1
|
Jin Y, Zhang J, Chen X, Li F, Xue T, Yi K, Xu Y, Wang H, Lao YH, Chan HF, Shao D, Li M, Tao Y. 3D printing incorporating gold nanozymes with mesenchymal stem cell-derived hepatic spheroids for acute liver failure treatment. Biomaterials 2024; 315:122895. [PMID: 39461063 DOI: 10.1016/j.biomaterials.2024.122895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Acute liver failure (ALF) is a highly fatal disease, necessitating the advancement and optimization of alternative therapeutic strategies to benefit patients awaiting liver transplantation. In this study, we innovatively established the antioxidant nanozyme-hepatocyte-like cells (HLCs) microtissue sheets (HS/N-Au@composite) for ALF therapy. We first prepared a 3D-printed hyaluronic acid/gelatin/sodium alginate scaffold with N-acetylcysteine (NAC)-capped gold nanoclusters (NAC-Au NCs), forming the N-Au@hydrogel. For the encapsulation of HLC spheroids, we used a biocompatible hybrid hydrogel composed of decellularized extracellular matrix (dECM), thrombin, and fibrinogen, resulting in the HS@dECM hydrogel. Utilizing 3D printing technology, we integrated the N-Au@hydrogel with the HS@dECM hydrogel to create the HS/N-Au@composite for in situ transplantation to treat ALF. Our results demonstrated that NAC-Au NCs effectively mitigated reactive oxygen species (ROS)-induced liver necrosis in ALF. Additionally, the N-Au@hydrogel provided mechanical support, ensuring the proper landing and effective functioning of the transplanted HLC spheroids. The HS/N-Au@composite synergistically decreased serum transaminase levels, reduced the accumulation of pro-inflammatory cytokines, accelerated liver function recovery, and promoted liver regeneration in ALF treatment. This combination of HLC spheroids and NAC-Au NCs nanozymes via 3D-printed composite scaffolds represents a promising strategy for enhancing hepatocyte transplantation and advancing stem cell regenerative medicine in ALF therapy.
Collapse
Affiliation(s)
- Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Department of Gastroenterology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaodie Chen
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Tiantian Xue
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Dan Shao
- Institute of Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, Guangdong, 510630, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
2
|
Gao Y, Gadd VL, Heim M, Grant R, Bate TSR, Esser H, Gonzalez SF, Man TY, Forbes SJ, Callanan A. Combining human liver ECM with topographically featured electrospun scaffolds for engineering hepatic microenvironment. Sci Rep 2024; 14:23192. [PMID: 39369012 PMCID: PMC11455933 DOI: 10.1038/s41598-024-73827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
Liver disease cases are rapidly expanding worldwide, and transplantation remains the only effective cure for end-stage disease. There is an increasing demand for developing potential drug treatments, and regenerative therapies using in-vitro culture platforms. Human decellularized extracellular matrix (dECM) is an appealing alternative to conventional animal tissues as it contains human-specific proteins and can serve as scaffolding materials. Herein we exploit this with human donor tissue from discarded liver which was not suitable for transplant using a synergistic approach to combining biological and topographical cues in electrospun materials as an in-vitro culture platform. To realise this, we developed a methodology for incorporating human liver dECM into electrospun polycaprolactone (PCL) fibres with surface nanotopographies (230-580 nm). The hybrid scaffolds were fabricated using varying concentrations of dECM; their morphology, mechanical properties, hydrophilicity and stability were analysed. The scaffolds were validated using HepG2 and primary mouse hepatocytes, with subsequent results indicating that the modified scaffolds-maintained cell growth and influenced cell attachment, proliferation and hepatic-related gene expression. This work demonstrates a novel approach to harvesting the potential from decellularized human tissues in the form of innovative in-vitro culture platforms for liver.
Collapse
Affiliation(s)
- Yunxi Gao
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, UK
- Foundation of Liver Research, The Roger Williams Institute of Liver Study, London, UK
| | - Victoria L Gadd
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Maria Heim
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Rhiannon Grant
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Thomas S R Bate
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, UK
- Vanderbilt University Medical Center, Nashville, USA
| | - Hannah Esser
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, UK
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sofia Ferreira Gonzalez
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Tak Yung Man
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anthony Callanan
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Xu Y, Zhang Y, Tian H, Zhong Q, Yi K, Li F, Xue T, Wang H, Lao Y, Xu Y, Li Y, Long L, Li K, Tao Y, Li M. Smart Microneedle Arrays Integrating Cell-Free Therapy and Nanocatalysis to Treat Liver Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309940. [PMID: 38874114 PMCID: PMC11336984 DOI: 10.1002/advs.202309940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Liver fibrosis is a chronic pathological condition lacking specific clinical treatments. Stem cells, with notable potential in regenerative medicine, offer promise in treating liver fibrosis. However, stem cell therapy is hindered by potential immunological rejection, carcinogenesis risk, efficacy variation, and high cost. Stem cell secretome-based cell-free therapy offers potential solutions to address these challenges, but it is limited by low delivery efficiency and rapid clearance. Herein, an innovative approach for in situ implantation of smart microneedle (MN) arrays enabling precisely controlled delivery of multiple therapeutic agents directly into fibrotic liver tissues is developed. By integrating cell-free and platinum-based nanocatalytic combination therapy, the MN arrays can deactivate hepatic stellate cells. Moreover, they promote excessive extracellular matrix degradation by more than 75%, approaching normal levels. Additionally, the smart MN arrays can provide hepatocyte protection while reducing inflammation levels by ≈70-90%. They can also exhibit remarkable capability in scavenging almost 100% of reactive oxygen species and alleviating hypoxia. Ultimately, this treatment strategy can effectively restrain fibrosis progression. The comprehensive in vitro and in vivo experiments, supplemented by proteome and transcriptome analyses, substantiate the effectiveness of the approach in treating liver fibrosis, holding immense promise for clinical applications.
Collapse
Affiliation(s)
- Yanteng Xu
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Yixin Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Hao Tian
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- Department of NeurologyThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Qingguo Zhong
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Ke Yi
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Fenfang Li
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Tiantian Xue
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Yeh‐Hsing Lao
- Department of Pharmaceutical SciencesUniversity at BuffaloThe State University of New YorkBuffaloNY14214USA
| | - Yingying Xu
- Center for Health ResearchGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
- University of China Academy of SciencesBeijing100049China
| | - Yinxiong Li
- Center for Health ResearchGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
- University of China Academy of SciencesBeijing100049China
| | - Ling Long
- Department of NeurologyThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Kai Li
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| |
Collapse
|
4
|
Li Y, Zhang Y, Zhong K, Liao S, Zhang G. The Development of a 3D PET Fibrous Scaffold Modified with an Umbilical Cord dECM for Liver Tissue Engineering. Polymers (Basel) 2024; 16:1794. [PMID: 39000651 PMCID: PMC11243929 DOI: 10.3390/polym16131794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Organ and tissue dysfunction represents a clinically significant condition. By integrating cell biology with materials science, tissue engineering enables the reconstruction and restoration of damaged tissues or organs, offering a noninvasive repair approach. In our study, we replicated the cellular growth environment by utilizing a human umbilical cord-derived decellularized extracellular matrix (dECM) as a modifying agent for the polyethylene terephthalate (PET) polymeric fiber scaffold. This allowed us to create a dECM-coated polyester fiber-based scaffold, PET-dECM, tailored for liver tissue engineering purposes. We effectively produced a decellularized human umbilical cord-derived ECM through a combined decellularization process involving trypsin/EDTA, TritonX-100, and sodium deoxycholate. The application of the dECM coating onto the PET material was accomplished through several steps, such as ester hydrolysis, EDC/NHS-activated crosslinking, and dECM conjugation. The biological performance of the PET-dECM was validated using RG cell culture assays. Notably, the dECM coating significantly improved PET's hydrophilicity and biocompatibility, thereby aiding cell adhesion, proliferation, and functional differentiation (p < 0.05). It was further found that the hepatocyte function of HepaRG was significantly enhanced on the PET-dECM, which may be attributed to the dECM's ability to facilitate the restoration of cell polarity. The PET-dECM holds promise as an effective hepatocyte culture carrier and could potentially find application in liver tissue engineering.
Collapse
Affiliation(s)
- Yang Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yang Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Kebo Zhong
- Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shuguang Liao
- Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Guifeng Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Bozorgi A, Khazaei MR, Bozorgi M, Khazaei M. A hybrid construct of decellularized matrix and fibrin for differentiating adipose stem cells into insulin-producing cells, an optimized in vitro assessment. Cell Biochem Funct 2024; 42:e4038. [PMID: 38736214 DOI: 10.1002/cbf.4038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
The generation of insulin-producing cells (IPCs) is an attractive approach for replacing damaged β cells in diabetic patients. In the present work, we introduced a hybrid platform of decellularized amniotic membrane (dAM) and fibrin encapsulation for differentiating adipose tissue-derived stem cells (ASCs) into IPCs. ASCs were isolated from healthy donors and characterized. Human AM was decellularized, and its morphology, DNA, collagen, glycosaminoglycan (GAG) contents, and biocompatibility were evaluated. ASCs were subjected to four IPC differentiation methods, and the most efficient method was selected for the experiment. ASCs were seeded onto dAM, alone or encapsulated in fibrin gel with various thrombin concentrations, and differentiated into IPCs according to a method applying serum-free media containing 2-mercaptoethanol, nicotinamide, and exendin-4. PDX-1, GLUT-2 and insulin expression were evaluated in differentiated cells using real-time PCR. Structural integrity and collagen and GAG contents of AM were preserved after decellularization, while DNA content was minimized. Cultivating ASCs on dAM augmented their attachment, proliferation, and viability and enhanced the expression of PDX-1, GLUT-2, and insulin in differentiated cells. Encapsulating ASCs in fibrin gel containing 2 mg/ml fibrinogen and 10 units/ml thrombin increased their differentiation into IPCs. dAM and fibrin gel synergistically enhanced the differentiation of ASCs into IPCs, which could be considered an appropriate strategy for replacing damaged β cells.
Collapse
Affiliation(s)
- Azam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Rasool Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Wu TY, Hsieh YC, Yin WR, Cheng KY, Hou YT. Fabrication of a decellularized liver matrix-based hepatic patch for the repair of CCl4-induced liver injury. Biotechnol J 2024; 19:e2300570. [PMID: 38864387 DOI: 10.1002/biot.202300570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
This article primarily introduces a new treatment for liver fibrosis/cirrhosis. We developed a hepatic patch by combining decellularized liver matrix (DLM) with the hepatocyte growth factor (HGF)/heparin-complex and evaluated its restorative efficacy. In vitro prophylactic results, the HGF/heparin-DLM patches effectively mitigated CCl4-induced hepatocyte toxicity and restored the cytotoxicity levels to the baseline levels by day 5. Furthermore, these patches restored albumin synthesis of injured hepatocytes to more than 70% of the normal levels within 5 days. In vitro therapeutic results, the urea synthesis of the injured hepatocytes reached 91% of the normal levels after 10 days of culture, indicating successful restoration of hepatic function by the HGF/heparin-DLM patches in both prophylactic and therapeutic models. In vivo results, HGF/heparin-DLM patches attached to the liver and gut exhibited a significant decrease in collagen content (4.44 times and 2.77 times, respectively) and an increase in glycogen content (1.19 times and 1.12 times, respectively) compared to the fibrosis group after 1 week, separately. In summary, liver function was restored and inflammation was inhibited through the combined effects of DLM and the HGF/heparin-complex in fibrotic liver. The newly designed hepatic patch holds promise for both in vitro and in vivo regeneration therapy and preventive health care for liver tissue engineering.
Collapse
Affiliation(s)
- Ting-Yi Wu
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Cheng Hsieh
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-Rong Yin
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Kai-Yi Cheng
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Yung-Te Hou
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Zhang J, Chen X, Chai Y, Zhuo C, Xu Y, Xue T, Shao D, Tao Y, Li M. 3D Printing of a Vascularized Mini-Liver Based on the Size-Dependent Functional Enhancements of Cell Spheroids for Rescue of Liver Failure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309899. [PMID: 38380546 PMCID: PMC11077657 DOI: 10.1002/advs.202309899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Indexed: 02/22/2024]
Abstract
The emerging stem cell-derived hepatocyte-like cells (HLCs) are the alternative cell sources of hepatocytes for treatment of highly lethal acute liver failure (ALF). However, the hostile local environment and the immature cell differentiation may compromise their therapeutic efficacy. To this end, human adipose-derived mesenchymal stromal/stem cells (hASCs) are engineered into different-sized multicellular spheroids and co-cultured with 3D coaxially and hexagonally patterned human umbilical vein endothelial cells (HUVECs) in a liver lobule-like manner to enhance their hepatic differentiation efficiency. It is found that small-sized hASC spheroids, with a diameter of ≈50 µm, show superior pro-angiogenic effects and hepatic differentiation compared to the other counterparts. The size-dependent functional enhancements are mediated by the Wnt signaling pathway. Meanwhile, co-culture of hASCs with HUVECs, at a HUVECs/hASCs seeding density ratio of 2:1, distinctly promotes hepatic differentiation and vascularization both in vitro and in vivo, especially when endothelial cells are patterned into hollow hexagons. After subcutaneous implantation, the mini-liver, consisting of HLC spheroids and 3D-printed interconnected vasculatures, can effectively improve liver regeneration in two ALF animal models through amelioration of local oxidative stress and inflammation, reduction of liver necrosis, as well as increase of cell proliferation, thereby showing great promise for clinical translation.
Collapse
Affiliation(s)
- Jiabin Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Xiaodie Chen
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
| | - Yurong Chai
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
| | - Chenya Zhuo
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Tiantian Xue
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
| | - Dan Shao
- Institute of Life SciencesSchool of MedicineSouth China University of TechnologyGuangzhou510006China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| |
Collapse
|
8
|
Sun Y, Jiang X, Gao J. Stem cell-based ischemic stroke therapy: Novel modifications and clinical challenges. Asian J Pharm Sci 2024; 19:100867. [PMID: 38357525 PMCID: PMC10864855 DOI: 10.1016/j.ajps.2023.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 02/16/2024] Open
Abstract
Ischemic stroke (IS) causes severe disability and high mortality worldwide. Stem cell (SC) therapy exhibits unique therapeutic potential for IS that differs from current treatments. SC's cell homing, differentiation and paracrine abilities give hope for neuroprotection. Recent studies on SC modification have enhanced therapeutic effects for IS, including gene transfection, nanoparticle modification, biomaterial modification and pretreatment. These methods improve survival rate, homing, neural differentiation, and paracrine abilities in ischemic areas. However, many problems must be resolved before SC therapy can be clinically applied. These issues include production quality and quantity, stability during transportation and storage, as well as usage regulations. Herein, we reviewed the brief pathogenesis of IS, the "multi-mechanism" advantages of SCs for treating IS, various SC modification methods, and SC therapy challenges. We aim to uncover the potential and overcome the challenges of using SCs for treating IS and convey innovative ideas for modifying SCs.
Collapse
Affiliation(s)
- Yuankai Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
9
|
Wang J, Zhang X, Chen H, Ren H, Zhou M, Zhao Y. Engineered stem cells by emerging biomedical stratagems. Sci Bull (Beijing) 2024; 69:248-279. [PMID: 38101962 DOI: 10.1016/j.scib.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Stem cell therapy holds immense potential as a viable treatment for a widespread range of intractable disorders. As the safety of stem cell transplantation having been demonstrated in numerous clinical trials, various kinds of stem cells are currently utilized in medical applications. Despite the achievements, the therapeutic benefits of stem cells for diseases are limited, and the data of clinical researches are unstable. To optimize tthe effectiveness of stem cells, engineering approaches have been developed to enhance their inherent abilities and impart them with new functionalities, paving the way for the next generation of stem cell therapies. This review offers a detailed analysis of engineered stem cells, including their clinical applications and potential for future development. We begin by briefly introducing the recent advances in the production of stem cells (induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs)). Furthermore, we present the latest developments of engineered strategies in stem cells, including engineered methods in molecular biology and biomaterial fields, and their application in biomedical research. Finally, we summarize the current obstacles and suggest future prospects for engineered stem cells in clinical translations and biomedical applications.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoxuan Zhang
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hanxu Chen
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Haozhen Ren
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Yuanjin Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Shenzhen Research Institute, Southeast University, Shenzhen 518038, China.
| |
Collapse
|
10
|
Li F, Wei H, Jin Y, Xue T, Xu Y, Wang H, Ju E, Tao Y, Li M. Microfluidic Fabrication of MicroRNA-Induced Hepatocyte-Like Cells/Human Umbilical Vein Endothelial Cells-Laden Microgels for Acute Liver Failure Treatment. ACS NANO 2023; 17:25243-25256. [PMID: 38063365 DOI: 10.1021/acsnano.3c08495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Acute liver failure (ALF) is a critical life-threatening disease that occurs due to a rapid loss in hepatocyte functions. Hepatocyte transplantation holds great potential for ALF treatment, as it rapidly supports liver biofunctions and enhances liver regeneration. However, hepatocyte transplantation is still limited by renewable and ongoing cell sources. In addition, intravenously injected hepatocytes are primarily trapped in the lungs and have limited efficacy because of the rapid clearance in vivo. Here, we designed a Y-shaped DNA nanostructure to deliver microRNA-122 (Y-miR122), which could induce the hepatic differentiation and maturation of human mesenchymal stem cells. mRNA sequencing analysis revealed that the Y-miR122 promoted important hepatic biofunctions of the induced hepatocyte-like cells including fat and lipid metabolism, drug metabolism, and liver development. To further improve hepatocyte transplantation efficiency and therapeutic effects in ALF treatment, we fabricated protective microgels for the delivery of Y-miR122-induced hepatocyte-like cells based on droplet microfluidic technology. When cocultured with human umbilical vein endothelial cells in microgels, the hepatocyte-like cells exhibited an increase in hepatocyte-associated functions, including albumin secretion and cytochrome P450 activity. Notably, upon transplantation into the ALF mouse model, the multiple cell-laden microgels effectively induced the restoration of liver function and enhanced liver regeneration. Overall, this study presents an efficient approach from the generation of hepatocyte-like cells to hepatocyte transplantation in ALF therapy.
Collapse
Affiliation(s)
- Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Hongyan Wei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Tiantian Xue
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| |
Collapse
|
11
|
Taher Mohamed SA, Emin N. Effects of using collagen and aloe vera grafted fibroin scaffolds on osteogenic differentiation of rat bone marrow mesenchymal stem cells in SBF-enriched cell culture medium. Biomed Mater 2023; 19:015011. [PMID: 38055984 DOI: 10.1088/1748-605x/ad12e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
In the study, collagen and aloe vera were grafted onto silk fibroin with two different methods, and 3D-microporous scaffolds (1F5C4A1 and 2F5C4A1) were formed by lyophilization. Three osteogenic cultures were started by seeding rat bone marrow mesenchymal stem cells (MSCs) and pre-induced MSC (osteoblast (OB)) on biopolymeric scaffolds. The osteogenic medium was enriched with 10% (v/v) simulated body fluid (SBF) to promote mineralization and osteogenic differentiation in one of the MSC cultures and the OB culture. X-ray diffraction (XRD), scanning electron microscopy (SEM), scanning electron microscopy- energy dispersive spectrum (SEM-EDS) analyses on cellular samples and histochemical (alizarin red, safranin-O, alcian blue) and immunohistochemical (anti-collagen-1, anti-osteocalcin, anti-osteopontin) staining showed that bone-like mineralization was occurred by both chemically and cellular activity. In addition, pre-osteogenic induction of MSCs in 2D-cultured was found to promote osteogenesis more rapidly when started 3D-cultured. These results indicated that enrichment of the cell culture medium with SBF is sufficient forin vitromineralization rather than using high concentrations of SBF. The findings showed that OB cells on the 2F5C4A1 scaffold obtained the best osteogenic activity. Still, other culture media with 10% SBF content could be used for bone tissue engineering under osteogenic induction.
Collapse
Affiliation(s)
- Salma A Taher Mohamed
- Material Science and Engineering Department, Institute of Science and Technology, Kastamonu University, Kastamonu, Turkey
| | - Nuray Emin
- Material Science and Engineering Department, Institute of Science and Technology, Kastamonu University, Kastamonu, Turkey
- Biomedical Engineering Department, Engineering and Architecture Faculty, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
12
|
Jin Y, Zhang J, Xu Y, Yi K, Li F, Zhou H, Wang H, Chan HF, Lao YH, Lv S, Tao Y, Li M. Stem cell-derived hepatocyte therapy using versatile biomimetic nanozyme incorporated nanofiber-reinforced decellularized extracellular matrix hydrogels for the treatment of acute liver failure. Bioact Mater 2023; 28:112-131. [PMID: 37250866 PMCID: PMC10209199 DOI: 10.1016/j.bioactmat.2023.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/07/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Reactive oxygen species (ROS)-associated oxidative stress, inflammation storm, and massive hepatocyte necrosis are the typical manifestations of acute liver failure (ALF), therefore specific therapeutic interventions are essential for the devastating disease. Here, we developed a platform consisting of versatile biomimetic copper oxide nanozymes (Cu NZs)-loaded PLGA nanofibers (Cu NZs@PLGA nanofibers) and decellularized extracellular matrix (dECM) hydrogels for delivery of human adipose-derived mesenchymal stem/stromal cells-derived hepatocyte-like cells (hADMSCs-derived HLCs) (HLCs/Cu NZs@fiber/dECM). Cu NZs@PLGA nanofibers could conspicuously scavenge excessive ROS at the early stage of ALF, and reduce the massive accumulation of pro-inflammatory cytokines, herein efficiently preventing the deterioration of hepatocytes necrosis. Moreover, Cu NZs@PLGA nanofibers also exhibited a cytoprotection effect on the transplanted HLCs. Meanwhile, HLCs with hepatic-specific biofunctions and anti-inflammatory activity acted as a promising alternative cell source for ALF therapy. The dECM hydrogels further provided the desirable 3D environment and favorably improved the hepatic functions of HLCs. In addition, the pro-angiogenesis activity of Cu NZs@PLGA nanofibers also facilitated the integration of the whole implant with the host liver. Hence, HLCs/Cu NZs@fiber/dECM performed excellent synergistic therapeutic efficacy on ALF mice. This strategy using Cu NZs@PLGA nanofiber-reinforced dECM hydrogels for HLCs in situ delivery is a promising approach for ALF therapy and shows great potential for clinical translation.
Collapse
Affiliation(s)
- Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Huicong Zhou
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| |
Collapse
|
13
|
Wei H, Li F, Xue T, Wang H, Ju E, Li M, Tao Y. MicroRNA-122-functionalized DNA tetrahedron stimulate hepatic differentiation of human mesenchymal stem cells for acute liver failure therapy. Bioact Mater 2023; 28:50-60. [PMID: 37214257 PMCID: PMC10199164 DOI: 10.1016/j.bioactmat.2023.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
As the most abundant liver-specific microRNA, microRNA-122 (miR122) played a crucial role in the differentiation of stem cells into hepatocytes. However, highly efficient miR122 delivery still confronts challenges including poor cellular uptake and easy biodegradation. Herein, we for the first time demonstrated that the tetrahedral DNA (TDN) nanoplatform had great potential in inducing the differentiation of human mesenchymal stem cells (hMSCs) into functional hepatocyte-like cells (HLCs) by transferring the liver-specific miR122 to hMSCs efficiently without any extrinsic factors. As compared with miR122, miR122-functionalized TDN (TDN-miR122) could significantly up-regulate the protein expression levels of mature hepatocyte markers and hepatocyte-specific marker genes in hMSCs, indicating that TDN-miR122 could particularly activate the hepatocyte-specific properties of hMSCs for developing cell-based therapies in vitro. The transcriptomic analysis further indicated the potential mechanism that TDN-miR122 assisted hMSCs differentiated into functional HLCs. The TDN-miR122-hMSCs exhibited hepatic cell morphology phenotype, significantly up-regulated specific hepatocyte genes and hepatic biofunctions in comparison with the undifferentiated MSCs. Preclinical in vivo transplantation appeared that TDN-miR122-hMSCs in combination with or without TDN could efficiently rescue acute liver failure injury through hepatocyte function supplement, anti-apoptosis, cellular proliferation promotion, and anti-inflammatory. Collectively, our findings may provide a new and facile approach for hepatic differentiation of hMSCs for acute liver failure therapy. Further large animal model explorations are needed to study their potential in clinical translation in the future.
Collapse
Affiliation(s)
- Hongyan Wei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Tiantian Xue
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| |
Collapse
|
14
|
Yao Q, Tang Y, Dai S, Huang L, Jiang Z, Zheng S, Sun M, Xu Y, Lu R, Sun T, Huang H, Jiang X, Yao X, Lin G, Kou L, Chen R. A Biomimetic Nanoparticle Exerting Protection against Acute Liver Failure by Suppressing CYP2E1 Activity and Scavenging Excessive ROS. Adv Healthc Mater 2023; 12:e2300571. [PMID: 37236618 DOI: 10.1002/adhm.202300571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Acute liver failure (ALF) is a severe liver disease caused by many reasons. One of them is the overdosed acetaminophen (APAP), which is metabolized into N-acetyl-p-benzoquinone imine (NAPQI), an excessive toxic metabolite, by CYP2E1, resulting in excessive reactive oxygen species (ROS), exhausted glutathione (GSH), and thereafter hepatocyte necrosis. N-acetylcysteine is the Food and Drug Administration-approved drug for detoxification of APAP, but it has limited clinical application due to the short therapeutic time window and concentration-related adverse effects. In this study, a carrier-free and bilirubin dotted nanoparticle (B/BG@N) is developed, which is formed using bilirubin and 18β-Glycyrrhetinic acid, and bovine serum albumin (BSA) is then adsorbed to mimic the in vivo behavior of the conjugated bilirubin for hitchhiking. The results demonstrate that B/BG@N can effectively reduce the production of NAPQI as well as exhibit antioxidant effects against intracellular oxidative stress via regulating the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signal axis and reducing the production of inflammatory factors. In vivo study shows that B/BG@N can effectively improve the clinical symptom of the mice model. This study suggests that B/BG@N own increases circulation half-life, improves accumulation in the liver, and dual detoxification, providing a promising strategy for clinical ALF treatment.
Collapse
Affiliation(s)
- Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Yingying Tang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Sheng Dai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Lihui Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Zewei Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Shiming Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Meng Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Yitianhe Xu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Ruijie Lu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Tuyue Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Xinyu Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Xiaomin Yao
- Faculty of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, 315100, P. R. China
| | - Guangyong Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, P. R. China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Wenzhou, 325027, P. R. China
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, P. R. China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| |
Collapse
|
15
|
Kim MK, Jeong W, Kang HW. Liver dECM-Gelatin Composite Bioink for Precise 3D Printing of Highly Functional Liver Tissues. J Funct Biomater 2023; 14:417. [PMID: 37623662 PMCID: PMC10455418 DOI: 10.3390/jfb14080417] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
In recent studies, liver decellularized extracellular matrix (dECM)-based bioinks have gained significant attention for their excellent compatibility with hepatocytes. However, their low printability limits the fabrication of highly functional liver tissue. In this study, a new liver dECM-gelatin composite bioink (dECM gBioink) was developed to overcome this limitation. The dECM gBioink was prepared by incorporating a viscous gelatin mixture into the liver dECM material. The novel dECM gBioink showed 2.44 and 10.71 times higher bioprinting resolution and compressive modulus, respectively, than a traditional dECM bioink. In addition, the new bioink enabled stable stacking with 20 or more layers, whereas a structure printed with the traditional dECM bioink collapsed. Moreover, the proposed dECM gBioink exhibited excellent hepatocyte and endothelial cell compatibility. At last, the liver lobule mimetic structure was successfully fabricated with a precisely patterned endothelial cell cord-like pattern and primary hepatocytes using the dECM gBioink. The fabricated lobule structure exhibited excellent hepatic functionalities and dose-dependent responses to hepatotoxic drugs. These results demonstrated that the gelatin mixture can significantly improve the printability and mechanical properties of the liver dECM materials while maintaining good cytocompatibility. This novel liver dECM gBioink with enhanced 3D printability and resolution can be used as an advanced tool for engineering highly functional liver tissues.
Collapse
Affiliation(s)
| | | | - Hyun-Wook Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST 50, UNIST-gil, Ulsan 44919, Republic of Korea; (M.K.K.); (W.J.)
| |
Collapse
|
16
|
Wang X, Jin L, Liu W, Stingelin L, Zhang P, Tan Z. Construction of engineered 3D islet micro-tissue using porcine decellularized ECM for the treatment of diabetes. Biomater Sci 2023; 11:5517-5532. [PMID: 37387616 DOI: 10.1039/d3bm00346a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Islet transplantation improves diabetes patients' long-term blood glucose control, but its success and utility are limited by cadaver availability, quality, and considerable islet loss after transplantation due to ischemia and inadequate angiogenesis. This study used adipose, pancreatic, and liver tissue decellularized extracellular matrix (dECM) hydrogels in an effort to recapitulate the islet sites inside the pancreas in vitro, and successfully generated viable and functional heterocellular islet micro-tissues using islet cells, human umbilical vein endothelial cells, and adipose-derived mesenchymal stem cells. The three-dimensional (3D) islet micro-tissues maintained prolonged viability and normal secretory function, and showed high drug sensitivity in drug testing. Meanwhile, the 3D islet micro-tissues significantly enhanced survival and graft function in a mouse model of diabetes. These supportive 3D physiomimetic dECM hydrogels can be used not only for islet micro-tissue culture in vitro, but also have great promise for islet transplantation for the treatment of diabetes.
Collapse
Affiliation(s)
- Xiaocheng Wang
- Department of Infectious Diseases, Third Xiangya Hospital, Central South University, Changsha, 410008, China.
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Lijuan Jin
- College of Biology, Hunan University, Changsha, 410082, China.
- Shenzhen Institute, Hunan University, Shenzhen, 518000, China.
| | - Wenyu Liu
- College of Biology, Hunan University, Changsha, 410082, China.
- Shenzhen Institute, Hunan University, Shenzhen, 518000, China.
| | - Lukas Stingelin
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Pan Zhang
- Department of Infectious Diseases, Third Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Zhikai Tan
- College of Biology, Hunan University, Changsha, 410082, China.
- Shenzhen Institute, Hunan University, Shenzhen, 518000, China.
| |
Collapse
|
17
|
Shang Y, Liu R, Gan J, Yang Y, Sun L. Construction of cardiac fibrosis for biomedical research. SMART MEDICINE 2023; 2:e20230020. [PMID: 39188350 PMCID: PMC11235890 DOI: 10.1002/smmd.20230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/22/2023] [Indexed: 08/28/2024]
Abstract
Cardiac remodeling is critical for effective tissue recuperation, nevertheless, excessive formation and deposition of extracellular matrix components can result in the onset of cardiac fibrosis. Despite the emergence of novel therapies, there are still no lifelong therapeutic solutions for this issue. Understanding the detrimental cardiac remodeling may aid in the development of innovative treatment strategies to prevent or reverse fibrotic alterations in the heart. Further combining the latest understanding of disease pathogenesis with cardiac tissue engineering has provided the conversion of basic laboratory studies into the therapy of cardiac fibrosis patients as an increasingly viable prospect. This review presents the current main mechanisms and the potential tissue engineering of cardiac fibrosis. Approaches using biomedical materials-based cardiac constructions are reviewed to consider key issues for simulating in vitro cardiac fibrosis, outlining a future perspective for preclinical applications.
Collapse
Affiliation(s)
- Yixuan Shang
- Department of Medical Supplies SupportNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Rui Liu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Jingjing Gan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yuzhi Yang
- Department of Medical Supplies SupportNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
18
|
Dima C, Assadpour E, Nechifor A, Dima S, Li Y, Jafari SM. Oral bioavailability of bioactive compounds; modulating factors, in vitro analysis methods, and enhancing strategies. Crit Rev Food Sci Nutr 2023; 64:8501-8539. [PMID: 37096550 DOI: 10.1080/10408398.2023.2199861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Foods are complex biosystems made up of a wide variety of compounds. Some of them, such as nutrients and bioactive compounds (bioactives), contribute to supporting body functions and bring important health benefits; others, such as food additives, are involved in processing techniques and contribute to improving sensory attributes and ensuring food safety. Also, there are antinutrients in foods that affect food bioefficiency and contaminants that increase the risk of toxicity. The bioefficiency of food is evaluated with bioavailability which represents the amount of nutrients or bioactives from the consumed food reaching the organs and tissues where they exert their biological activity. Oral bioavailability is the result of some physicochemical and biological processes in which food is involved such as liberation, absorption, distribution, metabolism, and elimination (LADME). In this paper, a general presentation of the factors influencing oral bioavailability of nutrients and bioactives as well as the in vitro techniques for evaluating bioaccessibility and is provided. In this context, a critical analysis of the effects of physiological factors related to the characteristics of the gastrointestinal tract (GIT) on oral bioavailability is discussed, such as pH, chemical composition, volumes of gastrointestinal (GI) fluids, transit time, enzymatic activity, mechanical processes, and so on, and the pharmacokinetics factors including BAC and solubility of bioactives, their transport across the cell membrane, their biodistribution and metabolism. The impact of matrix and food processing on the BAC of bioactives is also explained. The researchers' recent concerns for improving oral bioavailability of nutrients and food bioactives using both traditional techniques, for example, thermal treatments, mechanical processes, soaking, germination and fermentation, as well as food nanotechnologies, such as loading of bioactives in different colloidal delivery systems (CDSs), is also highlighted.
Collapse
Affiliation(s)
- Cristian Dima
- Faculty of Food Science and Engineering, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Alexandru Nechifor
- Faculty of Medicine and Pharmacy - Medical Clinical Department, Dunarea de Jos" University of Galati, Galati, Romania
| | - Stefan Dima
- Faculty of Science and Environment, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
19
|
Highly efficient fabrication of functional hepatocyte spheroids by a magnetic system for the rescue of acute liver failure. Biomaterials 2023; 294:122014. [PMID: 36709644 DOI: 10.1016/j.biomaterials.2023.122014] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
Engineering hepatocytes as multicellular cell spheroids can improve their viability after implantation in vivo for effective rescue of the devastating acute liver failure (ALF). However, there is still a lack of straightforward methods for efficient generation of functional hepatocyte spheroids. In this study, a magnetic system, consisting of magnetic microwell arrays and magnet blocks, is developed to realize magnetically controlled 3D cell capture and spatial confinement-mediated cell aggregation. The cell spheroids with smaller size show superior hepatic functions than the larger-sized counterparts. Notably, the intrinsic magnetism of magnetic microwell arrays can regulate superoxide anions in hepatocyte spheroids and herein promote various biological processes, including antioxidation, hepatocyte-related functions, and pro-angiogenic potential. Ectopic implantation of the functional cell spheroids in ALF-challenged mice significantly prolongs the animal survival, ameliorates inflammation, and promotes liver regeneration. Hence, application of the magnetic system for generation of functionally enhanced hepatocyte spheroids holds great potential for clinical translation in the future.
Collapse
|
20
|
Future regenerative medicine developments and their therapeutic applications. Biomed Pharmacother 2023; 158:114131. [PMID: 36538861 DOI: 10.1016/j.biopha.2022.114131] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Although the currently available pharmacological assays can cure most pathological disorders, they have limited therapeutic value in relieving certain disorders like myocardial infarct, peripheral vascular disease, amputated limbs, or organ failure (e.g. renal failure). Pilot studies to overcome such problems using regenerative medicine (RM) delivered promising data. Comprehensive investigations of RM in zebrafish or reptilians are necessary for better understanding. However, the precise mechanisms remain poorly understood despite the tremendous amount of data obtained using the zebrafish model investigating the exact mechanisms behind their regenerative capability. Indeed, understanding such mechanisms and their application to humans can save millions of lives from dying due to potentially life-threatening events. Recent studies have launched a revolution in replacing damaged human organs via different approaches in the last few decades. The newly established branch of medicine (known as Regenerative Medicine aims to enhance natural repair mechanisms. This can be done through the application of several advanced broad-spectrum technologies such as organ transplantation, tissue engineering, and application of Scaffolds technology (support vascularization using an extracellular matrix), stem cell therapy, miRNA treatment, development of 3D mini-organs (organoids), and the construction of artificial tissues using nanomedicine and 3D bio-printers. Moreover, in the next few decades, revolutionary approaches in regenerative medicine will be applied based on artificial intelligence and wireless data exchange, soft intelligence biomaterials, nanorobotics, and even living robotics capable of self-repair. The present work presents a comprehensive overview that summarizes the new and future advances in the field of RM.
Collapse
|
21
|
Zhang Y, Xu Y, Kong H, Zhang J, Chan HF, Wang J, Shao D, Tao Y, Li M. Microneedle system for tissue engineering and regenerative medicine. EXPLORATION (BEIJING, CHINA) 2023; 3:20210170. [PMID: 37323624 PMCID: PMC10190997 DOI: 10.1002/exp.20210170] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/18/2022] [Indexed: 06/17/2023]
Abstract
Global increasing demand for high life quality and length facilitates the development of tissue engineering and regenerative medicine, which apply multidisciplinary theories and techniques to achieve the structural reconstruction and functional recovery of disordered or damaged tissues and organs. However, the clinical performances of adopted drugs, materials, and powerful cells in the laboratory are inescapably limited by the currently available technologies. To tackle the problems, versatile microneedles are developed as the new platform for local delivery of diverse cargos with minimal invasion. The efficient delivery, as well as painless and convenient procedure endow microneedles with good patient compliance in clinic. In this review, we first categorize different microneedle systems and delivery models, and then summarize their applications in tissue engineering and regenerative medicine mainly involving maintenance and rehabilitation of damaged tissues and organs. In the end, we discuss the advantages, challenges, and prospects of microneedles in depth for future clinical translations.
Collapse
Affiliation(s)
- Yixin Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Huimin Kong
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative MedicineSchool of Biomedical ScienceThe Chinese University of Hong KongHong KongChina
| | - Jiasi Wang
- School of Biomedical EngineeringSun Yat‐sen UniversityShenzhenChina
| | - Dan Shao
- Institutes of Life SciencesSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Liver Disease ResearchGuangzhouChina
| |
Collapse
|
22
|
Adipose-Derived Mesenchymal Stem Cells Inhibit JNK-Mediated Mitochondrial Retrograde Pathway to Alleviate Acetaminophen-Induced Liver Injury. Antioxidants (Basel) 2023; 12:antiox12010158. [PMID: 36671020 PMCID: PMC9854665 DOI: 10.3390/antiox12010158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Acetaminophen (APAP) is the major cause of drug-induced liver injury, with limited treatment options. APAP overdose invokes excessive oxidative stress that triggers mitochondria-to-nucleus retrograde pathways, contributing to APAP-induced liver injury (AILI). Mesenchymal stem cell therapy is a promising tool for acute liver failure. Therefore, the purpose of this study was to investigate the beneficial effects of adipose-derived mesenchymal stem cell (AMSC) therapy on AILI and reveal the potential therapeutic mechanisms. C57BL/6 mice were used as the animal model and AML12 normal murine hepatocytes as the cellular model of APAP overdose. Immunohistochemical staining, Western blotting, immunofluorescence staining, and RNA sequencing assays were used for assessing the efficacy and validating mechanisms of AMSC therapy. We found AMSC therapy effectively ameliorated AILI, while delayed AMSC injection lost its efficacy related to the c-Jun N-terminal kinase (JNK)-mediated mitochondrial retrograde pathways. We further found that AMSC therapy inhibited JNK activation and mitochondrial translocation, reducing APAP-induced mitochondrial damage. The downregulation of activated ataxia telangiectasia-mutated (ATM) and DNA damage response proteins in AMSC-treated mouse liver indicated AMSCs blocked the JNK-ATM pathway. Overall, AMSCs may be an effective treatment for AILI by inhibiting the JNK-ATM mitochondrial retrograde pathway, which improves APAP-induced mitochondrial dysfunction and liver injury.
Collapse
|
23
|
Lu W, Tang H, Li S, Bai L, Chen Y. Extracellular vesicles as potential biomarkers and treatment options for liver failure: A systematic review up to March 2022. Front Immunol 2023; 14:1116518. [PMID: 36911706 PMCID: PMC9992400 DOI: 10.3389/fimmu.2023.1116518] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Extracellular vesicles (EVs) carrying functional cargoes are emerging as biomarkers and treatment strategies in multiple liver diseases. Nevertheless, the potential of EVs in liver failure remains indistinct. In this systematic review, we comprehensively analyzed the potential of EVs as biomarkers of liver failure and the therapeutic effects and possible mechanisms of EVs for liver failure. Methods We conducted a systematic review by comprehensively searching the following electronic databases: PubMed, Web of Science, Embase and Cochrane Central Register of Controlled Trials from inception to March 2022. The used text words (synonyms and word variations) and database-specific subject headings included "Extracellular Vesicles", "Exosomes", "Liver Failure", "Liver Injury", etc. Results A total of 1479 studies were identified. After removing 680 duplicate studies and 742 irrelevant studies, 57 studies were finally retained and analyzed. Fourteen studies revealed EVs with functional cargoes could be used to make the diagnosis of liver failure and provide clues for early warning and prognostic assessment of patients with liver failure. Forty-three studies confirmed the administration of EVs from different sources alleviated hepatic damage and improved survival through inhibiting inflammatory response, oxidative stress as well as apoptosis or promoting hepatocyte regeneration and autophagy. Conclusions EVs and their cargoes can be used not only as superior biomarkers of early warning, early diagnosis and prognostic assessments for liver failure, but also as potentially effective treatment options for liver failure. In the future, large-scale studies are urgently needed to verify the diagnostic, predictive and therapeutic value of EVs for liver failure.
Collapse
Affiliation(s)
- Wang Lu
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Huixin Tang
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Shanshan Li
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Li Bai
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Yu Chen
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| |
Collapse
|
24
|
Wang X, Chen J, Tian W. Strategies of cell and cell-free therapies for periodontal regeneration: the state of the art. Stem Cell Res Ther 2022; 13:536. [PMID: 36575471 PMCID: PMC9795760 DOI: 10.1186/s13287-022-03225-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Periodontitis often causes irrevocable destruction of tooth-supporting tissues and eventually leads to tooth loss. Currently, stem cell-based tissue engineering has achieved a favorable result in regenerating periodontal tissues. Moreover, cell-free therapies that aim to facilitate the recruitment of resident repair cell populations to injured sites by promoting cell mobilization and homing have become alternative options to cell therapy. MAIN TEXT Cell aggregates (e.g., cell sheets) retain a large amount of extracellular matrix which can improve cell viability and survival rates after implantation in vivo. Electrostatic spinning and 3D bioprinting through fabricating specific alignments and interactions scaffold structures have made promising outcomes in the construction of a microenvironment conducive to periodontal regeneration. Cell-free therapies with adding biological agents (growth factors, exosomes and conditioned media) to promote endogenous regeneration have somewhat addressed the limitations of cell therapy. CONCLUSION Hence, this article reviews the progress of stem cell-based tissue engineering and advanced strategies for endogenous regeneration based on stem cell derivatives in periodontal regeneration.
Collapse
Affiliation(s)
- Xiuting Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Jinlong Chen
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Weidong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| |
Collapse
|
25
|
Theoretical Study on Spectrum and Luminescence Mechanism of Indocyanine Green Dye Based on Density Functional Theory (DFT). J CHEM-NY 2022. [DOI: 10.1155/2022/4321595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Indocyanine green is a great near-infrared fluorescence with good luminescent properties and important medical applications. In this paper, the theoretical spectrum and orbital model of its molecular level are established. The two most probable conformations were studied, and their energies, vibrational spectra, UV-Vis absorption spectra, frontier molecular orbitals (HOMO and LUMO), and energy gaps were obtained by density functional theory (DFT) calculations, respectively. This provides a theoretical and design basis for the development of novel dyes similar to indocyanine green dyes and a reference case for improved application methods and synthetic predesign of novel fluorescent dyes.
Collapse
|
26
|
Yin N, Zhang W, Wei R, Yang Q, He F, Guo L, Feng M. Liposome cocktail activator modulates hepatocytes and remodels the microenvironment to mitigate acute liver failure. Asian J Pharm Sci 2022; 17:867-879. [PMID: 36600898 PMCID: PMC9800940 DOI: 10.1016/j.ajps.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/09/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
Acute liver failure (ALF) is a mortal and critical hepatic disease, in which oxidative stress, inflammation storm and hepatocyte death are crucial in the pathogenesis. Hence, in contrast to the control of a single link, a combination therapy targeting multiple pathogenic links of the disease will be a favorable means to control the progression of the disease. In this study, we constructed dimethyl itaconate-loaded liposomes modified with dodecyl gallate as a cocktail activator to investigate its functional role in acetaminophen (APAP)-induced ALF. Our results demonstrated that the cocktail activator acted on hepatocytes and triggered cocktail efficacy, thereby simultaneously attenuating APAP-induced hepatocyte damage and remodeling the damage microenvironment. The cocktail activator could effectively scavenge reactive oxygen species, inhibit excessive inflammatory responses and reduce cell death in impaired hepatocytes for detoxification. More importantly, the cocktail activator could remodel the damage microenvironment, thus further promoting hepatocyte expansion and specifically switching macrophages from the M1 to M2 phenotype for a favorable liver regeneration of ALF. Furthermore, in APAP-induced ALF mouse model, the cocktail activator improved liver function, alleviated histopathological damage and increased survival rate. In summary, these findings indicate that the cocktail activator may provide a promising therapeutic approach for ALF treatment as a nanomedicine.
Collapse
Affiliation(s)
- Na Yin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wenjun Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Runxiu Wei
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qiang Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Fengming He
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Ling Guo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Corresponding authors.
| | - Min Feng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Corresponding authors.
| |
Collapse
|
27
|
Liu J, Yuan Z, Wang Q. Pluripotent Stem Cell-derived Strategies to Treat Acute Liver Failure: Current Status and Future Directions. J Clin Transl Hepatol 2022; 10:692-699. [PMID: 36062278 PMCID: PMC9396313 DOI: 10.14218/jcth.2021.00353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/17/2022] [Accepted: 02/12/2022] [Indexed: 12/04/2022] Open
Abstract
Liver disease has long been a heavy health and economic burden worldwide. Once the disease is out of control and progresses to end-stage or acute organ failure, orthotopic liver transplantation (OLT) is the only therapeutic alternative, and it requires appropriate donors and aggressive administration of immunosuppressive drugs. Therefore, hepatocyte transplantation (HT) and bioartificial livers (BALs) have been proposed as effective treatments for acute liver failure (ALF) in clinics. Although human primary hepatocytes (PHs) are an ideal cell source to support these methods, the large demand and superior viability of PH is needed, which restrains its wide usage. Thus, a finding alternative to meet the quantity and quality of hepatocytes is urgent. In this context, human pluripotent stem cells (PSC), which have unlimited proliferative and differential potential, derived hepatocytes are a promising renewable cell source. Recent studies of the differentiation of PSC into hepatocytes has provided evidence that supports their clinical application. In this review, we discuss the recent status and future directions of the potential use of PSC-derived hepatocytes in treating ALF. We also discuss opportunities and challenges of how to promote such strategies in the common applications in clinical treatments.
Collapse
Affiliation(s)
- Jingfeng Liu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhiming Yuan
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qingwen Wang
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
28
|
Fang Y, Liu Z, Wang H, Luo X, Xu Y, Chan HF, Lv S, Tao Y, Li M. Implantable Sandwich-like Scaffold/Fiber Composite Spatiotemporally Releasing Combretastatin A4 and Doxorubicin for Efficient Inhibition of Postoperative Tumor Recurrence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27525-27537. [PMID: 35687834 DOI: 10.1021/acsami.2c02103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor recurrence is a critical conundrum in the postoperative therapy, on account of severe bleeding with disseminated tumor cells, residual tumor cells, and the rich nutrient and oxygen supply transported to tumors by the abundant blood vessels. Biodegradable drug-loaded implants, inserted in the resection cavity right away upon the surgery, possess bleeding prevention and efficient chemotherapeutic capabilities, considered to be a promising strategy to efficiently inhibit the recurrence of the solid tumor. Here, we developed a sandwich-like composite consisting of the combretastatin A4 (CA4)-loaded 3D-printed scaffold and doxorubicin (DOX)-loaded electrospun fiber (Scaffold-CA4@Fiber-DOX), presenting hemostatic, chemotherapeutic, and antibacterial potencies. The lyophilized 3D-printed scaffold with a porous structure rapidly absorbed and clotted the blood cells and disseminated tumor cells to prevent bleeding and tumor metastasis. Subsequently, the preferentially released CA4 from the scaffold disrupted the microtubules of the vascular endothelial cell, resulting in vascular deformation and consequent insufficient nutrient supply to the solid tumor. The sustained release of DOX from the sandwiched electrospun fiber dramatically inhibited the peripheral tumor cell proliferation. This all-in-one multifunctional implant system, combining efficient vascular disruption and chemotherapy, provides a promising strategy for postoperative tumor therapy.
Collapse
Affiliation(s)
- Youqiang Fang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zheng Liu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xing Luo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| |
Collapse
|
29
|
Dang W, Chen WC, Ju E, Xu Y, Li K, Wang H, Wang K, Lv S, Shao D, Tao Y, Li M. 3D printed hydrogel scaffolds combining glutathione depletion-induced ferroptosis and photothermia-augmented chemodynamic therapy for efficiently inhibiting postoperative tumor recurrence. J Nanobiotechnology 2022; 20:266. [PMID: 35672826 PMCID: PMC9171966 DOI: 10.1186/s12951-022-01454-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
Abstract
AbstractSurgical resection to achieve tumor-free margins represents a difficult clinical scenario for patients with hepatocellular carcinoma. While post-surgical treatments such as chemotherapy and radiotherapy can decrease the risk of cancer recurrence and metastasis, growing concerns about the complications and side effects have promoted the development of implantable systems for locoregional treatment. Herein, 3D printed hydrogel scaffolds (designed as Gel-SA-CuO) were developed by incorporating one agent with multifunctional performance into implantable devices to simplify the fabrication process for efficiently inhibiting postoperative tumor recurrence. CuO nanoparticles can be effectively controlled and sustained released during the biodegradation of hydrogel scaffolds. Notably, the released CuO nanoparticles not only function as the reservoir for releasing Cu2+ to produce intracellular reactive oxygen species (ROS) but also serve as photothermal agent to generate heat. Remarkably, the heat generated by photothermal conversion of CuO nanoparticles further promotes the efficiency of Fenton-like reaction. Additionally, ferroptosis can be induced through Cu2+-mediated GSH depletion via the inactivation of GPX4. By implanting hydrogel scaffolds in the resection site, efficient inhibition of tumor recurrence after primary resection can be achieved in vivo. Therefore, this study may pave the way for the development of advanced multifunctional implantable platform for eliminating postoperative relapsable cancers.
Graphical Abstract
Collapse
|
30
|
Li F, Zhang J, Yi K, Wang H, Wei H, Chan HF, Tao Y, Li M. Delivery of Stem Cell Secretome for Therapeutic Applications. ACS APPLIED BIO MATERIALS 2022; 5:2009-2030. [PMID: 35285638 DOI: 10.1021/acsabm.1c01312] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intensive studies on stem cell therapy reveal that benefits of stem cells attribute to the paracrine effects. Hence, direct delivery of stem cell secretome to the injured site shows the comparative therapeutic efficacy of living cells while avoiding the potential limitations. However, conventional systemic administration of stem cell secretome often leads to rapid clearance in vivo. Therefore, a variety of different biomaterials are developed for sustained and controllable delivery of stem cell secretome to improve therapeutic efficiency. In this review, we first introduce current approaches for the preparation and characterization of stem cell secretome as well as strategies to improve their therapeutic efficacy and production. The up-to-date delivery platforms are also summarized, including nanoparticles, injectable hydrogels, microneedles, and scaffold patches. Meanwhile, we discuss the underlying therapeutic mechanism of stem cell secretome for the treatment of various diseases. In the end, future opportunities and challenges are proposed.
Collapse
Affiliation(s)
- Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hongyan Wei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| |
Collapse
|
31
|
Kong H, Ju E, Yi K, Xu W, Lao Y, Cheng D, Zhang Q, Tao Y, Li M, Ding J. Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102051. [PMID: 34665528 PMCID: PMC8693080 DOI: 10.1002/advs.202102051] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/25/2021] [Indexed: 05/08/2023]
Abstract
Liver disease, particularly viral hepatitis and hepatocellular carcinoma (HCC), is a global healthcare burden and leads to more than 2 million deaths per year worldwide. Despite some success in diagnosis and vaccine development, there are still unmet needs to improve diagnostics and therapeutics for viral hepatitis and HCC. The emerging clustered regularly interspaced short palindromic repeat/associated proteins (CRISPR/Cas) technology may open up a unique avenue to tackle these two diseases at the genetic level in a precise manner. Especially, liver is a more accessible organ over others from the delivery point of view, and many advanced strategies applied for nanotheranostics can be adapted in CRISPR-mediated diagnostics or liver gene editing. In this review, the focus is on these two aspects of viral hepatitis and HCC applications. An overview on CRISPR editor development and current progress in clinical trials is first given, followed by highlighting the recent advances integrating the merits of gene editing and nanotheranostics. The promising systems that are used in other applications but may hold potentials in liver gene editing are also discussed. This review concludes with the perspectives on rationally designing the next-generation CRISPR approaches and improving the editing performance.
Collapse
Affiliation(s)
- Huimin Kong
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Ke Yi
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Yeh‐Hsing Lao
- Department of Biomedical EngineeringColumbia University3960 Broadway Lasker Room 450New YorkNY10032USA
| | - Du Cheng
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen University135 Xingangxi RoadGuangzhou510275P. R. China
| | - Qi Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research600 Tianhe RoadGuangzhou510630P. R. China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research600 Tianhe RoadGuangzhou510630P. R. China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
32
|
Zhang L, Ma XJN, Fei YY, Han HT, Xu J, Cheng L, Li X. Stem cell therapy in liver regeneration: Focus on mesenchymal stem cells and induced pluripotent stem cells. Pharmacol Ther 2021; 232:108004. [PMID: 34597754 DOI: 10.1016/j.pharmthera.2021.108004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023]
Abstract
The liver has the ability to repair itself after injury; however, a variety of pathological changes in the liver can affect its ability to regenerate, and this could lead to liver failure. Mesenchymal stem cells (MSCs) are considered a good source of cells for regenerative medicine, as they regulate liver regeneration through different mechanisms, and their efficacy has been demonstrated by many animal experiments and clinical studies. Induced pluripotent stem cells, another good source of MSCs, have also made great progress in the establishment of organoids, such as liver disease models, and in drug screening. Owing to the recent developments in MSCs and induced pluripotent stem cells, combined with emerging technologies including graphene, nano-biomaterials, and gene editing, precision medicine and individualized clinical treatment may be realized in the near future.
Collapse
Affiliation(s)
- Lu Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Xiao-Jing-Nan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Yuan-Yuan Fei
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China
| | - Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Jun Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Lu Cheng
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China; Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, PR China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
33
|
Kim S, Han G, Hwang D, Won D, Shin Y, Kim C, Kang JM, Park J, Jung H, Park W, Yun J. Design and Usability Evaluations of a 3D-Printed Implantable Drug Delivery Device for Acute Liver Failure in Preclinical Settings. Adv Healthc Mater 2021; 10:e2100497. [PMID: 34160141 DOI: 10.1002/adhm.202100497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Acute liver failure (ALF) requiring liver transplantation is a disease that occurs due to rapid hepatocellular dysfunction. As liver transplantation has various limitations, including donor scarcity, high cost, and immuno-incompatibility, continuous local delivery of biopharmaceuticals to the liver tissue can be a promising ALF treatment option. Here, the in vivo safety and usability of a 3D-printed implantable drug delivery device for effective ALF treatment is evaluated. The implantable reservoir consists of a 3D-printed container and a semipermeable membrane for repeated administrations of drugs, specifically to the liver tissue. The physical stability and function of the 3D-printed reservoir are confirmed by the mechanical properties and in vitro drug release test, respectively. In mice implanted with the reservoir system, mortality, weight changes, clinical signs, hematological and serum biochemical changes, and organ weight changes are not observed, suggesting no foreign body reaction. The usability of the reservoir system is further evaluated using an ALF model of 70% hepatectomized mice treated with N-acetylcysteine through the system, showing cell-specific regeneration and significant liver injury alleviation. Overall, the 3D-printed reservoir system is safe for studying the therapeutic potential of ALF treatment, and it can be used for the delivery of various active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Shin‐Young Kim
- Department of Biotechnology The Catholic University of Korea 43 Jibong‐ro Bucheon‐Si Gyeonggi‐do 14662 Republic of Korea
| | - Ginam Han
- Department of Biotechnology The Catholic University of Korea 43 Jibong‐ro Bucheon‐Si Gyeonggi‐do 14662 Republic of Korea
- Department of Biomedical‐Chemical Engineering The Catholic University of Korea 43 Jibong‐ro Bucheon‐Si Gyeonggi‐do 14662 Republic of Korea
| | - Da‐Bin Hwang
- Department of Biotechnology The Catholic University of Korea 43 Jibong‐ro Bucheon‐Si Gyeonggi‐do 14662 Republic of Korea
| | - Dong‐Hoon Won
- Department of Biotechnology The Catholic University of Korea 43 Jibong‐ro Bucheon‐Si Gyeonggi‐do 14662 Republic of Korea
| | - Yoo‐Sub Shin
- Department of Biotechnology The Catholic University of Korea 43 Jibong‐ro Bucheon‐Si Gyeonggi‐do 14662 Republic of Korea
| | - Changuk Kim
- Department of Biotechnology The Catholic University of Korea 43 Jibong‐ro Bucheon‐Si Gyeonggi‐do 14662 Republic of Korea
| | - Jeon Min Kang
- Biomedical Engineering Research Center Asan Institute for Life Sciences Asan Medical Center 88 Olympic‐ro 43‐gil Songpa‐gu Seoul 05505 Republic of Korea
| | - Jung‐Hoon Park
- Biomedical Engineering Research Center Asan Institute for Life Sciences Asan Medical Center 88 Olympic‐ro 43‐gil Songpa‐gu Seoul 05505 Republic of Korea
| | - Hyun‐Do Jung
- Department of Biotechnology The Catholic University of Korea 43 Jibong‐ro Bucheon‐Si Gyeonggi‐do 14662 Republic of Korea
- Department of Biomedical‐Chemical Engineering The Catholic University of Korea 43 Jibong‐ro Bucheon‐Si Gyeonggi‐do 14662 Republic of Korea
| | - Wooram Park
- Department of Biotechnology The Catholic University of Korea 43 Jibong‐ro Bucheon‐Si Gyeonggi‐do 14662 Republic of Korea
- Department of Biomedical‐Chemical Engineering The Catholic University of Korea 43 Jibong‐ro Bucheon‐Si Gyeonggi‐do 14662 Republic of Korea
| | - Jun‐Won Yun
- Department of Biotechnology The Catholic University of Korea 43 Jibong‐ro Bucheon‐Si Gyeonggi‐do 14662 Republic of Korea
- Department of Medical and Biological Sciences The Catholic University of Korea 43 Jibong‐ro Bucheon‐Si Gyeonggi‐do 14662 Republic of Korea
| |
Collapse
|