1
|
Anlaş K, Gritti N, Nakaki F, Salamó Palau L, Tlili SL, Oriola D, Arató K, Le Lim J, Sharpe J, Trivedi V. Early autonomous patterning of the anteroposterior axis in gastruloids. Development 2024; 151:dev202171. [PMID: 39552366 DOI: 10.1242/dev.202171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/17/2024] [Indexed: 11/19/2024]
Abstract
Minimal in vitro systems composed of embryonic stem cells (ESCs) have been shown to recapitulate the establishment of the anteroposterior (AP) axis. In contrast to the native embryo, ESC aggregates - such as gastruloids - can break symmetry, which is demarcated by polarization of the mesodermal marker T, autonomously without any localized external cues. However, associated earliest patterning events, such as the spatial restriction of cell fates and concomitant transcriptional changes, remain poorly understood. Here, we dissect the dynamics of AP axis establishment in mouse gastruloids, particularly before external Wnt stimulation. Through single-cell RNA sequencing, we identify key cell state transitions and the molecular signatures of T+ and T- populations underpinning AP polarization. We also show that this process is robust to modifications of aggregate size. Finally, transcriptomic comparison with the mouse embryo indicates that gastruloids develop similar mesendodermal cell types, despite initial differences in their primed pluripotent populations, which adopt a more mesenchymal state in lieu of an epiblast-like transcriptome. Hence, our findings suggest the possibility of alternate ESC states in vivo and in vitro that can converge onto similar cell fates.
Collapse
Affiliation(s)
| | | | | | | | - Sham Leilah Tlili
- Aix-Marseille Univ., CNRS, UMR 7288, IBDM, Turing Center for Living Systems, 13288 Marseille, France
| | | | | | | | - James Sharpe
- EMBL Barcelona, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Vikas Trivedi
- EMBL Barcelona, 08003 Barcelona, Spain
- EMBL Heidelberg, Developmental Biology Unit, 69117 Heidelberg, Germany
| |
Collapse
|
2
|
Cao D, Garai S, DiFrisco J, Veenvliet JV. The logic of monsters: development and morphological diversity in stem-cell-based embryo models. Interface Focus 2024; 14:20240023. [PMID: 39464644 PMCID: PMC11503023 DOI: 10.1098/rsfs.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/29/2024] Open
Abstract
Organoids and stem-cell-based embryo models (SEMs) are imperfect organ or embryo representations that explore a much larger space of possible forms, or morphospace, compared to their in vivo counterparts. Here, we discuss SEM biology in light of seminal work by Pere Alberch, a leading figure in early evo-devo, interpreting SEMs as developmental 'monstrosities' in the Alberchian sense. Alberch suggested that ordered patterns in aberrant development-i.e. 'the logic of monsters'-reveal developmental constraints on possible morphologies. In the same vein, we detail how SEMs have begun to shed light on structural features of normal development, such as developmental variability, the relative importance of internal versus external constraints, boundary conditions and design principles governing robustness and canalization. We argue that SEMs represent a powerful experimental tool to explore and expand developmental morphospace and propose that the 'monstrosity' of SEMs can be leveraged to uncover the 'hidden' rules and developmental constraints that robustly shape and pattern the embryo.
Collapse
Affiliation(s)
- Dominica Cao
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06520, USA
| | - Sumit Garai
- Theoretical Biology Lab, The Francis Crick Institute, LondonNW1 1AT, UK
- Division of Biosciences, Medical Sciences Building, University College London, Gower Street, LondonWC1E 6BT, UK
| | - James DiFrisco
- Theoretical Biology Lab, The Francis Crick Institute, LondonNW1 1AT, UK
| | - Jesse V. Veenvliet
- Stembryogenesis Lab, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden01307, Germany
| |
Collapse
|
3
|
Handford CE, Junyent S, Jorgensen V, Zernicka-Goetz M. Topical section: embryonic models (2023) for Current Opinion in Genetics & Development. Curr Opin Genet Dev 2024; 84:102134. [PMID: 38052116 PMCID: PMC11556421 DOI: 10.1016/j.gde.2023.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Stem cell-based mammalian embryo models facilitate the discovery of developmental mechanisms because they are more amenable to genetic and epigenetic perturbations than natural embryos. Here, we highlight exciting recent advances that have yielded a plethora of models of embryonic development. Imperfections in these models highlight gaps in our current understanding and outline future research directions, ushering in an exciting new era for embryology.
Collapse
Affiliation(s)
- Charlotte E Handford
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. https://twitter.com/@CEHandford
| | - Sergi Junyent
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. https://twitter.com/@JunyentSergi
| | - Victoria Jorgensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Magdalena Zernicka-Goetz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
McMahon R, Masamsetti VP, Tam PPL. Phenotypic Analysis of Early Neurogenesis in a Mouse Chimeric Embryo and Stem Cell-Based Neuruloid Model. Methods Mol Biol 2024; 2746:165-177. [PMID: 38070089 DOI: 10.1007/978-1-0716-3585-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Analyzing the impact of genetic mutations on early neurogenesis of mammalian embryos in conventional mouse mutant models is laborious and time-consuming. To overcome these constraints and to fast-track the phenotypic analysis, we developed a protocol that harnesses the amenability of engineering genetic modifications in embryonic stem cells from which mid-gestation mouse chimeras and in vitro neuruloids are generated. These stem cell-based chimera and neuruloid experimental models allow phenotyping at early developmental time points of neurogenesis.
Collapse
Affiliation(s)
- Riley McMahon
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - V Pragathi Masamsetti
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Mirdass C, Catala M, Bocel M, Nedelec S, Ribes V. Stem cell-derived models of spinal neurulation. Emerg Top Life Sci 2023; 7:423-437. [PMID: 38087891 DOI: 10.1042/etls20230087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Neurulation is a critical step in early embryonic development, giving rise to the neural tube, the primordium of the central nervous system in amniotes. Understanding this complex, multi-scale, multi-tissue morphogenetic process is essential to provide insights into normal development and the etiology of neural tube defects. Innovations in tissue engineering have fostered the generation of pluripotent stem cell-based in vitro models, including organoids, that are emerging as unique tools for delving into neurulation mechanisms, especially in the context of human development. Each model captures specific aspects of neural tube morphogenesis, from epithelialization to neural tissue elongation, folding and cavitation. In particular, the recent models of human and mouse trunk morphogenesis, such as gastruloids, that form a spinal neural plate-like or neural tube-like structure are opening new avenues to study normal and pathological neurulation. Here, we review the morphogenetic events generating the neural tube in the mammalian embryo and questions that remain unanswered. We discuss the advantages and limitations of existing in vitro models of neurulation and possible future technical developments.
Collapse
Affiliation(s)
- Camil Mirdass
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
- Inserm, UMR-S 1270, 75005 Paris, France
- Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Martin Catala
- Institut de Biologie Paris Seine (IBPS) - Developmental Biology Laboratory, UMR7622 CNRS, INSERM ERL 1156, Sorbonne Université, 9 Quai Saint-Bernard, 75005 Paris, France
| | - Mikaëlle Bocel
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Stéphane Nedelec
- Institut du Fer à Moulin, 75005 Paris, France
- Inserm, UMR-S 1270, 75005 Paris, France
- Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Vanessa Ribes
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
6
|
Masak G, Davidson LA. Constructing the pharyngula: Connecting the primary axial tissues of the head with the posterior axial tissues of the tail. Cells Dev 2023; 176:203866. [PMID: 37394035 PMCID: PMC10756936 DOI: 10.1016/j.cdev.2023.203866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The pharyngula stage of vertebrate development is characterized by stereotypical arrangement of ectoderm, mesoderm, and neural tissues from the anterior spinal cord to the posterior, yet unformed tail. While early embryologists over-emphasized the similarity between vertebrate embryos at the pharyngula stage, there is clearly a common architecture upon which subsequent developmental programs generate diverse cranial structures and epithelial appendages such as fins, limbs, gills, and tails. The pharyngula stage is preceded by two morphogenetic events: gastrulation and neurulation, which establish common shared structures despite the occurrence of cellular processes that are distinct to each of the species. Even along the body axis of a singular organism, structures with seemingly uniform phenotypic characteristics at the pharyngula stage have been established by different processes. We focus our review on the processes underlying integration of posterior axial tissue formation with the primary axial tissues that creates the structures laid out in the pharyngula. Single cell sequencing and novel gene targeting technologies have provided us with new insights into the differences between the processes that form the anterior and posterior axis, but it is still unclear how these processes are integrated to create a seamless body. We suggest that the primary and posterior axial tissues in vertebrates form through distinct mechanisms and that the transition between these mechanisms occur at different locations along the anterior-posterior axis. Filling gaps that remain in our understanding of this transition could resolve ongoing problems in organoid culture and regeneration.
Collapse
Affiliation(s)
- Geneva Masak
- Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lance A Davidson
- Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
7
|
Sullivan AE, Santos SD. The ever-growing world of gastruloids: autogenous models of mammalian embryogenesis. Curr Opin Genet Dev 2023; 82:102102. [PMID: 37604096 DOI: 10.1016/j.gde.2023.102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/23/2023]
Abstract
During early development, extrinsic cues prompt a collection of pluripotent cells to begin the extensive process of cellular differentiation that gives rise to all tissues in the mammalian embryo, a process known as gastrulation. Advances in stem cell biology have resulted in the generation of stem cell-based in vitro models of mammalian gastrulation called gastruloids. Gastruloids and subsequent gastruloid-based models are tractable, scalable and more accessible than mammalian embryos. As such, they have opened an unprecedented avenue for modelling in vitro self-organisation, patterning and fate specification. This review focuses on discussing the recent advances of this rapidly moving research area, clarifying what structures they model and the underlying signal hierarchy. We highlight the exciting potential of these models and where the field might be heading.
Collapse
Affiliation(s)
- Adrienne E Sullivan
- Quantitative Cell Biology Laboratory, The Francis Crick Institute, 1-Midland Road, NW1 1AT London, UK.
| | - Silvia Dm Santos
- Quantitative Cell Biology Laboratory, The Francis Crick Institute, 1-Midland Road, NW1 1AT London, UK.
| |
Collapse
|
8
|
Amel A, Rabeling A, Rossouw S, Goolam M. Wnt and BMP signalling direct anterior-posterior differentiation in aggregates of mouse embryonic stem cells. Biol Open 2023; 12:bio059981. [PMID: 37622734 PMCID: PMC10508691 DOI: 10.1242/bio.059981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Stem-cell-based embryo models have allowed greater insight into peri-implantation mammalian developmental events that are otherwise difficult to manipulate due to the inaccessibility of the early embryo. The rapid development of this field has resulted in the precise roles of frequently used supplements such as N2, B27 and Chiron in driving stem cell lineage commitment not being clearly defined. Here, we investigate the effects of these supplements on embryoid bodies to better understand their roles in stem cell differentiation. We show that Wnt signalling has a general posteriorising effect on stem cell aggregates and directs differentiation towards the mesoderm, as confirmed through the upregulation of posterior and mesodermal markers. N2 and B27 can mitigate these effects and upregulate the expression of anterior markers. To control the Wnt gradient and the subsequent anterior versus posterior fate, we make use of a BMP4 signalling centre and show that aggregates in these conditions express cephalic markers. These findings indicate that there is an intricate balance between various culture supplements and their ability to guide differentiation in stem cell embryo models.
Collapse
Affiliation(s)
- Atoosa Amel
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Alexa Rabeling
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Simoné Rossouw
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Mubeen Goolam
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| |
Collapse
|
9
|
Amel A, Rossouw S, Goolam M. Gastruloids: A Novel System for Disease Modelling and Drug Testing. Stem Cell Rev Rep 2023; 19:104-113. [PMID: 36308705 DOI: 10.1007/s12015-022-10462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 01/29/2023]
Abstract
By virtue of its inaccessible nature, mammalian implantation stage development has remained one of the most enigmatic and hard to investigate periods of embryogenesis. Derived from pluripotent stem cells, gastruloids recapitulate key aspects of gastrula-stage embryos and have emerged as a powerful in vitro tool to study the architectural features of early post-implantation embryos. While the majority of the work in this emerging field has focused on the use of gastruloids to model embryogenesis, their tractable nature and suitability for high-throughput scaling, has presented an unprecedented opportunity to investigate both developmental and environmental aberrations to the embryo as they occur in vitro. This review summarises the recent developments in the use of gastruloids to model congenital anomalies, their usage in teratogenicity testing, and the current limitations of this emerging field.
Collapse
Affiliation(s)
- Atoosa Amel
- Department of Human Biology, University of Cape Town, 7925, Cape Town, South Africa
| | - Simoné Rossouw
- Department of Human Biology, University of Cape Town, 7925, Cape Town, South Africa
| | - Mubeen Goolam
- Department of Human Biology, University of Cape Town, 7925, Cape Town, South Africa. .,UCT Neuroscience Institute, Cape Town, South Africa.
| |
Collapse
|
10
|
Mammalian gastrulation: signalling activity and transcriptional regulation of cell lineage differentiation and germ layer formation. Biochem Soc Trans 2022; 50:1619-1631. [DOI: 10.1042/bst20220256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
The interplay of signalling input and downstream transcriptional activity is the key molecular attribute driving the differentiation of germ layer tissue and the specification of cell lineages within each germ layer during gastrulation. This review delves into the current understanding of signalling and transcriptional control of lineage development in the germ layers of mouse embryo and non-human primate embryos during gastrulation and highlights the inter-species conservation and divergence of the cellular and molecular mechanisms of germ layer development in the human embryo.
Collapse
|
11
|
Bolondi A, Kretzmer H, Meissner A. Single-cell technologies: a new lens into epigenetic regulation in development. Curr Opin Genet Dev 2022; 76:101947. [PMID: 35839561 DOI: 10.1016/j.gde.2022.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
The totipotent zygote gives rise to diverse cell types through a series of well-orchestrated regulatory mechanisms. Epigenetic modifiers play an essential, though still poorly understood, role in the transition from pluripotency towards organogenesis. However, recent advances in single-cell technologies have enabled an unprecedented, high-resolution dissection of this crucial developmental window, highlighting more cell-type-specific functions of these ubiquitous regulators. In this review, we discuss and contextualize several recent studies that explore epigenetic regulation during mouse embryogenesis, emphasizing the opportunities presented by single-cell technologies, in vivo perturbation approaches as well as advanced in vitro models to characterize dynamic developmental transitions.
Collapse
Affiliation(s)
- Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany. https://twitter.com/@adrianobolondi
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. https://twitter.com/@helenekretzmer
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany; Broad Institute of MIT and Harvard, 02142 Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, 02138 Cambridge, MA, USA.
| |
Collapse
|