1
|
Uruno K, Iwano H, Hayashi T, Hatano R, Komuro K, Kawahatsu K, Doi T, Yuda S. Carfilzomib-induced pulmonary hypertension in a patient with multiple myeloma. J Cardiol Cases 2024; 30:172-175. [PMID: 39534307 PMCID: PMC11551454 DOI: 10.1016/j.jccase.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 11/16/2024] Open
Abstract
A 59-year-old female being treated for multiple myeloma (MM) was referred to the Division of Cardiology due to edema and dyspnea. She developed dyspnea on exertion 2 months previously when carfilzomib, a second-generation selective proteasome inhibitor which was approved for treatment of relapsed and refractory MM, was introduced, and facial edema appeared thereafter. The electrocardiogram showed sinus rhythm with T-wave inversion on extensive leads and the chest X-ray showed cardiomegaly. Although cancer therapeutics-related cardiac dysfunction was assumed to be the complication, echocardiogram revealed no evidence of elevated left ventricular filling pressure whereas elevated tricuspid regurgitation velocity (3.2 m/s) with right ventricular systolic dysfunction suggested pre-capillary pulmonary hypertension (PH). Right heart catheterization demonstrated elevated mean pulmonary artery pressure (33 mmHg) along with high pulmonary vascular resistance (11.54 Wood Units) and normal pulmonary capillary wedge pressure (9 mmHg), confirming the echocardiographic findings. After ruling out other causes, PH associated with carfilzomib was diagnosed. Cessation of carfilzomib along with pulmonary vasodilator therapy led to improvement of symptoms and reduction of right heart size along with reduced estimated pulmonary systolic pressure 2 months later. Although carfilzomib-induced PH is rare, we need to consider its possibility when we find PH in patients receiving carfilzomib. Learning objective While adverse cardiovascular events are often found in patients with multiple myeloma (MM) after use of carfilzomib, the occurrence of pulmonary hypertension (PH) is reported to be rare. Because temporal association of echocardiographic findings to carfilzomib therapy plays a key role for the diagnosis of drug-associated PH, serial echocardiographic examinations should be performed when we start carfilzomib therapy in refractory MM patients.
Collapse
Affiliation(s)
- Kosuke Uruno
- Division of Cardiology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Hiroyuki Iwano
- Division of Cardiology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Toshiaki Hayashi
- Division of Hematology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Ryosuke Hatano
- Division of Cardiology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Kaoru Komuro
- Division of Cardiology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Kandoh Kawahatsu
- Division of Cardiology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Takahiro Doi
- Division of Cardiology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Satoshi Yuda
- Division of Cardiology, Teine Keijinkai Hospital, Sapporo, Japan
| |
Collapse
|
2
|
Grynblat J, Khouri C, Hlavaty A, Jaïs X, Savale L, Chaumais MC, Kularatne M, Jevnikar M, Boucly A, Antigny F, Perros F, Simonneau G, Sitbon O, Humbert M, Montani D. Characteristics and outcomes of patients developing pulmonary hypertension associated with proteasome inhibitors. Eur Respir J 2024; 63:2302158. [PMID: 38697649 DOI: 10.1183/13993003.02158-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) has been described in patients treated with proteasome inhibitors (PIs). Our objective was to evaluate the association between PIs and PAH. METHODS Characteristics of incident PAH cases previously treated with carfilzomib or bortezomib were analysed from the French pulmonary hypertension registry and the VIGIAPATH programme from 2004 to 2023, concurrently with a pharmacovigilance disproportionality analysis using the World Health Organization (WHO) global database (VigiBase) and a meta-analysis of randomised controlled trials. RESULTS 11 incident cases of PI-associated PAH were identified (six with carfilzomib and five with bortezomib) with a female:male ratio of 2.7:1, a median age of 61 years, and a median delay between PI first exposure and PAH of 6 months. Four patients died (two from right heart failure, one from respiratory distress and one from an unknown cause). At diagnosis, six were in New York Heart Association Functional Class III/IV with severe haemodynamic impairment (median mean pulmonary arterial pressure 39 mmHg, cardiac index 2.45 L·min-1·m-2 and pulmonary vascular resistance 7.2 WU). In the WHO pharmacovigilance database, 169 cases of PH associated with PI were reported since 2013 with significant signals of disproportionate reporting (SDR) for carfilzomib, regardless of the definition of cases or control group. However, SDR for bortezomib were inconsistent. The systematic review identified 17 clinical trials, and carfilzomib was associated with a significantly higher risk of dyspnoea, severe dyspnoea and PH compared with bortezomib. CONCLUSION PIs may induce PAH in patients undergoing treatment, with carfilzomib emitting a stronger signal than bortezomib, and these patients should be monitored closely.
Collapse
Affiliation(s)
- Julien Grynblat
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
- These authors contributed equally to this work
| | - Charles Khouri
- Univ. Grenoble Alpes, HP2 Laboratory, INSERM U 1300, Grenoble, France
- Pharmacovigilance Unit and Clinical Pharmacology Department, Grenoble Alpes University Hospital, Grenoble, France
- These authors contributed equally to this work
| | - Alex Hlavaty
- Univ. Grenoble Alpes, HP2 Laboratory, INSERM U 1300, Grenoble, France
- Pharmacovigilance Unit and Clinical Pharmacology Department, Grenoble Alpes University Hospital, Grenoble, France
| | - Xavier Jaïs
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marie Camille Chaumais
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- School of Pharmacy, University of Paris-Saclay, Saclay, France
- AP-HP, Department of Pharmacy, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Mithum Kularatne
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
- Division of Respiratory Medicine, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mitja Jevnikar
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Athénaïs Boucly
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Frédéric Perros
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Gérald Simonneau
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Olivier Sitbon
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - David Montani
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Habib CN, Ali AE, Anber NH, George MY. Lactoferrin ameliorates carfilzomib-induced renal and pulmonary deficits: Insights to the inflammasome NLRP3/NF-κB and PI3K/Akt/GSK-3β/MAPK axes. Life Sci 2023; 335:122245. [PMID: 37926296 DOI: 10.1016/j.lfs.2023.122245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
AIMS Carfilzomib, an irreversible proteasome inhibitor, has been increasingly used to treat multiple myeloma worldwide. However, case studies showed its treatment has been associated with cardiac, renal, and pulmonary deleterious effects. Lactoferrin is an iron-binding glycoprotein present in milk. It is a multifunctional protein with antimicrobial activity, antitumor, antioxidant, and anti-inflammatory effects. Thus, this study aimed to assess the protective effects of lactoferrin against carfilzomib-induced nephrotoxicity and pulmonary toxicity, in addition to identifying the possible underlying molecular mechanisms. MAIN METHODS Mice were treated with lactoferrin (300 mg/kg/day) concomitantly with carfilzomib (4 mg/kg, i.p.) twice weekly for three weeks. Kidney and lung indices, serum creatinine, blood urea nitrogen (BUN), uric acid, kidney injury molecule-1 (KIM-1), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and histological examination were assessed. In addition, biochemical analyses of the inflammasome NLRP3/NF-κB and PI3K/Akt/GSK-3β/MAPK axes were conducted. KEY FINDINGS Treatment with lactoferrin decreased serum levels of creatinine, BUN, uric acid, KIM-1, ALP, AST, and LDH and reversed carfilzomib-induced histological changes in both kidney and lung. The inflammatory markers NLRP3, p65 NF-kB, caspases1, interleukin-1β, and interleukin-18, as well as the MAPK signaling pathway, were significantly reduced in renal and pulmonary tissues of mice following lactoferrin administration. Moreover, lactoferrin significantly counteracted carfilzomib-induced reduced expression of pAkt and pGSK-3β in both renal and pulmonary tissues. SIGNIFICANCE The current study suggests lactoferrin might be a promising candidate for ameliorating carfilzomib-induced nephrotoxicity and pulmonary toxicity.
Collapse
Affiliation(s)
- Christine N Habib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Alaa E Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Nahla H Anber
- Department of Biochemistry, the Emergency Hospital, Mansoura University, Mansoura, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| |
Collapse
|
5
|
Georgiopoulos G, Makris N, Laina A, Theodorakakou F, Briasoulis A, Trougakos IP, Dimopoulos MA, Kastritis E, Stamatelopoulos K. Cardiovascular Toxicity of Proteasome Inhibitors: Underlying Mechanisms and Management Strategies: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2023; 5:1-21. [PMID: 36875897 PMCID: PMC9982226 DOI: 10.1016/j.jaccao.2022.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023] Open
Abstract
Proteasome inhibitors (PIs) are the backbone of combination treatments for patients with multiple myeloma and AL amyloidosis, while also indicated in Waldenström's macroglobulinemia and other malignancies. PIs act on proteasome peptidases, causing proteome instability due to accumulating aggregated, unfolded, and/or damaged polypeptides; sustained proteome instability then induces cell cycle arrest and/or apoptosis. Carfilzomib, an intravenous irreversible PI, exhibits a more severe cardiovascular toxicity profile as compared with the orally administered ixazomib or intravenous reversible PI such as bortezomib. Cardiovascular toxicity includes heart failure, hypertension, arrhythmias, and acute coronary syndromes. Because PIs are critical components of the treatment of hematological malignancies and amyloidosis, managing their cardiovascular toxicity involves identifying patients at risk, diagnosing toxicity early at the preclinical level, and offering cardioprotection if needed. Future research is required to elucidate underlying mechanisms, improve risk stratification, define the optimal management strategy, and develop new PIs with safe cardiovascular profiles.
Collapse
Key Words
- ACE, angiotensin-converting enzyme
- ACS, acute coronary syndrome
- AE, adverse event
- AF, atrial fibrillation
- ARB, angiotensin receptor blocker
- ASCT, autologous stem cell transplantation
- BP, blood pressure
- CVAE, cardiovascular adverse event
- ESC, European Society of Cardiology
- FMD, flow-mediated dilatation
- GLS, global longitudinal strain
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- IHD, ischemic heart disease
- IMiD, immunomodulatory drug
- Kd, carfilzomib and dexamethasone
- LA, left atrial
- LV, left ventricular
- LVEF, left ventricular ejection fraction
- MM, multiple myeloma
- NO, nitric oxide
- NP, natriuretic peptide
- OS, overall survival
- PBMC, peripheral blood mononuclear cell
- PFS, progression-free survival
- PH, pulmonary hypertension
- PI, proteasome inhibitor
- PWV, pulse wave velocity
- PrA, proteasome activity
- RRMM, relapse or refractory multiple myeloma
- SBP, systolic blood pressure
- TMA, thrombotic microangiopathy
- UPP, ubiquitin proteasome pathway
- VTE, venous thromboembolism
- Vd, bortezomib and dexamethasone
- WM, Waldenström’s macroglobulinemia
- bortezomib
- cardiovascular toxicity
- carfilzomib
- eNOS, endothelial nitric oxide synthase
- ixazomib
- proteasome inhibition
Collapse
Affiliation(s)
- Georgios Georgiopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Nikolaos Makris
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ageliki Laina
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Theodorakakou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | | | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Etiology of pulmonary hypertension in multiple myeloma: A case series and literature review. Respir Med 2023; 206:107071. [PMID: 36508985 DOI: 10.1016/j.rmed.2022.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Multiple myeloma is often complicated by pulmonary hypertension through a variety of mechanisms. These mechanisms include pulmonary hypertension (PH) due to concomitant cardiac amyloid, high output heart failure due to anemia or lytic bone lesions, chronic thromboembolic pulmonary hypertension (CTEPH), toxicity from medications to treat multiple myeloma, and congestive heart failure. This case series highlights the various mechanisms through which multiple myeloma patients develop pulmonary hypertension. OBJECTIVES To identify the etiologies of pulmonary hypertension and their management among multiple myeloma patients treated at University of California San Diego. METHODS A retrospective chart review was performed to identify patients with multiple myeloma and pulmonary hypertension who were evaluated at the University of California San Diego between July 2013 and July 2021. Patients also required a right heart catheterization to be included. Demographics, comorbidities, clinical course, and etiology of pulmonary hypertension were obtained from chart review. RESULTS There were 11 patients included. Of the 11 patients described, two had PH due to cardiac amyloid, one had PH due to high output heart failure, one had PH due to CTEPH, two had pulmonary arterial hypertension due to medications (carfilzomib), and five had PH due to congestive heart failure. The right heart catheterization and echocardiogram findings of the various mechanisms of PH in multiple myeloma are described. CONCLUSIONS Pulmonary hypertension in multiple myeloma is a common finding that necessitates further evaluation. The initial evaluation should include an echocardiogram and thorough medication review. Further diagnostic testing should be guided by the patient's history and can include right heart catheterization, cardiac biopsy, ventilation-perfusion scan, and bone scan.
Collapse
|