1
|
Choi M, Al Fahad MA, Shanto PC, Park SS, Lee BT. Surface modification of decellularized kidney scaffold with chemokine and AKI-CKD cytokine juice to increase the recellularization efficiency of bio-engineered kidney. Biomaterials 2025; 316:123007. [PMID: 39674100 DOI: 10.1016/j.biomaterials.2024.123007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Chronic kidney disease (CKD) is a prevalent global health issue, primarily caused by glomerular dysfunction, diabetes, endovascular disorders, hypertensive nephrosclerosis, and other vascular diseases. Despite the increase in available organ sources, significant challenges remain in securing organ compatibility, prompting extensive research into creating a bio-artificial kidney free from immune rejection. In this study, a bio-engineered kidney was established using a stem cell chemoattractant within a bioreactor system; rBMSCs were used to recellularize the decellularized kidney scaffold coated with SDF-1α/AKI-CKD cytokine juice under mimic-hypoxic conditions as these chemokines and cytokines are crucial for the cell migration. LC-MS/MS proteomic analysis of the scaffold suggested that it contains various important proteins related to angiogenesis, cell migration, differentiation, etc. The in-silico binding simulation and Immunohistochemical (IHC) staining were utilized to detect the coated chemokines and cytokines. Cells were administered through both ureter and arterial routes of the kidney scaffold to differentiate into epithelial and endothelial cells. After 14 days of the recellularization process utilizing a mimic-hypoxia-induced bioreactor, the SDF-1α/AKI-CKD CJ-coated kidney scaffold exhibited high levels of cell attachment, migration, and proliferation in both the cortex and medulla. Additionally, the coating of the cytokines remarkably enhanced the expression of specific renal cell markers within the complex microfilter-like tubular structures. This study underscores a recellularization strategy that addresses the challenges associated with constructing bio-artificial kidneys and contributes to the growing field of bio-artificial organ research.
Collapse
Affiliation(s)
- Minji Choi
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea.
| |
Collapse
|
2
|
Lo DY, Ahmadzada B, Stachel MA, Schaefer M, Ashraf U, Wagner JI, Vanderslice EJ, Tornquist M, Mariakis K, Halsten P, Lindsay CD, Beck EC, Nyberg SL, Ross JJ. Transplantation of decellularized porcine kidney grafts repopulated with primary human cells demonstrates filtration function in pigs. COMMUNICATIONS MEDICINE 2024; 4:259. [PMID: 39639166 PMCID: PMC11621697 DOI: 10.1038/s43856-024-00676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND End-stage renal disease is a growing global health issue, disproportionately impacting low- and middle-income countries. While kidney transplantation remains the best treatment for end-stage renal disease, access to this treatment modality is limited by chronic donor organ shortages. To address this critical need, we are developing transplantable bioengineered kidney grafts. METHODS Podocyte differentiation was achieved in adherent monoculture through Wnt and TGF-β inhibition with IWR-1 and SB431542, respectively. Podocytes along with endothelial cells were then used to recapitulate glomeruli within decellularized porcine kidney scaffolds to generate bioengineered kidneys grafts. These bioengineered kidney grafts were functionally assessed via normothermic perfusion which compared kidney grafts recellularized with only endothelial cells as a control to bi-culture kidney grafts comprised of endothelial cells and podocytes. Heterotopic implantation further tested bi-culture kidney graft function over 3 successive implant sessions with 1-2 grafts per session. RESULTS We demonstrate the ability to source primary human podocytes at scale. Decellularized porcine kidney grafts repopulated with podocytes and endothelial cells exhibit native glomerular structure and display blood filtration capabilities during normothermic perfusion testing. Extending these findings to a clinically relevant model, bioengineered kidneys produce urine with indices of filtration when heterotopically implanted in pigs. CONCLUSIONS Our results showcase a human-scale, transplantable bioengineered kidney capable of performing requisite filtration function. This study reinforces the possibility for the bioengineering of transplantable human kidneys, which could someday provide increased and more equitable access to kidney grafts for the treatment of end-stage renal disease.
Collapse
Affiliation(s)
- David Y Lo
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA.
| | | | - MacKenna A Stachel
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Melia Schaefer
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Usman Ashraf
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - John I Wagner
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Ethan J Vanderslice
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Madie Tornquist
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Kendra Mariakis
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Peggy Halsten
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Christopher D Lindsay
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Emily C Beck
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | | | - Jeffrey J Ross
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA.
| |
Collapse
|
3
|
Lee SY, Park JM, Rhim WK, Lee EH, Lee SH, Kim JY, Cha SG, Lee SH, Kim B, Hwang DY, Rho S, Ahn TK, Kim BS, Han DK. Multifunctional extracellular vesicles and edaravone-loaded scaffolds for kidney tissue regeneration by activating GDNF/RET pathway. NANO CONVERGENCE 2024; 11:43. [PMID: 39460807 PMCID: PMC11512987 DOI: 10.1186/s40580-024-00450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
With the severity of chronic kidney disease worldwide, strategies to recover renal function via tissue regeneration provide alternatives to kidney replacement therapy. To exclude side effects from direct cell transplantation, extracellular vesicles (EVs) are great substitutes representing paracrine cell signaling. To build three-dimensional structures for implantation into the 5/6 nephrectomy model by incorporating bioactive materials, including multifunctional EVs (mEVs), porous PMEZE/mEV scaffolds were developed in combination with edaravone (EDV; E) and mEV based on PMEZ scaffolds with PLGA (P), MH-RA (M), ECM (E), ZnO-ALA (Z). The oxygen free radical scavenger EDV was incorporated to induce tubular regeneration. mEVs were engineered to serve regenerative activities with a combination of two EVs from SDF-1α overexpressed tonsil-derived mesenchymal stem cells (sEVs) and intermediate mesoderm (IM) cells during differentiation into kidney progenitor cells (dEVs). mEVs displayed beneficial effects on regeneration by facilitating migration and inducing differentiation of surrounding stem cells, and EDV improved kidney function by regulating the GDNF/RET pathway and their downstream genes. The promotion of MSC recruitment was confirmed with sEV particles number dependently, and the regulation of the GDNF/RET pathway by the effect of EDV and its enhanced effect by mEVs were elucidated using in vitro analysis. The regeneration of tubules was additionally demonstrated through the increased expression of aquaporin-1 (AQP-1) and cadherin-16 (CDH16) for proximal tubules, and calbindin and PAX2 for distal tubules in the renal defect model. With these, structural regeneration and functional recovery were achieved with kidney regeneration in the 5/6 nephrectomy mice model.
Collapse
Affiliation(s)
- Seung Yeon Lee
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Jeong Min Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Eun Hye Lee
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-Gu, Daegu, 41944, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Microbiology, School of Medicine, CHA University, Seongnam, Gyeonggi-Do, 13496, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Seung-Gyu Cha
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Sun Hong Lee
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Boram Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Dong-Youn Hwang
- Department of Microbiology, School of Medicine, CHA University, Seongnam, Gyeonggi-Do, 13496, Republic of Korea
| | - Seungsoo Rho
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, 59 Yatap-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do, 13496, Republic of Korea
| | - Tae-Keun Ahn
- Department of Orthopedic Surgery CHA Bundang Medical Center, CHA University, Seonnam, Gyeonggi-Do, 13496, Republic of Korea
| | - Bum Soo Kim
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-Gu, Daegu, 41944, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
4
|
Luque-Badillo AC, Monjaras-Avila CU, Adomat H, So A, Chavez-Muñoz C. Evaluating different methods for kidney recellularization. Sci Rep 2024; 14:23520. [PMID: 39384961 PMCID: PMC11464767 DOI: 10.1038/s41598-024-74543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
This study explores a potential solution to the shortage of kidneys for transplantation in end-stage renal disease (ESRD). Currently, kidney transplantation stands as the optimal option, yet the scarcity of organs persists. Employing tissue engineering, researchers sought to assess the feasibility of generating kidneys for transplantation. Pig kidneys were utilized since they possess higher similarities to human kidneys. Cells were removed via decellularization, which maintains the organ's microarchitecture. Subsequently, pig kidney cells and human red blood cells were perfused into the vacant kidney structure to reconstitute it. The methodologies employed showed promising results, suggesting a viable approach to increase the recellularization rate in whole pig kidneys. This proof-of-concept establishes a groundwork for potentially extending this technology to human kidneys, tackling the organ shortage, thus positively enhancing outcomes for ESRD patients by increasing the availability of transplantable organs.
Collapse
Affiliation(s)
- Ana C Luque-Badillo
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cesar U Monjaras-Avila
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hans Adomat
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Alan So
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Claudia Chavez-Muñoz
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- , 2660 Oak Street, Vancouver, BC, V6H3Z6, Canada.
| |
Collapse
|
5
|
Stoian A, Adil A, Biniazan F, Haykal S. Two Decades of Advances and Limitations in Organ Recellularization. Curr Issues Mol Biol 2024; 46:9179-9214. [PMID: 39194760 DOI: 10.3390/cimb46080543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
The recellularization of tissues after decellularization is a relatively new technology in the field of tissue engineering (TE). Decellularization involves removing cells from a tissue or organ, leaving only the extracellular matrix (ECM). This can then be recellularized with new cells to create functional tissues or organs. The first significant mention of recellularization in decellularized tissues can be traced to research conducted in the early 2000s. One of the landmark studies in this field was published in 2008 by Ott, where researchers demonstrated the recellularization of a decellularized rat heart with cardiac cells, resulting in a functional organ capable of contraction. Since then, other important studies have been published. These studies paved the way for the widespread application of recellularization in TE, demonstrating the potential of decellularized ECM to serve as a scaffold for regenerating functional tissues. Thus, although the concept of recellularization was initially explored in previous decades, these studies from the 2000s marked a major turning point in the development and practical application of the technology for the recellularization of decellularized tissues. The article reviews the historical advances and limitations in organ recellularization in TE over the last two decades.
Collapse
Affiliation(s)
- Alina Stoian
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Aisha Adil
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Felor Biniazan
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Siba Haykal
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Reconstructive Oncology, Division of Plastic and Reconstructive Surgery, Smilow Cancer Hospital, Yale, New Haven, CT 06519, USA
| |
Collapse
|
6
|
Xing R, Gao R, Huangfu Y, Zhang Y, Li S, Zhang C, Huang P, Wang W, Dong A, Feng Z. Bioactive microgel-coated electrospun membrane with cell-instructive interfaces and topology for abdominal wall defect repair. Biomater Sci 2024; 12:2930-2942. [PMID: 38646699 DOI: 10.1039/d4bm00182f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Current mesh materials used for the clinical treatment of abdominal defects struggle to balance mechanical properties and bioactivity to support tissue remodeling. Therefore, a bioactive microgel-coated electrospinning membrane was designed with the superiority of cell-instructive topology in guiding cell behavior and function for abdominal wall defect reconstruction. The electrostatic spinning technique was employed to prepare a bioabsorbable PLCL fiber membrane with an effective mechanical support. Additionally, decellularized matrix (dECM)-derived bioactive microgels were further coated on the fiber membrane through co-precipitation with dopamine, which was expected to endow cell-instructive hydrophilic interfaces and topological morphologies for cell adhesion. Moreover, the introduction of the dECM into the microgel promoted the myogenic proliferation and differentiation of C2C12 cells. Subsequently, in vivo experiments using a rat abdominal wall defect model demonstrated that the bioactive microgel coating significantly contributed to the reconstruction of intact abdominal wall structures, highlighting its potential for clinical application in promoting the repair of soft tissue defects associated with abdominal wall damage. This study presented an effective mesh material for facilitating the reconstruction of abdominal wall defects and contributed novel design concepts for the surface modification of scaffolds with cell-instructive interfaces and topology.
Collapse
Affiliation(s)
- Renquan Xing
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Rui Gao
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Yini Huangfu
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Yufeng Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Shuangyang Li
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
7
|
Egro FM, Schilling BK, Fisher JD, Saadoun R, Rubin JP, Marra KG, Solari MG. The Future of Microsurgery: Vascularized Composite Allotransplantation and Engineering Vascularized Tissue. J Hand Microsurg 2024; 16:100011. [PMID: 38854368 PMCID: PMC11127549 DOI: 10.1055/s-0042-1757182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background Microsurgical techniques have revolutionized the field of reconstructive surgery and are the mainstay for complex soft tissue reconstruction. However, their limitations have promoted the development of viable alternatives. This article seeks to explore technologies that have the potential of revolutionizing microsurgical reconstruction as it is currently known, reflect on current and future vascularized composite allotransplantation (VCA) practices, as well as describe the basic science within emerging technologies and their potential translational applications. Methods A literature review was performed of the technologies that may represent the future of microsurgery: vascularized tissue engineering (VCA) and flap-specific tissue engineering. Results VCA has shown great promise and has already been employed in the clinical setting (especially in face and limb transplantation). Immunosuppression, logistics, cost, and regulatory pathways remain barriers to overcome to make it freely available. Vascularized and flap-specific tissue engineering remain a laboratory reality but have the potential to supersede VCA. The capability of creating an off-the-shelf free flap matching the required tissue, size, and shape is a significant advantage. However, these technologies are still at the early stage and require significant advancement before they can be translated into the clinical setting. Conclusion VCA, vascularized tissue engineering, and flap-specific bioengineering represent possible avenues for the evolution of current microsurgical techniques. The next decade will elucidate which of these three strategies will evolve into a tangible translational option and hopefully bring a paradigm shift of reconstructive surgery.
Collapse
Affiliation(s)
- Francesco M. Egro
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Benjamin K. Schilling
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - James D. Fisher
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Rakan Saadoun
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - J. Peter Rubin
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kacey G. Marra
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Mario G. Solari
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
8
|
Ibi Y, Nishinakamura R. Kidney Bioengineering for Transplantation. Transplantation 2023; 107:1883-1894. [PMID: 36717963 DOI: 10.1097/tp.0000000000004526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The kidney is an important organ for maintenance of homeostasis in the human body. As renal failure progresses, renal replacement therapy becomes necessary. However, there is a chronic shortage of kidney donors, creating a major problem for transplantation. To solve this problem, many strategies for the generation of transplantable kidneys are under investigation. Since the first reports describing that nephron progenitors could be induced from human induced pluripotent stem cells, kidney organoids have been attracting attention as tools for studying human kidney development and diseases. Because the kidney is formed through the interactions of multiple renal progenitors, current studies are investigating ways to combine these progenitors derived from human induced pluripotent stem cells for the generation of transplantable kidney organoids. Other bioengineering strategies, such as decellularization and recellularization of scaffolds, 3-dimensional bioprinting, interspecies blastocyst complementation and progenitor replacement, and xenotransplantation, also have the potential to generate whole kidneys, although each of these strategies has its own challenges. Combinations of these approaches will lead to the generation of bioengineered kidneys that are transplantable into humans.
Collapse
Affiliation(s)
- Yutaro Ibi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
9
|
Bengur FB, Chen L, Schilling BK, Komatsu C, Figlioli GM, Marra KG, Kokai LE, Solari MG. Automated Decellularization of the Rodent Epigastric Free Flap: A Comparison of Sodium Dodecyl Sulfate-Based Protocols. J Reconstr Microsurg 2023; 39:493-501. [PMID: 36584695 DOI: 10.1055/s-0042-1760110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Free tissue transfer to cover complex wounds with exposed critical structures results in donor-site morbidity. Perfusion decellularization and recellularization of vascularized composite tissues is an active area of research to fabricate complex constructs without a donor site. Sodium dodecyl sulfate (SDS)-based protocols remain the predominant choice for decellularization despite the deleterious effects on tissue ultrastructure and capillary networks. We aimed to develop an automated decellularization process and compare different SDS perfusion times to optimize the protocol. METHODS A three-dimensional-printed closed-system bioreactor capable of continuously perfusing fluid through the vasculature was used for decellularization. The artery and vein of rat epigastric fasciocutaneous free flaps were cannulated and connected to the bioreactor. Protocols had varying durations of 1% SDS solution (3, 5, and 10 days) followed by 1 day of 1% Triton X-100 and 1 day of 1x phosphate-buffered saline. The residual DNA was quantified. Microarchitecture of the constructs was assessed with histology, and the vascular network was visualized for qualitative assessment. RESULTS The structural integrity and the microarchitecture of the extracellular matrix was preserved in the 3- and 5-day SDS perfusion groups; however, the subcutaneous tissue of the 10-day protocol lost its structure. Collagen and elastin structures of the pedicle vessels were not compromised by the decellularization process. Five-day SDS exposure group had the least residual DNA content (p < 0.001). Across all protocols, skin consistently had twice as much residual DNA over the subcutaneous tissues. CONCLUSION A compact and integrated bioreactor can automate decellularization of free flaps to bioengineer regenerative constructs for future use in reconstruction of complex defects. A decellularization protocol with 5 days of 1% SDS exposure was the most successful to keep the residual DNA content at a minimum while preserving the structural integrity of the tissues.
Collapse
Affiliation(s)
- Fuat Baris Bengur
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lei Chen
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Benjamin K Schilling
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chiaki Komatsu
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Grace M Figlioli
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lauren E Kokai
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mario G Solari
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Nishimura Y. Current status and future prospects of decellularized kidney tissue. J Artif Organs 2023; 26:171-175. [PMID: 36138180 DOI: 10.1007/s10047-022-01366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
End-stage renal disease (ESRD) is characterized by progressive loss of kidney function, which can result in damage to various tissues and organs. Dialysis therapy and kidney transplantation are currently the only therapeutic options available for patients with ESRD. In the case of kidney transplantation, organ shortage and high organ rejection have increased the need for novel treatment modalities. Therefore, organ regeneration employing decellularization technology has emerged as a viable alternative to conventional organ transplantation. In this technology, organs are decellularized using physical, chemical, or biological means to create a natural scaffold and foundation for cell seeding. After in vivo transplantation, this scaffold can be recellularized using stem cells or adult differentiated cells, resulting in a functional organ devoid of immune response. This review focuses on the primary agents used for renal decellularization and the current status of kidney regeneration using decellularization.
Collapse
Affiliation(s)
- Yusuke Nishimura
- Course of Clinical Engineering, Kitasato Junior College of Health Hygienic Sciences, Minamiuonuma City, Niigata, 500 Kurotsuchishinden 949-7241, Japan.
| |
Collapse
|
11
|
Corridon PR. Intravital microscopy datasets examining key nephron segments of transplanted decellularized kidneys. Sci Data 2022; 9:561. [PMID: 36088356 PMCID: PMC9464233 DOI: 10.1038/s41597-022-01685-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/07/2022] [Indexed: 12/28/2022] Open
Abstract
AbstractThis study contains intravital microscopy (IVM) data examining the microarchitecture of acellular kidney scaffolds. Acellular scaffolds are cell-free collagen-based matrices derived from native organs that can be used as templates for regenerative medicine applications. This data set contains in vivo assays that evaluate the effectiveness of decellularization and how these acellular nephron compartments perform in the post-transplantation environment. Qualitative and quantitative assessments of scaffold DNA concentrations, tissue fluorescence signals, and structural and functional integrities of decellularized tubular and peritubular capillary segments were acquired and compared to the native (non-transplanted) organ. Cohorts of 2–3-month-old male Sprague Dawley rats were used: non-transplanted (n = 4), transplanted day 0 (n = 4), transplanted day 1 (n = 4), transplanted day 2 (n = 4), and transplanted day 7 (n = 4). Micrographs and supporting measurements are provided to illustrate IVM processes used to perform this study and are publicly available in a data repository to assist scientific reproducibility and extend the use of this powerful imaging application to analyze other scaffold systems.
Measurements(s)
DNA quantification • tissue fluorescence • microvascular leakage • tubular and peritubular capillary integrity
Technology Type(s)
intravital microscopy • multiphoton microscopy • UV-visible spectroscopy
Sample Characterization(s)
rats • native and decellularized kidneys
Collapse
|
12
|
Huang B, Zeng Z, Zhang CC, Schreiber ME, Li Z. Approaches to kidney replacement therapies—opportunities and challenges. Front Cell Dev Biol 2022; 10:953408. [PMID: 35982852 PMCID: PMC9380013 DOI: 10.3389/fcell.2022.953408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
One out of seven people develop chronic kidney disease (CKD). When kidney function continues to decline, CKD patients may develop end-stage renal disease (ESRD, or kidney failure). More than 2 out of 1,000 adults develop ESRD and these patients must live on dialysis or get a kidney transplant to survive. Each year, more than $51 billion is spent to treat patients with ESRD in the United States. In addition, ESRD greatly reduces longevity and quality of life for patients. Compared to dialysis, kidney transplant offers the best chance of survival, but few donor organs are available. Thus, there is an urgent need for innovative solutions that address the shortage of kidneys available for transplantation. Here we summarize the status of current approaches that are being developed to solve the shortage of donor kidneys. These include the bioartificial kidney approach which aims to make a portable dialysis device, the recellularization approach which utilizes native kidney scaffold to make an engineered kidney, the stem cell-based approach which aims to generate a kidney de novo by recapitulating normal kidney organogenesis, the xenotransplantation approach which has the goal to make immunocompatible pig kidneys for transplantation, and the interspecies chimera approach which has potential to generate a human kidney in a host animal. We also discuss the interconnections among the different approaches, and the remaining challenges of translating these approaches into novel therapies.
Collapse
Affiliation(s)
- Biao Huang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Deptartment of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zipeng Zeng
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Deptartment of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Chennan C. Zhang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Deptartment of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Megan E. Schreiber
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Deptartment of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zhongwei Li
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Deptartment of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Zhongwei Li,
| |
Collapse
|
13
|
Bongolan T, Whiteley J, Castillo-Prado J, Fantin A, Larsen B, Wong CJ, Mazilescu L, Kawamura M, Urbanellis P, Jonebring A, Salter E, Collingridge G, Gladdy R, Hicks R, Gingras AC, Selzner M, Rogers IM. Decellularization of porcine kidney with submicellar concentrations of SDS results in the retention of ECM proteins required for the adhesion and maintenance of human adult renal epithelial cells. Biomater Sci 2022; 10:2972-2990. [PMID: 35521809 DOI: 10.1039/d1bm01017d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When decellularizing kidneys, it is important to maintain the integrity of the acellular extracellular matrix (ECM), including associated adhesion proteins and growth factors that allow recellularized cells to adhere and migrate according to ECM specificity. Kidney decellularization requires the ionic detergent sodium dodecyl sulfate (SDS); however, this results in a loss of ECM proteins important for cell adherence, migration, and growth, particularly glycosaminoglycan (GAG)-associated proteins. Here, we demonstrate that using submicellar concentrations of SDS results in a greater retention of structural proteins, GAGs, growth factors, and cytokines. When porcine kidney ECM scaffolds were recellularized using human adult primary renal epithelial cells (RECs), the ECM promoted cell survival and the uniform distribution of cells throughout the ECM. Cells maintained the expression of mature renal epithelial markers but did not organize on the ECM, indicating that mature cells are unable to migrate to specific locations on ECM scaffolds.
Collapse
Affiliation(s)
- Tonya Bongolan
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.
| | - Jennifer Whiteley
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.
| | - Jorge Castillo-Prado
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.
| | - Amanda Fantin
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.
| | - Laura Mazilescu
- Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada.,Soham & Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Masataka Kawamura
- Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada.,Soham & Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Peter Urbanellis
- Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada.,Soham & Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Anna Jonebring
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, 431 83, Sweden
| | - Eric Salter
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.
| | - Graham Collingridge
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.
| | - Rebecca Gladdy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Ryan Hicks
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Sweden
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G1E2, Canada
| | - Markus Selzner
- Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada.,Soham & Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Ian M Rogers
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Soham & Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON, M5G 2C4, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, M5G1E2, Canada
| |
Collapse
|
14
|
Cohen S, Soffer-Hirschberg S, Partouche S, Hovav B, Gurevich M, Mezhybovsky V, Tennak V, Eisner S, Nesher E, Mor E, Atar E. Flow-controlled fluoroscopic angiography for the assessment of vascular integrity in bioengineered kidneys. Artif Organs 2020; 44:1073-1080. [PMID: 32299137 DOI: 10.1111/aor.13706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/06/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
Perfusion decellularization has been proposed as a promising method for generating nonimmunogenic organs from allogeneic or xenogeneic donors. Several imaging modalities have been used to assess vascular integrity in bioengineered organs with no consistency in the methodology used. Here, we studied the use of fluoroscopic angiography performed under controlled flow conditions for vascular integrity assessment in bioengineered kidneys. Porcine kidneys underwent ex vivo angiography before and after perfusion decellularization. Arterial and venous patencies were defined as visualization of contrast medium (CM) in distal capillaries and renal vein, respectively. Changes in vascular permeability were visualized and quantified. No differences in patency were detected in decellularized kidneys compared with native kidneys. However, focal parenchymal opacities and significant delay in CM clearance were detected in decellularized kidneys, indicating increased permeability. Biopsy-induced leakage was visualized in both groups, with digital subtraction angiography revealing minimal CM leakage earlier than nonsubtracted fluoroscopy. In summary, quantitative assessment of vascular permeability should be coupled with patency when studying the effect of perfusion decellularization on kidney vasculature. Flow-controlled angiography should be considered as the method of choice for vascular assessment in bioengineered kidneys. Adopting this methodology for organs premodified ex vivo under normothermic machine perfusion settings is also suggested.
Collapse
Affiliation(s)
- Shahar Cohen
- Laboratory for Organ Bioengineering, Rabin Medical Center, Petah Tikva, Israel
| | | | - Shirly Partouche
- Laboratory for Organ Bioengineering, Rabin Medical Center, Petah Tikva, Israel
| | - Benny Hovav
- Department of Radiology, Rabin Medical Center, Petah Tikva, Israel
| | - Michael Gurevich
- Department of Organ Transplantation, Rabin Medical Center, Petah Tikva, Israel
| | - Vadym Mezhybovsky
- Department of Organ Transplantation, Rabin Medical Center, Petah Tikva, Israel
| | - Vladimir Tennak
- Department of Organ Transplantation, Rabin Medical Center, Petah Tikva, Israel
| | - Sigal Eisner
- Department of Organ Transplantation, Rabin Medical Center, Petah Tikva, Israel
| | - Eviatar Nesher
- Department of Organ Transplantation, Rabin Medical Center, Petah Tikva, Israel
| | - Eytan Mor
- Transplantation Unit, Department of Surgery B, Sheba Medical Center, Ramat-Gan, Israel
| | - Eli Atar
- Department of Radiology, Rabin Medical Center, Petah Tikva, Israel
| |
Collapse
|
15
|
Schilling BK, Lamberti KK, Snowden MJ, Baker JS, Byrd K, Komatsu C, Solari MG, Marra KG. Design and Fabrication of an Automatable, 3D Printed Perfusion Device for Tissue Infusion and Perfusion Engineering. Tissue Eng Part A 2020; 26:253-264. [DOI: 10.1089/ten.tea.2019.0209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
| | - Kimberly K. Lamberti
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Malik J. Snowden
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jocelyn S. Baker
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kristen Byrd
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chiaki Komatsu
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mario G. Solari
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kacey G. Marra
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Kim YA, Chun SY, Park SB, Kang E, Koh WG, Kwon TG, Han DK, Joung YK. Scaffold-supported extracellular matrices preserved by magnesium hydroxide nanoparticles for renal tissue regeneration. Biomater Sci 2020; 8:5427-5440. [DOI: 10.1039/d0bm00871k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fibroblast-derived extracellular matrix-supported scaffolds made up of PLGA were prepared with the enhanced preservation of ECM components by composites with magnesium hydroxide nanoparticles, and were applied for renal tissue regeneration.
Collapse
Affiliation(s)
- Yun Ah Kim
- Center for Biomaterials
- Biomedical Research Institute
- Korea Institute of Science and Technology
- Seoul
- Korea
| | - So Young Chun
- BioMedical Research Institute
- Kyungpook National University Hospital
- Daegu
- Korea
| | - Sung-Bin Park
- Department of Biomedical Science
- College of Life Sciences
- CHA University
- Sungnam
- Korea
| | - Eunyoung Kang
- Department of Biomedical Science
- College of Life Sciences
- CHA University
- Sungnam
- Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering
- Yonsei University
- Seoul
- Korea
| | - Tae Gyun Kwon
- Department of Urology
- Kyungpook National University
- Kyungbuk
- Korea
| | - Dong Keun Han
- Department of Biomedical Science
- College of Life Sciences
- CHA University
- Sungnam
- Korea
| | - Yoon Ki Joung
- Center for Biomaterials
- Biomedical Research Institute
- Korea Institute of Science and Technology
- Seoul
- Korea
| |
Collapse
|
17
|
Kidney regeneration approaches for translation. World J Urol 2019; 38:2075-2079. [PMID: 31696256 DOI: 10.1007/s00345-019-02999-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/24/2019] [Indexed: 01/11/2023] Open
Abstract
The increase in the incidence of chronic kidney diseases that progress to end-stage renal disease has become a significant health problem worldwide. While dialysis can maintain and prolong survival, the only definitive treatment that can restore renal function is transplantation. Unfortunately, many of these patients die waiting for transplantable kidneys due to the severe shortage of donor organs. Tissue engineering and regenerative medicine approaches have been applied in recent years to develop viable therapies that could provide solutions to these patients. Cell-based and cell-free approaches have been proposed to address the challenges associated with chronic kidney diseases. Strategies and progress toward developing alternative therapeutic options will be reviewed.
Collapse
|
18
|
In Vivo Performance of Decellularized Vascular Grafts: A Review Article. Int J Mol Sci 2018; 19:ijms19072101. [PMID: 30029536 PMCID: PMC6073319 DOI: 10.3390/ijms19072101] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
Due to poor vessel quality in patients with cardiovascular diseases, there has been an increased demand for small-diameter tissue-engineered blood vessels that can be used as replacement grafts in bypass surgery. Decellularization techniques to minimize cellular inflammation have been applied in tissue engineering research for the development of small-diameter vascular grafts. The biocompatibility of allogenic or xenogenic decellularized matrices has been evaluated in vitro and in vivo. Both short-term and long-term preclinical studies are crucial for evaluation of the in vivo performance of decellularized vascular grafts. This review offers insight into the various preclinical studies that have been performed using decellularized vascular grafts. Different strategies, such as surface-modified, recellularized, or hybrid vascular grafts, used to improve neoendothelialization and vascular wall remodeling, are also highlighted. This review provides information on the current status and the future development of decellularized vascular grafts.
Collapse
|
19
|
Fratini P, Rigoglio NN, Matias GDSS, Carreira ACO, Rici REG, Miglino MA. Canine Placenta Recellularized Using Yolk Sac Cells with Vascular Endothelial Growth Factor. Biores Open Access 2018; 7:101-106. [PMID: 30065855 PMCID: PMC6056259 DOI: 10.1089/biores.2018.0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Regenerative medicine has been growing because of the emergent need for tissues/organs for transplants and restorative surgeries. Biological scaffolds are important tools to try to solve this problem. The one used in this reserach was developed by an acellular biological scaffold from canine placenta with a rich source of cellular matrix. After decellularization, the cellular matrix demonstrated structural preservation with the presence of important functional proteins such as collagen, fibronectin, and laminin. We used cells transduced with vascular endothelial growth factor (VEGF) to recellularize this scaffold. It was succeeded by seeding the cells in nonadherent plaques in the presence of the sterelized placenta scaffold. Cells were adhered to the scaffold when analyzed by immunocytochemistry and scanning electron microscopy, both showing sprouting of yolk sac VEGF (YSVEGF) cells. This recellularized scaffold is a promissory biomaterial for repairing injured areas where neovascularization is required.
Collapse
Affiliation(s)
- Paula Fratini
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Nathia Nathaly Rigoglio
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia O Carreira
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,NUCEL (Cell and Molecular Therapy Center) and NETCEM (Center for Studies in Cell and Molecular Therapy), Medical Clinics Department, School of Medicine, University of São Paulo, São Paulo, Brazil.,Department of Biotechnology, Interunits Graduate Program in Biotechnology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Rose Eli Grassi Rici
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Burton TP, Callanan A. A Non-woven Path: Electrospun Poly(lactic acid) Scaffolds for Kidney Tissue Engineering. Tissue Eng Regen Med 2018; 15:301-310. [PMID: 30603555 PMCID: PMC6171675 DOI: 10.1007/s13770-017-0107-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/15/2017] [Accepted: 12/03/2017] [Indexed: 01/26/2023] Open
Abstract
Chronic kidney disease is a major global health problem affecting millions of people; kidney tissue engineering provides an opportunity to better understand this disease, and has the capacity to provide a cure. Two-dimensional cell culture and decellularised tissue have been the main focus of this research thus far, but despite promising results these methods are not without their shortcomings. Polymer fabrication techniques such as electrospinning have the potential to provide a non-woven path for kidney tissue engineering. In this experiment we isolated rat primary kidney cells which were seeded on electrospun poly(lactic acid) scaffolds. Our results showed that the scaffolds were capable of sustaining a multi-population of kidney cells, determined by the presence of: aquaporin-1 (proximal tubules), aquaporin-2 (collecting ducts), synaptopodin (glomerular epithelia) and von Willebrand factor (glomerular endothelia cells), viability of cells appeared to be unaffected by fibre diameter. The ability of electrospun polymer scaffold to act as a conveyor for kidney cells makes them an ideal candidate within kidney tissue engineering; the non-woven path provides benefits over decellularised tissue by offering a high morphological control as well as providing superior mechanical properties with degradation over a tuneable time frame.
Collapse
Affiliation(s)
- Todd P. Burton
- Institute of Bioengineering, School of Engineering, The University of Edinburgh, Faraday Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JL UK
| | - Anthony Callanan
- Institute of Bioengineering, School of Engineering, The University of Edinburgh, Faraday Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JL UK
| |
Collapse
|