demonstrated potential in solving various challenges encountered in BTE. Therefore, nanocomposite biomaterials consisting of polymers and nanoparticles have been extensively used for BTE. Gelatin has also been utilized in combination with other nanomaterials to apply for this purpose. Composites of gelatin with various types of nanoparticles are particularly promising for creating scaffolds with superior biological and physicochemical properties. This review explores the use of nanocomposite biomaterials based on gelatin and various types of nanoparticles together for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Elaheh Salehi Abar
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Torab
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Mandakhbayar N, Ji Y, El-Fiqi A, Patel KD, Yoon DS, Dashnyam K, Bayaraa O, Jin G, Tsogtbaatar K, Kim TH, Lee JH, Kim HW. Double hits with bioactive nanozyme based on cobalt-doped nanoglass for acute and diabetic wound therapies through anti-inflammatory and pro-angiogenic functions. Bioact Mater 2024; 31:298-311. [PMID: 37637079 PMCID: PMC10458956 DOI: 10.1016/j.bioactmat.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/27/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023] Open
Abstract
Regeneration of pathological wounds, such as diabetic ulcers, poses a significant challenge in clinical settings, despite the widespread use of drugs. To overcome clinical side effects and complications, drug-free therapeutics need to be developed to promote angiogenesis while overcoming inflammation to restore regenerative events. This study presents a novel bioactive nanozyme based on cobalt-doped nanoglass (namely, CoNZ), which exhibits high enzymatic/catalytic activity while releasing therapeutic ions. Cobalt oxide "Co3O4" tiny crystallites produced in situ through a chemical reaction with H2O2 within CoNZ nanoparticles play a crucial role in scavenging ROS. Results showed that CoNZ-treatment to full-thickness skin wounds in mice significantly accelerated the healing process, promoting neovascularization, matrix deposition, and epithelial lining while reducing pro-inflammatory signs. Notably, CoNZ was highly effective in treating pathological wounds (streptozotocin-induced diabetic wounds). Rapid scavenging of ROS by CoNZ and down-regulation of pro-inflammatory markers while up-regulating tissue healing signs with proliferative cells and activated angiogenic factors contributed to the observed healing events. In vitro experiments involving CoNZ-cultures with macrophages and endothelial cells exposed to high glucose and ROS-generating conditions further confirmed the effectiveness of CoNZ. CoNZ-promoted angiogenesis was attributed to the release of cobalt ions, as evidenced by the comparable effects of CoNZ-extracted ionic medium in enhancing endothelial migration and tubule formation via activated HIF-1α. Finally, we compared the in vivo efficacy of CoNZ with the clinically-available drug deferoxamine. Results demonstrated that CoNZ was as effective as the drug in closing the diabetic wound, indicating the potential of CoNZ as a novel drug-free therapeutic approach.
Collapse
Affiliation(s)
- Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - YunSeong Ji
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ahmed El-Fiqi
- Glass Research Department, National Research Centre, Cairo, 12622, Egypt
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- School of Cellular and Molecular Medicine (CMM), University of Bristol, Bristol, BS8 1TD United Kingdom
| | - Dong Suk Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomedical Science, Hwasung Medi-Science University, Hwaseong‑Si 18274, Gyeonggi‑Do, Republic of Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Drug Research Institute, Mongolian University of Pharmaceutical Sciences, Ulaanbaatar 14250, Mongolia
| | - Oyunchimeg Bayaraa
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Drug Research Institute, Mongolian University of Pharmaceutical Sciences, Ulaanbaatar 14250, Mongolia
| | - Gangshi Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Khaliunsarnai Tsogtbaatar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Drug Research Institute, Mongolian University of Pharmaceutical Sciences, Ulaanbaatar 14250, Mongolia
| | - Tae-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- R&D Center, TE Bios, Osong, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
16
|
Mo Y, He W, Hu S, Guo H, Li S, Zhang J, Wang X. 3D printed Si-CaP scaffold released SiO 32- and Ca 2+ to synergistically promote angiogenesis. J Biomater Appl 2024; 38:784-793. [PMID: 37963098 DOI: 10.1177/08853282231216546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
BACKGROUND AND PURPOSE Structuring scaffold with both osteogenic and angiogenesis capabilities is a challenge for bone tissue engineering. Powder structured Si-CaP materials have shown excellent osteogenic properties and induction of stem cell differentiation. Our research group have successful produced 3D printed Si-CaP scaffolds by DLP technology. This study aims to explore the angiogenic effects of SiO32- and Ca2+ released by 3D printed Si-CaP scaffold, and whether there is a synergistic effect between the two ions. METHODS The 3D printed Si-CaP scaffolds were immersed in endothelial cell medium solution for 24 h. The Si, Ca ion released was detected by Inductively coupled plasma-optical emission spectrometry. We used detected data as a standard to prepare the simulated solution to investigate the effect of SiO32-, Ca2+ separately. Experiment was divided into control group, Si ion group, Ca ion group and Si + Ca ion group. We evaluated different ionic effect on HUVECs viability, proliferation, migration, gene expression, and tube formation on different groups. RESULTS The concentration of SiO32- was detected as 15.71 ± 0.04 μg/mL, Ca2+ as 67.14 ± 0.95 μg/mL. Na2SiO3 and CaCl2 were used to prepare the simulated solution. There were no statistically difference between simulated solution from ion released by scaffold. Si + Ca group promoted the gene expression significantly compared with the control group, p < .01. Expression of vascular-associated protein in Si + Ca ion group was higher than that in Si ion group, Ca ion group and control group. Si + Ca ion group significantly enhanced endothelial cell on migration and tube formation assay. CONCLUSION The 3D printed Si-CaP scaffold can release effective physiological concentrations of Si, Ca ions. Si and Ca ions have a synergistic effect on promoting angiogenesis of HUVECs. 3D printed Si-CaP scaffold is promising in vascularized bone tissue engineering application.
Collapse
Affiliation(s)
- Yongqiang Mo
- Department of Orthopaedic, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weitao He
- Department of Orthopaedic, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shiqi Hu
- Department of Orthopaedic, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchun Guo
- Department of Orthopaedic, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuangzuo Li
- Department of Orthopaedic, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingwei Zhang
- Department of Orthopaedic, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintao Wang
- Department of Orthopaedic, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
De Mori A, Karali A, Daskalakis E, Hing R, Da Silva Bartolo PJ, Cooper G, Blunn G. Poly-ε-Caprolactone 3D-Printed Porous Scaffold in a Femoral Condyle Defect Model Induces Early Osteo-Regeneration. Polymers (Basel) 2023; 16:66. [PMID: 38201731 PMCID: PMC10780383 DOI: 10.3390/polym16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Large bone reconstruction following trauma poses significant challenges for reconstructive surgeons, leading to a healthcare burden for health systems, long-term pain for patients, and complex disorders such as infections that are difficult to resolve. The use of bone substitutes is suboptimal for substantial bone loss, as they induce localized atrophy and are generally weak, and unable to support load. A combination of strong polycaprolactone (PCL)-based scaffolds, with an average channel size of 330 µm, enriched with 20% w/w of hydroxyapatite (HA), β-tricalcium phosphate (TCP), or Bioglass 45S5 (Bioglass), has been developed and tested for bone regeneration in a critical-size ovine femoral condyle defect model. After 6 weeks, tissue ingrowth was analyzed using X-ray computed tomography (XCT), Backscattered Electron Microscopy (BSE), and histomorphometry. At this point, all materials promoted new bone formation. Histological analysis showed no statistical difference among the different biomaterials (p > 0.05), but PCL-Bioglass scaffolds enhanced bone formation in the center of the scaffold more than the other types of materials. These materials show potential to promote bone regeneration in critical-sized defects on load-bearing sites.
Collapse
Affiliation(s)
- Arianna De Mori
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK
| | - Aikaterina Karali
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Evangelos Daskalakis
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK (G.C.)
| | - Richard Hing
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 2HB, UK
| | | | - Glen Cooper
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK (G.C.)
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK
| |
Collapse
|
18
|
Usseglio J, Dumur A, Pagès E, Renaudie É, Abélanet A, Brie J, Champion É, Magnaudeix A. Microporous Hydroxyapatite-Based Ceramics Alter the Physiology of Endothelial Cells through Physical and Chemical Cues. J Funct Biomater 2023; 14:460. [PMID: 37754874 PMCID: PMC10531673 DOI: 10.3390/jfb14090460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Incorporation of silicate ions in calcium phosphate ceramics (CPC) and modification of their multiscale architecture are two strategies for improving the vascularization of scaffolds for bone regenerative medicine. The response of endothelial cells, actors for vascularization, to the chemical and physical cues of biomaterial surfaces is little documented, although essential. We aimed to characterize in vitro the response of an endothelial cell line, C166, cultivated on the surface CPCs varying either in terms of their chemistry (pure versus silicon-doped HA) or their microstructure (dense versus microporous). Adhesion, metabolic activity, and proliferation were significantly altered on microporous ceramics, but the secretion of the pro-angiogenic VEGF-A increased from 262 to 386 pg/mL on porous compared to dense silicon-doped HA ceramics after 168 h. A tubulogenesis assay was set up directly on the ceramics. Two configurations were designed for discriminating the influence of the chemistry from that of the surface physical properties. The formation of tubule-like structures was qualitatively more frequent on dense ceramics. Microporous ceramics induced calcium depletion in the culture medium (from 2 down to 0.5 mmol/L), which is deleterious for C166. Importantly, this effect might be associated with the in vitro static cell culture. No influence of silicon doping of HA on C166 behavior was detected.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amandine Magnaudeix
- Université de Limoges, CNRS, Institut de Recherche sur les Céramiques, UMR 7315, F-87000 Limoges, France; (J.U.); (A.D.); (E.P.); (É.R.); (A.A.); (J.B.); (É.C.)
| |
Collapse
|
19
|
Gu L, Huang R, Ni N, Gu P, Fan X. Advances and Prospects in Materials for Craniofacial Bone Reconstruction. ACS Biomater Sci Eng 2023; 9:4462-4496. [PMID: 37470754 DOI: 10.1021/acsbiomaterials.3c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The craniofacial region is composed of 23 bones, which provide crucial function in keeping the normal position of brain and eyeballs, aesthetics of the craniofacial complex, facial movements, and visual function. Given the complex geometry and architecture, craniofacial bone defects not only affect the normal craniofacial structure but also may result in severe craniofacial dysfunction. Therefore, the exploration of rapid, precise, and effective reconstruction of craniofacial bone defects is urgent. Recently, developments in advanced bone tissue engineering bring new hope for the ideal reconstruction of the craniofacial bone defects. This report, presenting a first-time comprehensive review of recent advances of biomaterials in craniofacial bone tissue engineering, overviews the modification of traditional biomaterials and development of advanced biomaterials applying to craniofacial reconstruction. Challenges and perspectives of biomaterial development in craniofacial fields are discussed in the end.
Collapse
Affiliation(s)
- Li Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Rui Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
20
|
Wang W, Jia S, Miao G, Sun Z, Yu F, Gao Z, Li Y. Bioactive glass in the treatment of ulcerative colitis to regulate the TLR4 / MyD88 / NF-κB pathway. BIOMATERIALS ADVANCES 2023; 152:213520. [PMID: 37336008 DOI: 10.1016/j.bioadv.2023.213520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Ulcerative colitis (UC) is a chronic and recurrent intestinal disease of unknown aetiology, and the few treatments approved for UC have serious side effects. In this study, a new type of uniformly monodispersed calcium-enhanced radial mesoporous micro-nano bioactive glass (HCa-MBG) was prepared for UC treatment. We established cellular and rat UC models to explore the effects and mechanism of HCa-MBG and traditional BGs (45S5, 58S) on UC. The results showed that BGs significantly reduced the cellular expression of several inflammatory factors, such as IL-1β, IL-6, TNF-α and NO. In the animal experiments, BGs were shown to repair the DSS-damaged colonic mucosa. Moreover, BGs downregulated the mRNA levels of the inflammatory factors IL-1β, IL-6, TNF-α and iNOS, which were stimulated by DSS. BGs were also found to manage the expression of key proteins in NF-kB signal pathway. However, HCa-MBG was more effective than traditional BGs in terms of improving UC clinical manifestations and reducing the expression of inflammatory factors in rats. This study confirmed for the first time that BGs can be used as an adjuvant drug in UC treatment, thereby preventing UC progression.
Collapse
Affiliation(s)
- Wenhao Wang
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao 266071, China; Weifang Medical University, Weifang 261042, China
| | | | - Guohou Miao
- Department of laboratory, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
| | - Zhenmin Sun
- Weifang Medical University, Weifang 261042, China
| | - Feng Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhixing Gao
- Weifang Medical University, Weifang 261042, China
| | - Yuli Li
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao 266071, China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China; Weifang Medical University, Weifang 261042, China.
| |
Collapse
|
21
|
Lyu Y, Liu Y, He H, Wang H. Application of Silk-Fibroin-Based Hydrogels in Tissue Engineering. Gels 2023; 9:gels9050431. [PMID: 37233022 DOI: 10.3390/gels9050431] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Silk fibroin (SF) is an excellent protein-based biomaterial produced by the degumming and purification of silk from cocoons of the Bombyx mori through alkali or enzymatic treatments. SF exhibits excellent biological properties, such as mechanical properties, biocompatibility, biodegradability, bioabsorbability, low immunogenicity, and tunability, making it a versatile material widely applied in biological fields, particularly in tissue engineering. In tissue engineering, SF is often fabricated into hydrogel form, with the advantages of added materials. SF hydrogels have mostly been studied for their use in tissue regeneration by enhancing cell activity at the tissue defect site or counteracting tissue-damage-related factors. This review focuses on SF hydrogels, firstly summarizing the fabrication and properties of SF and SF hydrogels and then detailing the regenerative effects of SF hydrogels as scaffolds in cartilage, bone, skin, cornea, teeth, and eardrum in recent years.
Collapse
Affiliation(s)
- Yihan Lyu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yusheng Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Houzhe He
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
22
|
Feng J, Xing M, Qian W, Qiu J, Liu X. An injectable hydrogel combining medicine and matrix with anti-inflammatory and pro-angiogenic properties for potential treatment of myocardial infarction. Regen Biomater 2023; 10:rbad036. [PMID: 37153848 PMCID: PMC10159687 DOI: 10.1093/rb/rbad036] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
One of the main illnesses that put people's health in jeopardy is myocardial infarction (MI). After MI, damaged or dead cells set off an initial inflammatory response that thins the ventricle wall and degrades the extracellular matrix. At the same time, the ischemia and hypoxic conditions resulting from MI lead to significant capillary obstruction and rupture, impairing cardiac function and reducing blood flow to the heart. Therefore, attenuating the initial inflammatory response and promoting angiogenesis are very important for the treatment of MI. Here, to reduce inflammation and promote angiogenesis in infarcted area, we report a new kind of injectable hydrogel composed of puerarin and chitosan via in situ self-assembly with simultaneous delivery of mesoporous silica nanoparticles (CHP@Si) for myocardial repair. On the one hand, puerarin degraded from CHP@Si hydrogel modulated the inflammatory response via inhibiting M1-type polarization of macrophages and expression of pro-inflammatory factors. On the other hand, silica ions and puerarin released from CHP@Si hydrogel showed synergistic activity to improve the cell viability, migration and angiogenic gene expression of HUVECs in both conventional and oxygen/glucose-deprived environments. It suggests that this multifunctional injectable CHP@Si hydrogel with good biocompatibility may be an appropriate candidate as a bioactive material for myocardial repair post-MI.
Collapse
Affiliation(s)
- Jiayin Feng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Xing
- Shanghai Xuhui District Dental Center, Shanghai 200032, China
| | - Wenhao Qian
- Shanghai Xuhui District Dental Center, Shanghai 200032, China
| | - Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
23
|
Oustadi F, Imani R, Haghbin Nazarpak M, Sharifi AM, McInnes SJP. Nanofiber/hydrogel composite scaffold incorporated by silicon nanoparticles for sustained delivery of osteogenic factor: in vitro study. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2147176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Fereshteh Oustadi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Masoumeh Haghbin Nazarpak
- New Technologies Research Center, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Ali Mohammad Sharifi
- Stem Cell and Regenerative Medicine Research Center, and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Orthopedics Surgery, Faculty of Medicine, Tissue Engineering Group (NOCERAL), University of Malaya, Kuala Lumpur, Malaysia
| | - Steven J. P. McInnes
- UniSA STEM, Mawson Lakes Campus, University of South Australia, Mawson Lakes, South Australia, Australia
| |
Collapse
|
24
|
Wang M, Guo Y, Deng Z, Xu P. Engineering elastic bioactive composite hydrogels for promoting osteogenic differentiation of embryonic mesenchymal stem cells. Front Bioeng Biotechnol 2022; 10:1022153. [PMID: 36312561 PMCID: PMC9596812 DOI: 10.3389/fbioe.2022.1022153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
The development of bioactive materials with good mechanical properties and promotion of stem cell osteogenic differentiation has important application prospects in bone tissue engineering. In this paper, we designed a novel organic‒inorganic composite hydrogel (FPIGP@BGN-Sr) utilizing diacrylated F127 (DA-PF127), β-glycerophosphate-modified polyitaconate (PIGP) and strontium-doped bioactive glass nanoparticles (BGN-Sr) through free radical polymerization and coordination interactions and then evaluated its promoting effect on the osteogenic differentiation of mouse embryonic mesenchymal stem cells in detail. The results showed that the FPIGP@BGN-Sr hydrogel exhibited a controlled storage modulus by changing the amount of BGN-Sr. Notably, the FPIGP@BGN-Sr hydrogel possessed excellent elastic ability with a compressive strain of up to 98.6% and negligible change in mechanical properties after 10 cycles of compression. In addition, the FPIGP@BGN-Sr hydrogel had good cytocompatibility, maintained the activity and proliferation of mouse embryonic mesenchymal stem cells (C3H10T1/2), and effectively enhanced the activity of alkaline phosphatase, osteogenic gene expression and biomineralization ability of the cells. In conclusion, the excellent mechanical properties and osteogenic biological activity of the FPIGP@BGN-Sr hydrogel make it a promising organic‒inorganic composite bioactive material for stem cell-based bone regeneration.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yi Guo
- Shaanxi Key Laboratory of Brain Disorders, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Zexing Deng
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an, China
| | - Peng Xu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Peng Xu,
| |
Collapse
|
25
|
Ma J, Wu C. Bioactive inorganic particles-based biomaterials for skin tissue engineering. EXPLORATION (BEIJING, CHINA) 2022; 2:20210083. [PMID: 37325498 PMCID: PMC10190985 DOI: 10.1002/exp.20210083] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
The challenge for treatment of severe cutaneous wound poses an urgent clinical need for the development of biomaterials to promote skin regeneration. In the past few decades, introduction of inorganic components into material system has become a promising strategy for improving performances of biomaterials in the process of tissue repair. In this review, we provide a current overview of the development of bioactive inorganic particles-based biomaterials used for skin tissue engineering. We highlight the three stages in the evolution of the bioactive inorganic biomaterials applied to wound management, including single inorganic materials, inorganic/organic composite materials, and inorganic particles-based cell-encapsulated living systems. At every stage, the primary types of bioactive inorganic biomaterials are described, followed by citation of the related representative studies completed in recent years. Then we offer a brief exposition of typical approaches to construct the composite material systems with incorporation of inorganic components for wound healing. Finally, the conclusions and future directions are suggested for the development of novel bioactive inorganic particles-based biomaterials in the field of skin regeneration.
Collapse
Affiliation(s)
- Jingge Ma
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
26
|
Fan C, Xu Q, Hao R, Wang C, Que Y, Chen Y, Yang C, Chang J. Multi-functional wound dressings based on silicate bioactive materials. Biomaterials 2022; 287:121652. [PMID: 35785753 DOI: 10.1016/j.biomaterials.2022.121652] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
Abstract
Most traditional wound dressings passively offer a protective barrier for the wounds, which lacks the initiative in stimulating tissue regeneration. In addition, cutaneous wound healing is usually accompanied by various complicated conditions, including bacterial infection, skin cancer, and damaged skin appendages, bringing further challenges for wound management in clinic. Therefore, an ideal wound dressing should not only actively stimulate wound healing but also hold multi-functions for solving problems associated with different specific wound conditions. Recent studies have demonstrated that silicate bioceramics and bioglasses are one type of promising materials for the development of wound dressings, as they can actively accelerate wound healing by regulating endothelial cells, dermal fibroblasts, macrophages, and epidermal cells. In particular, silicate-based biomaterials can be further functionalized by specific structural design or doping with functional components, which endow materials with enhanced bioactivities or expanded physicochemical properties such as photothermal, photodynamic, chemodynamic, or imaging properties. The functionalized materials can be used to address wound healing with different demands including but not limited to antibacterial, anticancer, skin appendages regeneration, and wound monitoring. In this review, we summarized the current research on the development of silicate-based multi-functional wound dressings and prospected the development of advanced wound dressings in the future.
Collapse
Affiliation(s)
- Chen Fan
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Qing Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
| | - Ruiqi Hao
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Chun Wang
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Yumei Que
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Yanxin Chen
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Chen Yang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| | - Jiang Chang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, PR China.
| |
Collapse
|
27
|
El-Fiqi A, Kim JH, Kim HW. Highly bioactive bone cement microspheres based on α-tricalcium phosphate microparticles/mesoporous bioactive glass nanoparticles: Formulation, physico-chemical characterization and in vivo bone regeneration. Colloids Surf B Biointerfaces 2022; 217:112650. [PMID: 35763895 DOI: 10.1016/j.colsurfb.2022.112650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
Calcium phosphate cement (CPC) is a self-setting, biocompatible and osteoconductive bone cement, however its use as a bone substitute is still limited owing to its low bioactivity (i.e. its slow in vivo resorption and slow new bone formation rate) which is a challenging issue to be addressed. Herein, we report for the first time highly bioactive bone cement microspheres formulated from a cement paste containing α-tricalcium phosphate microparticles (α-TCP) and mesoporous calcium silicate bioactive glass nanoparticles (mesoporous BGn) using a water-in-oil emulsion method. Indeed, bioactive microspheres possess high potential as bone defect fillers for bone regeneration. The α-TCP microparticles were prepared by a solid state synthesis at 1400 ºC while mesoporous BGn were synthesized by template-assissted ultrasound-mediated sol-gel method. The particle size distribution of as-prepared cement microspheres was in the range of 200 - 450 µm with a sphericity index in the range of 0.92 - 0.94. The surface morphology of α-TCP microspheres revealed α-TCP micoparticles with smooth surfaces whereas α-TCP/BGn microspheres unveiled nano-roughened α-TCP microparticles. The as-prepared α-TCP/BGn cement microspheres exhibited larger specific surface area ca 18.6 m2/g, sustained release of soluble silicate (SiO44-) ions (118 ppm within a week) and high protein adsorption capacity (252 mg/g). Notably, the α-TCP/BGn cement microspheres showed excellent in vitro surface bioactivity via formation of massive amounts of bone-like hydroxyapatite spherules and aggregates on their surfaces after soaking in simulated body fluid. Importantly, the in vivo implantation of as-prepared α-TCP/BGn cement microspheres in rat calvarial critical size bone defects for 6 weeks unveiled high in vivo bioactivity in terms of substantial new bone ingrowth and significant new bone formation within the bone defect as evidenced by histological analyses, X-ray radiography and micro-computed tomography evaluations.
Collapse
Affiliation(s)
- Ahmed El-Fiqi
- Glass Research Department, National Research Centre, Cairo 12622, Egypt.
| | - Joong-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
28
|
Huang J, Han Q, Cai M, Zhu J, Li L, Yu L, Wang Z, Fan G, Zhu Y, Lu J, Zhou G. Effect of Angiogenesis in Bone Tissue Engineering. Ann Biomed Eng 2022; 50:898-913. [PMID: 35525871 DOI: 10.1007/s10439-022-02970-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/17/2022] [Indexed: 12/20/2022]
Abstract
The reconstruction of large skeletal defects is still a tricky challenge in orthopedics. The newly formed bone tissue migrates sluggishly from the periphery to the center of the scaffold due to the restrictions of exchange of oxygen and nutrition impotent cells osteogenic differentiation. Angiogenesis plays an important role in bone reconstruction and more and more studies on angiogenesis in bone tissue engineering had been published. Promising advances of angiogenesis in bone tissue engineering by scaffold designs, angiogenic factor delivery, in vivo prevascularization and in vitro prevascularization are discussed in detail. Among all the angiogenesis mode, angiogenic factor delivery is the common methods of angiogenesis in bone tissue engineering and possible research directions in the future.
Collapse
Affiliation(s)
- Jianhao Huang
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, People's Republic of China
| | - Qixiu Han
- Department of Orthopedics, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People's Republic of China
| | - Meng Cai
- Department of Orthopedics, Jinling Hospital, School of Medicine, Southeast University, Nanjing, 210002, People's Republic of China
| | - Jie Zhu
- Department of Orthopedics, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People's Republic of China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Lingfeng Yu
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People's Republic of China
| | - Zhen Wang
- Department of Orthopedics, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People's Republic of China
| | - Gentao Fan
- Department of Orthopedics, Nanjing Jinling Hospital, 305 Zhongshan East Road, Nanjing, 210002, People's Republic of China
| | - Yan Zhu
- Department of Orthopedics, Nanjing Jinling Hospital, 305 Zhongshan East Road, Nanjing, 210002, People's Republic of China
| | - Jingwei Lu
- Department of Orthopedics, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People's Republic of China. .,Department of Orthopedics, Nanjing Jinling Hospital, 305 Zhongshan East Road, Nanjing, 210002, People's Republic of China.
| | - Guangxin Zhou
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, People's Republic of China. .,Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People's Republic of China. .,Department of Orthopedics, Nanjing Jinling Hospital, 305 Zhongshan East Road, Nanjing, 210002, People's Republic of China. .,The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
29
|
Myat-Htun M, Mohd Noor AF, Kawashita M, Baba Ismail YM. Tailoring mechanical and in vitro biological properties of calcium‒silicate based bioceramic through iron doping in developing future material. J Mech Behav Biomed Mater 2022; 128:105122. [DOI: 10.1016/j.jmbbm.2022.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 11/15/2022]
|
30
|
Vrchovecká K, Pávková-Goldbergová M, Engqvist H, Pujari-Palmer M. Cytocompatibility and Bioactive Ion Release Profiles of Phosphoserine Bone Adhesive: Bridge from In Vitro to In Vivo. Biomedicines 2022; 10:biomedicines10040736. [PMID: 35453486 PMCID: PMC9044752 DOI: 10.3390/biomedicines10040736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
One major challenge when developing new biomaterials is translating in vitro testing to in vivo models. We have recently shown that a single formulation of a bone tissue adhesive, phosphoserine modified cement (PMC), is safe and resorbable in vivo. Herein, we screened many new adhesive formulations, for cytocompatibility and bioactive ion release, with three cell lines: MDPC23 odontoblasts, MC3T3 preosteoblasts, and L929 fibroblasts. Most formulations were cytocompatible by indirect contact testing (ISO 10993-12). Formulations with larger amounts of phosphoserine (>50%) had delayed setting times, greater ion release, and cytotoxicity in vitro. The trends in ion release from the adhesive that were cured for 24 h (standard for in vitro) were similar to release from the adhesives cured only for 5−10 min (standard for in vivo), suggesting that we may be able to predict the material behavior in vivo, using in vitro methods. Adhesives containing calcium phosphate and silicate were both cytocompatible for seven days in direct contact with cell monolayers, and ion release increased the alkaline phosphatase (ALP) activity in odontoblasts, but not pre-osteoblasts. This is the first study evaluating how PMC formulation affects osteogenic cell differentiation (ALP), cytocompatibility, and ion release, using in situ curing conditions similar to conditions in vivo.
Collapse
Affiliation(s)
- Kateřina Vrchovecká
- Department of Pathology Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (K.V.); (M.P.-G.)
| | - Monika Pávková-Goldbergová
- Department of Pathology Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (K.V.); (M.P.-G.)
| | - Håkan Engqvist
- Department of Materials Science and Engineering, Applied Material Science, Uppsala University, 75103 Uppsala, Sweden
- Correspondence: (H.E.); (M.P.-P.)
| | - Michael Pujari-Palmer
- Department of Materials Science and Engineering, Applied Material Science, Uppsala University, 75103 Uppsala, Sweden
- Correspondence: (H.E.); (M.P.-P.)
| |
Collapse
|
31
|
Ju Q, Zenji T, Maçon ALB, Norris E, Poologasundarampillai G, Obata A, Jones JR, Kasuga T. Silver-doped calcium silicate sol-gel glasses with a cotton-wool-like structure for wound healing. BIOMATERIALS ADVANCES 2022; 134:112561. [PMID: 35523641 DOI: 10.1016/j.msec.2021.112561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
Skin has excellent capacity to regenerate, however, in the event of a large injury or burn skin grafts are required to aid wound healing. The regenerative capacity further declines with increasing age and can be further exacerbated with bacterial infection leading to a chronic wound. Engineered skin substitutes can be used to provide a temporary template for the damaged tissue, to prevent/combat bacterial infection and promote healing. In this study, the sol-gel process and electrospinning were combined to fabricate 3D cotton-wool-like sol-gel bioactive glass fibers that mimic the fibrous architecture of skin extracellular matrix (ECM) and deliver metal ions for antibacterial (silver) and therapeutic (calcium and silica species) actions for successful healing of wounds. This study investigated the effects of synthesis and process parameters, in particular sintering temperature on the fiber morphology, the incorporation and distribution of silver and the degradation rate of fibers. Silver nitrate was found to decompose into silver nanoparticles within the glass fibers upon calcination. Furthermore, with increasing calcination temperature the nanoparticles increased in size from 3 nm at 600 °C to ~25 nm at 800 °C. The antibacterial ability of the Ag-doped glass fibers decreased as a function of the glass calcination temperature. The degradation products from the Ag-doped 3D non-woven sol-gel glass fibers were also found to promote fibroblast proliferation thus demonstrating their potential for use in skin regeneration.
Collapse
Affiliation(s)
- Qun Ju
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Takuya Zenji
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Anthony L B Maçon
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Elizabeth Norris
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Gowsihan Poologasundarampillai
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, 5 Mil Pool Way, Edgbaston, Birmingham B5 7EG, UK
| | - Akiko Obata
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Toshihiro Kasuga
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
32
|
Yu Y, Yang B, Tian D, Liu J, Yu A, Wan Y. Thiolated hyaluronic acid/silk fibroin dual-network hydrogel incorporated with bioglass nanoparticles for wound healing. Carbohydr Polym 2022; 288:119334. [DOI: 10.1016/j.carbpol.2022.119334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022]
|
33
|
van Rijt S, de Groot K, Leeuwenburgh SCG. Calcium phosphate and silicate-based nanoparticles: history and emerging trends. Tissue Eng Part A 2022; 28:461-477. [PMID: 35107351 DOI: 10.1089/ten.tea.2021.0218] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bulk calcium phosphates and silicate-based bioglasses have been extensively studied since the early 1970s due to their unique capacity to bind to host bone, which led to their clinical translation and commercialization in the 1980s. Since the mid-1990s, researchers have synthesized nanoscale calcium phosphate and silicate-based particles of increased specific surface area, chemical reactivity and solubility which offer specific advantages as compared to their bulk counterparts. This review provides a critical perspective on the history and emerging trends of these two classes of ceramic nanoparticles. Their synthesis and functional properties in terms of particle composition, size, shape, charge, dispersion, and toxicity are discussed as a function of relevant processing parameters. Specifically, emerging trends such as the influence of ion doping and mesoporosity on the biological and pharmaceutical performance of these nanoparticles are reviewed in more detail. Finally, a broad comparative overview is provided on the physicochemical properties and applicability of calcium phosphate and silicate-based nanoparticles within the fields of i) local delivery of therapeutic agents, ii) functionalization of biomaterial scaffolds or implant coatings, and iii) bio-imaging applications.
Collapse
Affiliation(s)
- Sabine van Rijt
- Maastricht University, 5211, MERLN Institute-Instructive Biomaterial Engineering, Maastricht, Limburg, Netherlands;
| | - Klaas de Groot
- Vrije Universiteit Amsterdam, 1190, Academic Center for Dentistry Amsterdam (ACTA)-Department of Oral Implantology and Prosthetic Dentistry, Amsterdam, Noord-Holland, Netherlands;
| | - Sander C G Leeuwenburgh
- Radboudumc, 6034, Dept. of Dentistry-Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands;
| |
Collapse
|
34
|
Unnikrishnan PS, Iyer S, Manju V, Reshmi CR, Menon D, Nair SV, Nair M. Nanocomposite fibrous scaffold mediated mandible reconstruction and dental rehabilitation: An experimental study in pig model. BIOMATERIALS ADVANCES 2022; 133:112631. [PMID: 35527156 DOI: 10.1016/j.msec.2021.112631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/09/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Mandible reconstruction and dental rehabilitation after trauma or tumor resection represent a serious challenge for maxillofacial surgeons. This study aimed to investigate the bone formation potential of nanocomposite fibrous scaffold (silica-nanohydroxyapatite-gelatin reinforced with poly L-lactic acid yarns - CSF) for delayed Titanium (Ti) implantation, which was compared to autograft (AG) taken from the iliac crest. The grafts were placed in critical-sized mandibular defects in an adult pig model for 6 months followed by dental implant placement for another 3 months. There was complete union and vascularised lamellar bone formation within 6 months. Moreover, the biological processes associated with angiogenesis, bone maturation and remodelling were seen in CSF, which was comparable to AG. Later, when Ti dental implant was placed on newly formed bone, CSF group demonstrated better osseointegration. In short, nanocomposite fibrous scaffold promoted quality bone formation in mandible defect that leads to successful osseointegration, suggesting as a potential candidate for implant-based rehabilitation in clinics in future.
Collapse
Affiliation(s)
- P S Unnikrishnan
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Subramania Iyer
- Centre for Plastic and Reconstructive Surgery, Amrita Institute of Medical Science and Research Centre, Kochi 682041, India
| | - V Manju
- School of Dentistry, Amrita Institute of Medical Science and Research Centre, Kochi 682041, India
| | - C R Reshmi
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Deepthy Menon
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Shantikumar V Nair
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Manitha Nair
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| |
Collapse
|
35
|
Hong JY, Kim SH, Seo Y, Jeon J, Davaa G, Hyun JK, Kim SH. Self-assembling peptide gels promote angiogenesis and functional recovery after spinal cord injury in rats. J Tissue Eng 2022; 13:20417314221086491. [PMID: 35340425 PMCID: PMC8943448 DOI: 10.1177/20417314221086491] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) leads to disruption of the blood–spinal cord barrier,
hemorrhage, and tissue edema, which impair blood circulation and induce
ischemia. Angiogenesis after SCI is an important step in the repair of damaged
tissues, and the extent of angiogenesis strongly correlates with the neural
regeneration. Various biomaterials have been developed to promote angiogenesis
signaling pathways, and angiogenic self-assembling peptides are useful for
producing diverse supramolecular structures with tunable functionality. RADA16
(Ac-RARADADARARADADA-NH2), which forms nanofiber networks under physiological
conditions, is a self-assembling peptide that can provide mechanical support for
tissue regeneration and reportedly has diverse roles in wound healing. In this
study, we applied an injectable form of RADA16 with or without the neuropeptide
substance P to the contused spinal cords of rats and examined angiogenesis
within the damaged spinal cord and subsequent functional improvement.
Histological and immunohistochemical analyses revealed that the inflammatory
cell population in the lesion cavity was decreased, the vessel number and
density around the damaged spinal cord were increased, and the levels of
neurofilaments within the lesion cavity were increased in SCI rats that received
RADA16 and RADA16 with substance P (rats in the RADA16/SP group). Moreover,
real-time PCR analysis of damaged spinal cord tissues showed that IL-10
expression was increased and that locomotor function (as assessed by the Basso,
Beattie, and Bresnahan (BBB) scale and the horizontal ladder test) was
significantly improved in the RADA16/SP group compared to the control group. Our
findings indicate that RADA16 modified with substance P effectively stimulates
angiogenesis within the damaged spinal cord and is a candidate agent for
promoting functional recovery post-SCI.
Collapse
Affiliation(s)
- Jin Young Hong
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
| | - Su Hee Kim
- Center for Biomaterials, Biomedical
Research Institute, Korea Institute of Science and Technology, Seoul, Republic of
Korea
- Medifab Ltd., Seoul, Republic of
Korea
| | - Yoojin Seo
- Center for Biomaterials, Biomedical
Research Institute, Korea Institute of Science and Technology, Seoul, Republic of
Korea
| | - Jooik Jeon
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
| | - Ganchimeg Davaa
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
| | - Jung Keun Hyun
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Rehabilitation Medicine,
College of Medicine, Dankook University, Cheonan, Republic of Korea
- Jung Keun Hyun, Department of
Rehabilitation Medicine, College of Medicine, Dankook University, 119 Dandae-ro,
Anseo-dong, Dongnam-gu, Cheonan 31116, Republic of Korea.
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical
Research Institute, Korea Institute of Science and Technology, Seoul, Republic of
Korea
- Korea Institute of Science and
Technology Europe, Saarbrücken, Germany
- NBIT, KU-KIST Graduate School of
Converging Science and Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Choe YE, Kim YJ, Jeon SJ, Ahn JY, Park JH, Dashnyam K, Mandakhbayar N, Knowles JC, Kim HW, Jun SK, Lee JH, Lee HH. Investigating the mechanophysical and biological characteristics of therapeutic dental cement incorporating copper doped bioglass nanoparticles. Dent Mater 2021; 38:363-375. [PMID: 34933758 DOI: 10.1016/j.dental.2021.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study was investigated the mechanophysical properties of zinc phosphate cement (ZPC) with or without the copper doped bioglass nanoparticles (Cu-BGn) and their biological effect on dental pulp human cells and bacteria. MATERIALS AND METHODS Cu-BGn were synthesized and characterized firstly and then, the experimental (Cu-ZPC) and control (ZPC) samples were fabricated with similar sizes and/or dimensions (diameter: 4 mm and height: 6 mm) based on the International Organization of Standards (ISO). Specifically, various concentrations of Cu-BGn were tested, and Cu-BGn concentration was optimized at 2.5 wt% based on the film thickness and overall setting time. Next, we evaluated the mechanophysical properties such as compressive strength, elastic modulus, hardness, and surface roughness. Furthermore, the biological behaviors including cell viability and odontoblastic differentiation by using dental pulp human cells as well as antibacterial properties were investigated on the Cu-ZPC. All data were analyzed statistically using SPSS® Statistics 20 (IBM®, USA). p < 0.05 (*) was considered significant, and 'NS' represents nonsignificant. RESULTS Cu-BGn was obtained via a sol-gel method and added onto the ZPC for fabricating a Cu-ZPC composite and for comparison, the Cu-free-ZPC was used as a control. The film thickness (≤ 25 µm) and overall setting time (2.5-8 min) were investigated and the mechanophysical properties showed no significance ('NS') between Cu-ZPC and bare ZPC. However, cell viability and odontoblastic differentiation, alkaline phosphate (ALP) activity and alizarin red S (ARS) staining were highly stimulated in the extracts from the Cu-ZPC group compared to the ZPC group. Additionally, the antibacterial test showed that the Cu-ZPC extracts were more effective than the ZPC extracts (p < 0.05). SIGNIFICANCE Cu-ZPC showed adequate mechanophysical properties (compressive strength, hardness, and surface roughness) and enhanced odontoblastic differentiation as well as antibacterial properties compared to the ZPC-only group. Based on the findings, the fabricated Cu-ZPC might have the potential for use in the field of dental medicine and clinical applications.
Collapse
Affiliation(s)
- Young-Eun Choe
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Yu-Jin Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Se-Jeong Jeon
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Jun-Yong Ahn
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Drug Research Institute, Mongolian Pharmaceutical University & Monos group, Ulaanbaatar 14250, Mongolia.
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea; Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; The Discoveries Centre for Regenerative and Precision Medicine, Eastman Dental Institute, University College London, London, UK.
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea.
| | - Soo-Kyung Jun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Dental Hygiene, Hanseo University, 46 Hanseo 1-ro, Seosan, Chungcheongnam-do 31962, Republic of Korea.
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea.
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| |
Collapse
|
37
|
Lee S, Li Z, Meng D, Fei Q, Jiang L, Fu T, Wang Z, Liu S, Zhang J. Effect of silicon-doped calcium phosphate cement on angiogenesis based on controlled macrophage polarization. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1516-1526. [PMID: 34536273 DOI: 10.1093/abbs/gmab121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Indexed: 11/13/2022] Open
Abstract
Vascularization is an important early indicator of osteogenesis involving biomaterials. Bone repair and new bone formation are associated with extensive neovascularization. Silicon-based biomaterials have attracted widespread attention due to their rapid vascularization. Although calcium phosphate cement (CPC) is a mature substitute for bone, the application of CPC is limited by its slow degradation and insufficient promotion of neovascularization. Calcium silicate (CS) has been shown to stimulate vascular endothelial proliferation. Thus, CS may be added to CPC (CPC-CS) to improve the biocompatibility and neovascularization of CPC. In the early phase of bone repair (the inflammatory phase), macrophages accumulate around the biomaterial and exert both anti- and pro-inflammatory effects. However, the effect of CPC-CS on macrophage polarization is not known, and it is not clear whether the effect on neovascularization is mediated through macrophage polarization. In the present study, we explored whether silicon-mediated macrophage polarization contributes to vascularization by evaluating the CPC-CS-mediated changes in the immuno-environment under different silicate ion contents both in vivo and in vitro. We found that the silicon released from CPC-CS can promote macrophage polarization into the M2 phenotype and rapid endothelial neovascularization during bone repair. Dramatic neovascularization and osteogenesis were observed in mouse calvarial bone defects implanted with CPC-CS containing 60% CS. These findings suggest that CPC-CS is a novel biomaterial that can modulate immune response, promote endothelial proliferation, and facilitate neovascularization and osteogenesis. Thus, CPC-CS shows potential as a bone substitute material.
Collapse
Affiliation(s)
- Soomin Lee
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Zheng Li
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Dehua Meng
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Qinming Fei
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Tengfei Fu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Ze Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Shuhao Liu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| |
Collapse
|
38
|
Lai WY, Lee TH, Chen JX, Ng HY, Huang TH, Shie MY. Synergies of Human Umbilical Vein Endothelial Cell-Laden Calcium Silicate-Activated Gelatin Methacrylate for Accelerating 3D Human Dental Pulp Stem Cell Differentiation for Endodontic Regeneration. Polymers (Basel) 2021; 13:polym13193301. [PMID: 34641117 PMCID: PMC8512667 DOI: 10.3390/polym13193301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
According to the Centers for Disease Control and Prevention, tooth caries is a common problem affecting 9 out of every 10 adults worldwide. Dentin regeneration has since become one of the pressing issues in dentistry with tissue engineering emerging as a potential solution for enhancing dentin regeneration. In this study, we fabricated cell blocks with human dental pulp stem cells (hDPSCs)-laden alginate/fish gelatin hydrogels (Alg/FGel) at the center of the cell block and human umbilical vascular endothelial cells (HUVEC)-laden Si ion-infused fish gelatin methacrylate (FGelMa) at the periphery of the cell block. 1H NMR and FTIR results showed the successful fabrication of Alg/FGel and FGelMa. In addition, Si ions in the FGelMa were noted to be bonded via covalent bonds and the increased number of covalent bonds led to an increase in mechanical properties and improved degradation of FGelMa. The Si-containing FGelMa was able to release Si ions, which subsequently significantly not only enhanced the expressions of angiogenic-related protein, but also secreted some cytokines to regulate odontogenesis. Further immunofluorescence results indicated that the cell blocks allowed interactions between the HUVEC and hDPSCs, and taken together, were able to enhance odontogenic-related markers' expression, such as alkaline phosphatase (ALP), dentin matrix phosphoprotein-1 (DMP-1), and osteocalcin (OC). Subsequent Alizarin Red S stain confirmed the benefits of our cell block and demonstrated that such a novel combination and modification of biomaterials can serve as a platform for future clinical applications and use in dentin regeneration.
Collapse
Affiliation(s)
- Wei-Yun Lai
- School of Dentistry, Chung Shan Medical University, Taichung 406040, Taiwan;
| | - Tzu-Hsin Lee
- Department of Orthodontics, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Jian-Xun Chen
- School of Medicine, China Medical University, Taichung 40447, Taiwan; (J.-X.C.); (H.-Y.N.)
- Department of Surgery, China Medical University Hospital, Taichung 406040, Taiwan
| | - Hooi-Yee Ng
- School of Medicine, China Medical University, Taichung 40447, Taiwan; (J.-X.C.); (H.-Y.N.)
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan
| | - Tsui-Hsien Huang
- School of Dentistry, Chung Shan Medical University, Taichung 406040, Taiwan;
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (T.-H.H.); (M.-Y.S.)
| | - Ming-You Shie
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan
- School of Dentistry, China Medical University, Taichung 40447, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Correspondence: (T.-H.H.); (M.-Y.S.)
| |
Collapse
|
39
|
Crush J, Hussain A, Seah KTM, Khan WS. Bioactive Glass: Methods for Assessing Angiogenesis and Osteogenesis. Front Cell Dev Biol 2021; 9:643781. [PMID: 34195185 PMCID: PMC8236622 DOI: 10.3389/fcell.2021.643781] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Biomaterials are playing an increased role in the regeneration of damaged or absent bone tissue in the context of trauma, non-union, infection or congenital abnormality. Restoration of not only the physical scaffold that bone provides, but also of its homeostatic functions as a calcium store and hematopoietic organ are the gold standards of any regenerative procedure. Bioactive glasses are of interest as they can bond with the host bone and induce further both bone and blood vessel growth. The composition of the bioactive glasses can be manipulated to maximize both osteogenesis and angiogenesis, producing a 3D scaffolds that induce bone growth whilst also providing a structure that resists physiological stresses. As the primary endpoints of studies looking at bioactive glasses are very often the ability to form substantial and healthy tissues, this review will focus on the methods used to study and quantify osteogenesis and angiogenesis in bioactive glass experiments. These methods are manifold, and their accuracy is of great importance in identifying plausible future bioactive glasses for clinical use.
Collapse
Affiliation(s)
- Jos Crush
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Ali Hussain
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Cambridge, United Kingdom
| | - K T M Seah
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Wasim S Khan
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
40
|
Park S, Lee H, Kim HE, Jung HD, Jang TS. Bifunctional poly (l-lactic acid)/hydrophobic silica nanocomposite layer coated on magnesium stents for enhancing corrosion resistance and endothelial cell responses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112239. [PMID: 34225879 DOI: 10.1016/j.msec.2021.112239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
Biodegradable magnesium (Mg)-based vascular stents can overcome the limitations of conventional permanent metallic stents, such as late in-stent restenosis and thrombosis, but still have difficulty retarding degradation while providing adequate mechanical support to the blood vessel. We incorporated silica nanoparticles surface-functionalized with hexadecyltrimethoxysilane (mSiNP) into a poly (l-lactic acid) (PLLA) coating as a physical barrier to disturb the penetration of the corrosive medium as well as a bioactive source that releases silicon ions capable of stimulating endothelial cells. The corrosion resistance and biocompatibility of this bifunctional PLLA/mSiNP nanocomposite coating were investigated using different weight ratios of mSiNP. The nanocomposite coating containing more than 10 wt% of the mSiNP (PLLA/10mSiNP and PLLA/20mSiNP) significantly delayed the corrosion of the Mg substrate and exhibited favorable endothelial cell responses, compared to the pure PLLA coating. Specifically, the calculated corrosion rates of PLLA/10mSiNP and PLLA/20mSiNP decreased by half, indicating the durability of the coating after immersion in simulated body fluid for 12 days. Based on the in vitro cellular response, the incorporation of the mSiNPs into the PLLA coating significantly improved the endothelial cell responses to the Mg substrate, showing better initial cell surface coverage, migration, and proliferation rate than those of pure PLLA. These results indicate that the PLLA/mSiNP nanocomposite coatings have significant potential to improve the corrosion resistance and vascular compatibility of biodegradable Mg-based vascular stents.
Collapse
Affiliation(s)
- Suhyung Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyun Lee
- Department of Biomedical-Chemical Engineering, Catholic University of Korea, Bucheon, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea; Biomedical Implant Convergence Research lab, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea
| | - Hyun-Do Jung
- Department of Biomedical-Chemical Engineering, Catholic University of Korea, Bucheon, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| | - Tae-Sik Jang
- Department of Materials Science and Engineering, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
41
|
Šalandová M, van Hengel IAJ, Apachitei I, Zadpoor AA, van der Eerden BCJ, Fratila‐Apachitei LE. Inorganic Agents for Enhanced Angiogenesis of Orthopedic Biomaterials. Adv Healthc Mater 2021; 10:e2002254. [PMID: 34036754 PMCID: PMC11469191 DOI: 10.1002/adhm.202002254] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/30/2021] [Indexed: 01/02/2023]
Abstract
Aseptic loosening of a permanent prosthesis remains one of the most common reasons for bone implant failure. To improve the fixation between implant and bone tissue as well as enhance blood vessel formation, bioactive agents are incorporated into the surface of the biomaterial. This study reviews and compares five bioactive elements (copper, magnesium, silicon, strontium, and zinc) with respect to their effect on the angiogenic behavior of endothelial cells (ECs) when incorporated on the surface of biomaterials. Moreover, it provides an overview of the state-of-the-art methodologies used for the in vitro assessment of the angiogenic properties of these elements. Two databases are searched using keywords containing ECs and copper, magnesium, silicon, strontium, and zinc. After applying the defined inclusion and exclusion criteria, 59 articles are retained for the final assessment. An overview of the angiogenic properties of five bioactive elements and the methods used for assessment of their in vitro angiogenic potential is presented. The findings show that silicon and strontium can effectively enhance osseointegration through the simultaneous promotion of both angiogenesis and osteogenesis. Therefore, their integration onto the surface of biomaterials can ultimately decrease the incidence of implant failure due to aseptic loosening.
Collapse
Affiliation(s)
- Monika Šalandová
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Ingmar A. J. van Hengel
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Iulian Apachitei
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Amir A. Zadpoor
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Bram C. J. van der Eerden
- Department of Internal MedicineErasmus Medical CenterDoctor Molewaterplein 40Rotterdam3015 GDThe Netherlands
| | - Lidy E. Fratila‐Apachitei
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| |
Collapse
|
42
|
Sri Ramakrishnan L, Ps U, Sabu CK, Krishnan AG, Nair MB. Effect of wheat gluten on improved thermal cross-linking and osteogenesis of hydroxyapatite-gelatin composite scaffolds. Int J Biol Macromol 2021; 183:1200-1209. [PMID: 33961879 DOI: 10.1016/j.ijbiomac.2021.04.181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Promising strategies to stabilize gelatin or collagen include glutaraldehyde-based chemical cross-linking or dehydrothermal treatment at different temperatures (120-180 °C). However, these procedures require 24-48 h for complete cross-linking to occur. The present study aims to evaluate the role of wheat gluten on enhancing thermal cross-linking of silica-nanohydroxyapatite (nanoHA)-gelatin composite scaffolds within a shorter period (2 h). Changes in properties were evaluated by varying the ratio of gelatin and gluten in silica-nanoHA matrix (60 wt% ceramic: 40 wt% polymer). The results showed that the scaffolds cross-linked at 170 °C were stable in phosphate-buffered saline for 21 days. It was crystalline and porous in nature. However, the scaffolds with high weight percentage of wheat gluten were brittle, while those with low gluten degraded fast in vitro. The mesenchymal stem cells could adhere, proliferate and differentiate into osteogenic lineage on wheat gluten-containing scaffolds for 21 days (mainly medium concentration). The scaffold also supported new bone formation in critical-sized rat calvarial defect, showing its osteoconductive and osteointegrative nature. In short, this study showed the potential of wheat gluten on improving thermal cross-linking within a shorter period and its suitability to use as a biomimetic bone graft for bone tissue engineering.
Collapse
Affiliation(s)
- Lalitha Sri Ramakrishnan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682024, India
| | - Unnikrishnan Ps
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682024, India
| | - Chinchu K Sabu
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682024, India
| | - Amit G Krishnan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682024, India
| | - Manitha B Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682024, India.
| |
Collapse
|
43
|
do Monte FA, Ahuja N, Awad KR, Pan Z, Young S, Kim HKW, Aswath P, Brotto M, Varanasi VG. Silicon Oxynitrophosphide Nanoscale Coating Enhances Antioxidant Marker-Induced Angiogenesis During in vivo Cranial Bone-Defect Healing. JBMR Plus 2021; 5:e10425. [PMID: 33869985 PMCID: PMC8046063 DOI: 10.1002/jbm4.10425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 11/08/2022] Open
Abstract
Critical-sized bone defects are challenging to heal because of the sudden and large volume of lost bone. Fixative plates are often used to stabilize defects, yet oxidative stress and delayed angiogenesis are contributing factors to poor biocompatibility and delayed bone healing. This study tests the angiogenic and antioxidant properties of amorphous silicon oxynitrophosphide (SiONPx) nanoscale-coating material on endothelial cells to regenerate vascular tissue in vitro and in bone defects. in vitro studies evaluate the effect of silicon oxynitride (SiONx) and two different SiONPx compositions on human endothelial cells exposed to ROS (eg, hydrogen peroxide) that simulates oxidative stress conditions. in vivo studies using adult male Sprague Dawley rats (approximately 450 g) were performed to compare a bare plate, a SiONPx-coated implant plate, and a sham control group using a rat standard-sized calvarial defect. Results from this study showed that plates coated with SiONPx significantly reduced cell death, and enhanced vascular tubule formation and matrix deposition by upregulating angiogenic and antioxidant expression (eg, vascular endothelial growth factor A, angiopoetin-1, superoxide dismutase 1, nuclear factor erythroid 2-related factor 2, and catalase 1). Moreover, endothelial cell markers (CD31) showed a significant tubular structure in the SiONPx coating group compared with an empty and uncoated plate group. This reveals that atomic doping of phosphate into the nanoscale coating of SiONx produced markedly elevated levels of antioxidant and angiogenic markers that enhance vascular tissue regeneration. This study found that SiONPx or SiONx nanoscale-coated materials enhance antioxidant expression, angiogenic marker expression, and reduce ROS levels needed for accelerating vascular tissue regeneration. These results further suggest that SiONPx nanoscale coating could be a promising candidate for titanium plate for rapid and enhanced cranial bone-defect healing. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Felipe A do Monte
- Department of BioengineeringUniversity of Texas at ArlingtonArlingtonTXUSA
- Center for Excellence in Hip DisordersTexas Scottish Rite HospitalDallasTXUSA
| | - Neelam Ahuja
- Bone‐Muscle Research CenterUniversity of Texas at ArlingtonArlingtonTXUSA
| | - Kamal R Awad
- Bone‐Muscle Research CenterUniversity of Texas at ArlingtonArlingtonTXUSA
- Department of Materials Science and EngineeringUniversity of Texas at ArlingtonArlingtonTXUSA
| | - Zui Pan
- Bone‐Muscle Research CenterUniversity of Texas at ArlingtonArlingtonTXUSA
| | - Simon Young
- Department of Oral and Maxillofacial SurgeryThe University of Texas Health Science Center at Houston, School of DentistryHoustonTXUSA
| | - Harry KW Kim
- Center for Excellence in Hip DisordersTexas Scottish Rite HospitalDallasTXUSA
- Department of Orthopedic SurgeryUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| | - Pranesh Aswath
- Department of Materials Science and EngineeringUniversity of Texas at ArlingtonArlingtonTXUSA
| | - Marco Brotto
- Bone‐Muscle Research CenterUniversity of Texas at ArlingtonArlingtonTXUSA
| | - Venu G Varanasi
- Bone‐Muscle Research CenterUniversity of Texas at ArlingtonArlingtonTXUSA
- Department of Materials Science and EngineeringUniversity of Texas at ArlingtonArlingtonTXUSA
| |
Collapse
|
44
|
Duan W, Jin Y, Cui Y, Xi F, Liu X, Wo F, Wu J. A co-delivery platform for synergistic promotion of angiogenesis based on biodegradable, therapeutic and self-reporting luminescent porous silicon microparticles. Biomaterials 2021; 272:120772. [PMID: 33838529 DOI: 10.1016/j.biomaterials.2021.120772] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 01/21/2023]
Abstract
Insufficient angiogenesis happened in body defects such as ulceration, coronary heart disease, and chronic wounds constitutes a major challenge in tissue regeneration engineering. Owing to the poor bioactivity and maintenance of pro-angiogenic cells and factors during transplantation, new bioactive materials to tackle the barrier are highly desirable. Herein, we demonstrate a co-delivery platform for synergistic promotion of angiogenesis based on biodegradable, therapeutic, and self-reporting luminescent porous silicon (PSi) microparticles. The biodegradable and biocompatible PSi microparticles could quickly release therapeutic Si ions, which is bioactive to promote cell migration, tube formation, and angiogenic gene expression in vitro. To construct a highly efficient angiogenesis treatment platform, vascular endothelial growth factor (VEGF) was electrostatically adsorbed by PSi microparticles for effective drug loading and delivery. The dual therapeutic components (Si ions and VEGF) could release with the dissolution of Si skeleton, accompanying by the decay of photoluminescence (PL) intensity and blue shift of the maximum PL wavelength. Therefore, real-time drug release could be self-reported and assessed with the two-dimensional PL signal. The co-delivery of Si ions and VEGF displayed synergistic effect and highly efficient angiogenesis, which was evidenced by the enhancement of endothelial cell migration and tube formation in vitro with approximately 1.5-5 times higher than control. The blood vessel formation in vivo was also significantly improved as shown by the chick chorioallantoic membrane (CAM) model, in which the total length, size and junctions exhibited 2.1 ± 0.4, 4 ± 0.4, and 3.9 ± 0.3 times in comparison to control, respectively. The PSi and VEGF co-delivery system display great potential in tissue engineering as a biodegradable and self-reporting theranostic platform to promote angiogenesis.
Collapse
Affiliation(s)
- Wei Duan
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yao Jin
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yaoxuan Cui
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Fengna Xi
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China; Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingyue Liu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Fangjie Wo
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jianmin Wu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
45
|
Hashemikia S, Farhangpazhouh F, Parsa M, Hasan M, Hassanzadeh A, Hamidi M. Fabrication of ciprofloxacin-loaded chitosan/polyethylene oxide/silica nanofibers for wound dressing application: In vitro and in vivo evaluations. Int J Pharm 2021; 597:120313. [PMID: 33540002 DOI: 10.1016/j.ijpharm.2021.120313] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
Silica plays an effective role in collagen creation; hence, the degradation products of silica-based materials accelerate wound healing. In this regard, chitosan/polyethylene oxide/silica hybrid nanofibers were prepared by the combining the sol-gel method with electrospinning technique to accelerate the wound healing process. Ciprofloxacin, as an antibacterial drug, was then added to the electrospinning mixture. The nanofibers were characterized by SEM, EDX, X-ray mapping, TEM, TGA, FTIR, and XRD analysis. The degradation, swelling ratio, and release of ciprofloxacin were investigated in PBS. The prepared nanofiber could absorb water, maintain its morphological integrity during the degradation process, and gradually release ciprofloxacin. The nanofibers revealed an efficient antibacterial activity against Escherichia coli and Staphylococcus aureus. Cell viability assays showed that the nanofibers had no cytotoxicity against L929 mouse fibroblast and HFFF2 human foreskin fibroblast cell lines. The potential of the chitosan/polyethylene oxide/silica/ciprofloxacin nanofiber for healing full-thickness wound was assessed by applying the scaffold in the dorsal cutaneous wounds of the Balb/C mice. The white blood cell counts of the animals indicated the nanofiber-treated mice compared with the untreated ones had less infection and inflammation. According to the histopathologic data, the prepared nanofiber accelerated and enhanced tissue regeneration by increasing fibroblast cells and angiogenesis as well as decreasing the inflammation phase. The findings suggest that the prepared antibacterial scaffold with drug delivery properties could be an appropriate candidate for many medical and hygienic applications, especially as a bio-compatible and bio-degradable wound dressing.
Collapse
Affiliation(s)
- Samaneh Hashemikia
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Textile Engineering, Faculty of Environmental Sciences, Urmia University of Technology, Urmia, Iran.
| | - Farhad Farhangpazhouh
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University, Ahwaz, Iran
| | - Maliheh Parsa
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Maryam Hasan
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Atiyeh Hassanzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hamidi
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
46
|
Han R, Buchanan F, Julius M, Walsh PJ. Filament extrusion of bioresorbable PDLGA for additive manufacturing utilising diatom biosilica to inhibit process-induced thermal degradation. J Mech Behav Biomed Mater 2021; 116:104265. [PMID: 33524893 DOI: 10.1016/j.jmbbm.2020.104265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Bone scaffolds are often fabricated by initially producing custom-made filaments by twin-screw extruder and subsequently fabricating into 3D scaffolds using fused deposition modelling. This study aims to directly compare the effect of two alternative silica-rich filler materials on the thermo-mechanical properties of such scaffolds after extrusion and printing. Poly (DL-lactide-co-glycolide) (PDLGA) was blended with either 45S5 Bioglass (5 wt %) or Biosilica (1 and 5 wt%) isolated from Cyclotella meneghiniana a freshwater diatom were tested. Diatom-PDLGA was found to have similar mechanical strength and ductility to pure-PDLGA, whereas Bioglass-PDLGA was found induce a more brittle behaviour. Bioglass-PDLGA was also found to have the lowest toughness in terms of energy absorption to failure. The TGA results suggested that significant thermal degradation in both the Bioglass filaments and scaffolds had occurred as a result of processing. However, diatom biosilica was found to inhibit thermal degradation of the PDLGA. Furthermore, evidence suggested the agglomeration of Bioglass particles occurred during processing the Bioglass-PDLGA filaments. Overall, diatom biosilica was found to be a promising candidate as a bone filler additive in 3D printed PDLGA scaffolds, whereas Bioglass caused some potentially detrimental effects on performance.
Collapse
Affiliation(s)
- R Han
- School of Chemistry & Chemical Engineering, Queen's University Belfast, Northern Ireland, UK
| | - F Buchanan
- School of Mechanical & Aerospace Engineering, Queen's University Belfast, Northern Ireland, UK
| | - M Julius
- Biological Sciences, St. Cloud State University, St. Cloud, MN, USA
| | - P J Walsh
- School of Chemistry & Chemical Engineering, Queen's University Belfast, Northern Ireland, UK.
| |
Collapse
|
47
|
Han R, Buchanan F, Ford L, Julius M, Walsh P. A comparison of the degradation behaviour of 3D printed PDLGA scaffolds incorporating bioglass or biosilica. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111755. [DOI: 10.1016/j.msec.2020.111755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/21/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
|
48
|
El-Fiqi A, Mandakhbayar N, Jo SB, Knowles JC, Lee JH, Kim HW. Nanotherapeutics for regeneration of degenerated tissue infected by bacteria through the multiple delivery of bioactive ions and growth factor with antibacterial/angiogenic and osteogenic/odontogenic capacity. Bioact Mater 2021; 6:123-136. [PMID: 32817919 PMCID: PMC7426491 DOI: 10.1016/j.bioactmat.2020.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Therapeutic options are quite limited in clinics for the successful repair of infected/degenerated tissues. Although the prevalent treatment is the complete removal of the whole infected tissue, this leads to a loss of tissue function and serious complications. Herein the dental pulp infection, as one of the most common dental problems, was selected as a clinically relevant case to regenerate using a multifunctional nanotherapeutic approach. For this, a mesoporous bioactive glass nano-delivery system incorporating silicate, calcium, and copper as well as loading epidermal growth factor (EGF) was designed to provide antibacterial/pro-angiogenic and osteo/odontogenic multiple therapeutic effects. Amine-functionalized Cu-doped bioactive glass nanospheres (Cu-BGn) were prepared to be 50-60 nm in size, mesoporous, positive-charged and bone-bioactive. The Cu-BGn could release bioactive ions (copper, calcium and silicate ions) with therapeutically-effective doses. The Cu-BGn treatment to human umbilical vein endothelial cells (HUVEC) led to significant enhancement of the migration, tubule formation and expression of angiogenic gene (e.g. vascular endothelial growth factor, VEGF). Furthermore, the EGF-loaded Cu-BGn (EGF@Cu-BGn) showed pro-angiogenic effects with antibacterial activity against E. faecalis, a pathogen commonly involved in the pulp infection. Of note, under the co-culture condition of HUVEC with E. faecalis, the secretion of VEGF was up-regulated. In addition, the osteo/odontogenic stimulation of the EGF@Cu-BGn was evidenced with human dental pulp stem cells. The local administration of the EGF@Cu-BGn in a rat molar tooth defect infected with E. faecalis revealed significant in vivo regenerative capacity, highlighting the nanotherapeutic uses of the multifunctional nanoparticles for regenerating infected/damaged hard tissues.
Collapse
Affiliation(s)
- Ahmed El-Fiqi
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Glass Research Department, National Research Centre, Cairo, 12622, Egypt
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seung Bin Jo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Jonathan C. Knowles
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Grays Inn Road, London, WC1X 8LD, UK
- The Discoveries Centre for Regenerative and Precision Medicine, UCL Campus, London, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
49
|
Amirthalingam S, Lee SS, Pandian M, Ramu J, Iyer S, Hwang NS, Jayakumar R. Combinatorial effect of nano whitlockite/nano bioglass with FGF-18 in an injectable hydrogel for craniofacial bone regeneration. Biomater Sci 2021; 9:2439-2453. [DOI: 10.1039/d0bm01496f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparing the bone regeneration potential of nano whitlockite or nano bioglass in combination with FGF-18, loaded in an injectable, shear-thinning chitin/PLGA hydrogel for craniofacial bone regeneration.
Collapse
Affiliation(s)
| | - Seunghun S. Lee
- School of Chemical and Biological Engineering
- the Institute of Chemical Processes
- Seoul National University
- Seoul
- Republic of Korea
| | - Mahalakshmi Pandian
- Centre for Nanosciences and Molecular Medicine
- Amrita Vishwa Vidyapeetham
- Kochi-682041
- India
| | - Janarthanan Ramu
- Department of Plastic and Reconstructive Surgery
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- Kochi 682041
- India
| | - Subramania Iyer
- Department of Plastic and Reconstructive Surgery
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- Kochi 682041
- India
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering
- the Institute of Chemical Processes
- Seoul National University
- Seoul
- Republic of Korea
| | - Rangasamy Jayakumar
- Centre for Nanosciences and Molecular Medicine
- Amrita Vishwa Vidyapeetham
- Kochi-682041
- India
| |
Collapse
|
50
|
Seo JJ, Mandakhbayar N, Kang MS, Yoon JY, Lee NH, Ahn J, Lee HH, Lee JH, Kim HW. Antibacterial, proangiogenic, and osteopromotive nanoglass paste coordinates regenerative process following bacterial infection in hard tissue. Biomaterials 2020; 268:120593. [PMID: 33348262 DOI: 10.1016/j.biomaterials.2020.120593] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Bacterial infection raises serious concerns in tissue repair settings involved with implantable biomaterials, devastating the regenerative process and even life-threatening. When hard tissues are infected with bacteria (called 'osteomyelitis'), often the cases in open fracture or chronic inflammation, a complete restoration of regenerative capacity is significantly challenging even with highly-dosed antibiotics or surgical intervention. The implantable biomaterials are thus needed to be armored to fight bacteria then to relay regenerative events. To this end, here we propose a nanoglass paste made of ~200-nm-sized silicate-glass (with Ca, Cu) particles that are hardened in contact with aqueous medium and multiple-therapeutic, i.e., anti-bacterial, pro-angiogenic and osteopromotive. The nanoglass paste self-hardened via networks of precipitated nano-islands from leached ions to exhibit ultrahigh surface area (~300 m2/g), amenable to fill tunable defects with active biomolecular interactions. Also, the nanoglass paste could release multiple ions (silicate, calcium, and copper) at therapeutically relevant doses and sustainably (for days to weeks), implying possible roles in surrounding cells/tissues as a therapeutic-ions reservoir. The osteopromotive effects of nanoglass paste were evidenced by the stimulated osteogenic differentiation of MSCs. Also, the nanoglass paste promoted angiogenesis of endothelial cells in vitro and vasculature formation in vivo. Furthermore, the significant bactericidal effect of nanoglass paste, as assessed with E. coli and S. aureus, highlighted the role of copper played in elevating ROS level and destroying homeostasis, which salvaged tissue cells from co-cultivated bacteria contamination. When administered topically to rat tibia osteomyelitis defects, the nanoglass paste enhanced in vivo bone healing and fracture resistance. The developed nanoglass paste, given its self-setting property and the coordinated therapeutic actions, is considered to be a promising drug-free inorganic biomaterial platform for the regenerative therapy of bacteria-infected hard tissues.
Collapse
Affiliation(s)
- Jung Ju Seo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Min Sil Kang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ji-Young Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Junyong Ahn
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, South Korea.
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, South Korea.
| |
Collapse
|