1
|
Bucan A, Frendø M, Ngo MT, Sørensen JA, Hölmich LR. Surgical lymphedema models in the mice hindlimb-A systematic review and quality assessment. Microsurgery 2024; 44:e31088. [PMID: 37665032 DOI: 10.1002/micr.31088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Lymphedema constitutes a major unsolved problem in plastic surgery. To identify novel lymphedema treatments, preclinical studies are vital. The surgical mouse lymphedema model is popular and cost-effective; nonetheless, a synthesis and overview of the literature with evidence-based guidelines is needed. The aim of this review was to perform a systematic review to establish best practice and support future high-quality animal studies exploring lymphedema treatments. METHODS We performed a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, searching four databases (PubMed, Embase, Web of Science, and Scopus) from inception-September 2022. The Animals in Research Reporting In Vivo Experiments 2.0 (ARRIVE 2.0) guidelines were used to evaluate reporting quality. Studies claiming to surgically induce lymphedema in the hindlimb of mice were included. RESULTS Thirty-seven studies were included. Four main models were used. (1) Irradiation+surgery. (2) A variation of the surgery used by (1) + irradiation. (3) Surgery only (SPDF-model). (4) Surgery only (PLND-model). Remaining studies used other techniques. The most common measurement modality was the caliper. Mean quality coefficient was 0.57. Eighteen studies (49%) successfully induced sustained lymphedema. Combination of methods seemed to yield the best results, with an overrepresentation of irradiation, the removal of two lymph nodes, and the disruption of both the deep and superficial lymph vessels in the 18 studies. CONCLUSION Surgical mouse hindlimb lymphedema models are challenged by two related problems: (1) retaining lymphedema for an extended period, that is, establishing a (chronic) lymphedema model (2) distinguishing lymphedema from post-operative edema. Most studies failed to induce lymphedema and used error-prone measurements. We provide an overview of studies claiming to induce lymphedema and advocate improved research via five evidence-based recommendations to use: (1) a proven lymphedema model; (2) sufficient follow-up time, (3) validated measurement methods; (4) ARRIVE-guidelines; (5) contralateral hindlimb as control.
Collapse
Affiliation(s)
- Amar Bucan
- Department of Plastic Surgery, University of Copenhagen, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Martin Frendø
- Department of Plastic Surgery, University of Copenhagen, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Copenhagen Academy for Medical Education and Simulation (CAMES), Center for HR & Education, Copenhagen, Denmark
| | - Mikaella Ty Ngo
- Department of Plastic Surgery, University of Copenhagen, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Jens Ahm Sørensen
- Research Unit for Plastic Surgery, Odense University Hospital, Odense, Denmark
| | - Lisbet Rosenkrantz Hölmich
- Department of Plastic Surgery, University of Copenhagen, Herlev and Gentofte Hospital, Copenhagen, Denmark
| |
Collapse
|
2
|
Meßner FC, Metzger W, Marschall JE, Bickelmann C, Menger MD, Laschke MW. Generation of Connective Tissue-Free Microvascular Fragment Isolates from Subcutaneous Fat Tissue of Obese Mice. Tissue Eng Regen Med 2023; 20:1079-1090. [PMID: 37783934 PMCID: PMC10645785 DOI: 10.1007/s13770-023-00571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Microvascular fragment (MVF) isolates are generated by short-term enzymatic digestion of adipose tissue and contain numerous vessel segments for the vascularization of tissue defects. Recent findings indicate that the functionality of these isolates is determined by the quality of the fat source. Therefore, we compared MVF isolates from subcutaneous adipose tissue of obese and lean mice. METHODS MVF isolates were generated from subcutaneous adipose tissue of donor mice, which received a high fat or control diet for 12 weeks. The isolates were analyzed in vitro and in vivo. RESULTS Feeding of mice with a high fat diet induced obesity with adipocyte hypertrophy, resulting in a significantly lower collagen fraction and microvessel density within the subcutaneous fat depots when compared to lean controls. Accordingly, MVF isolates from obese mice also contained a reduced number of MVF per mL adipose tissue. However, these MVF tended to be longer and, in contrast to MVF from lean mice, were not contaminated with collagen fibers. Hence, they could be freely seeded onto collagen-glycosaminoglycan scaffolds, whereas MVF from lean controls were trapped in between large amounts of collagen fibers that clogged the pores of the scaffolds. In line with these results, scaffolds seeded with MVF isolates from obese mice exhibited a significantly improved in vivo vascularization after implantation into full-thickness skin defects. CONCLUSION Subcutaneous adipose tissue from obese mice facilitates the generation of connective tissue-free MVF isolates. Translated to clinical conditions, these findings suggest that particularly obese patients may benefit from MVF-based vascularization strategies.
Collapse
Affiliation(s)
- Friederike C Meßner
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg, Germany
| | - Julia E Marschall
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Caroline Bickelmann
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
3
|
Park GT, Lim JK, Choi EB, Lim MJ, Yun BY, Kim DK, Yoon JW, Hong YG, Chang JH, Bae SH, Ahn JY, Kim JH. Transplantation of adipose tissue-derived microvascular fragments promotes therapy of critical limb ischemia. Biomater Res 2023; 27:70. [PMID: 37455318 DOI: 10.1186/s40824-023-00395-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/15/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Adipose tissue-derived microvascular fragments are functional vessel segments derived from arterioles, capillaries, and veins. Microvascular fragments can be used as vascularization units in regenerative medicine and tissue engineering containing microvascular networks. However, the in vivo therapeutic and vascularization properties of human microvascular fragments have not been investigated. METHODS In this study, we isolated microvascular fragments, stromal vascular fractions, and mesenchymal stem cells from human lipoaspirate and studied their therapeutic efficacy and in vivo vasculogenic activity in a murine model of hindlimb ischemia. In addition, in vivo angiogenic activity and engraftment of microvascular fragments into blood vessels were measured using Matrigel plug assay. RESULTS Both microvascular fragments and stromal vascular fractions contain not only mesenchymal stem cells but also endothelial progenitor cells. In a Matrigel plug assay, microvascular fragments increased the number of blood vessels containing red blood cells more than mesenchymal stem cells and stromal vascular fractions did. The engraftment of the microvascular fragments transplanted in blood vessels within the Matrigel plug significantly increased compared to the engraftment of mesenchymal stem cells and stromal vascular fractions. Moreover, intramuscular injection of microvascular fragments markedly increased blood flow in the ischemic hindlimbs and alleviated tissue necrosis compared to that of mesenchymal stem cells or stromal vascular fractions. Furthermore, transplanted microvascular fragments formed new blood vessels in ischemic limbs. CONCLUSIONS These results suggest that microvascular fragments show improved engraftment efficiency and vasculogenic activity in vivo and are highly useful for treating ischemic diseases and in tissue engineering. Adipose tissue-derived microvascular fragments are vascularization units in regenerative medicine and tissue engineering containing microvascular networks. Intramuscular injection of microvascular fragments markedly increased blood flow in the ischemic hindlimbs and alleviated tissue necrosis. The present study suggests that microvascular fragments show improved engraftment efficiency and vasculogenic activity in vivo and are highly useful for treating ischemic diseases and in tissue engineering.
Collapse
Affiliation(s)
- Gyu Tae Park
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Jae Kyung Lim
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Eun-Bae Choi
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Mi-Ju Lim
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Bo-Young Yun
- UVA Surgery Clinic, Busan, 47537, Republic of Korea
| | - Dae Kyoung Kim
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Jung Won Yoon
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Yoon Gi Hong
- BS The Body Aesthetic Plastic Surgery Clinic, Busan, 47287, Republic of Korea
| | - Jae Hoon Chang
- BS The Body Aesthetic Plastic Surgery Clinic, Busan, 47287, Republic of Korea
| | - Seong Hwan Bae
- Department of Plastic and Reconstructive Surgery, College of Medicine, Pusan National University, Busan, Gyeongsangnam-do, 49241, Republic of Korea
| | - Jung Yong Ahn
- UVA Surgery Clinic, Busan, 47537, Republic of Korea.
| | - Jae Ho Kim
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| |
Collapse
|
4
|
Song X, Yu Y, Leng Y, Ma L, Mu J, Wang Z, Xu Y, Zhu H, Qiu X, Li P, Li J, Wang D. Expanding tubular microvessels on stiff substrates with endothelial cells and pericytes from the same adult tissue. J Tissue Eng 2022; 13:20417314221125310. [PMID: 36171979 PMCID: PMC9511303 DOI: 10.1177/20417314221125310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/25/2022] [Indexed: 11/01/2022] Open
Abstract
Endothelial cells (ECs) usually form a monolayer on two-dimensional (2D) stiff substrates and a tubular structure with soft hydrogels. The coculture models using ECs and pericytes derived from different adult tissues or pluripotent stem cells cannot mimic tissue-specific microvessels due to vascular heterogeneity. Our study established a method for expanding tubular microvessels on 2D stiff substrates with ECs and pericytes from the same adult tissue. We isolated microvessels from adult rat subcutaneous soft connective tissue and cultured them in the custom-made tubular microvascular growth medium on 2D stiff substrates (TGM2D). TGM2D promoted adult microvessel growth for at least 4 weeks and maintained a tubular morphology, contrary to the EC monolayer in the commercial medium EGM2MV. Transcriptomic analysis showed that TGM2D upregulated angiogenesis and vascular morphogenesis while suppressing oxidation and lipid metabolic pathways. Our method can be applied to other organs for expanding organ-specific microvessels for tissue engineering.
Collapse
Affiliation(s)
- Xiuyue Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yali Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yu Leng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Ma
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China.,Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Jie Mu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Pharmacy, Medical College, and Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao, China
| | - Zihan Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China
| | - Yalan Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| |
Collapse
|