1
|
van Blokland IV, Oelen R, Groot HE, Benjamins JW, Pekayvaz K, Losert C, Knottenberg V, Heinig M, Nicolai L, Stark K, van der Harst P, Franke L, van der Wijst MG. Single-Cell Dissection of the Immune Response After Acute Myocardial Infarction. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004374. [PMID: 38752343 PMCID: PMC11188632 DOI: 10.1161/circgen.123.004374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/17/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The immune system's role in ST-segment-elevated myocardial infarction (STEMI) remains poorly characterized but is an important driver of recurrent cardiovascular events. While anti-inflammatory drugs show promise in reducing recurrence risk, their broad immune system impairment may induce severe side effects. To overcome these challenges, a nuanced understanding of the immune response to STEMI is needed. METHODS For this, we compared peripheral blood mononuclear single-cell RNA-sequencing (scRNA-seq) and plasma protein expression over time (hospital admission, 24 hours, and 6-8 weeks post-STEMI) in 38 patients and 38 controls (95 995 diseased and 33 878 control peripheral blood mononuclear cells). RESULTS Compared with controls, classical monocytes were increased and CD56dim natural killer cells were decreased in patients with STEMI at admission and persisted until 24 hours post-STEMI. The largest gene expression changes were observed in monocytes, associating with changes in toll-like receptor, interferon, and interleukin signaling activity. Finally, a targeted cardiovascular biomarker panel revealed expression changes in 33/92 plasma proteins post-STEMI. Interestingly, interleukin-6R, MMP9 (matrix metalloproteinase-9), and LDLR (low-density lipoprotein receptor) were affected by coronary artery disease-associated genetic risk variation, disease status, and time post-STEMI, indicating the importance of considering these aspects when defining potential future therapies. CONCLUSIONS Our analyses revealed the immunologic pathways disturbed by STEMI, specifying affected cell types and disease stages. Additionally, we provide insights into patients expected to benefit most from anti-inflammatory treatments by identifying the genetic variants and disease stage at which these variants affect the outcome of these (drug-targeted) pathways. These findings advance our knowledge of the immune response post-STEMI and provide guidance for future therapeutic studies.
Collapse
Affiliation(s)
- Irene V. van Blokland
- Department of Cardiology (I.V.B., H.E.G., J.W.B.), University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics (I.V.B., R.O., L.F., M.G.P.v.d.W.), University Medical Center Groningen, Groningen, the Netherlands
| | - Roy Oelen
- Department of Genetics (I.V.B., R.O., L.F., M.G.P.v.d.W.), University Medical Center Groningen, Groningen, the Netherlands
| | - Hilde E. Groot
- Department of Cardiology (I.V.B., H.E.G., J.W.B.), University Medical Center Groningen, Groningen, the Netherlands
| | - Jan Walter Benjamins
- Department of Cardiology (I.V.B., H.E.G., J.W.B.), University Medical Center Groningen, Groningen, the Netherlands
| | - Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, University Hospital, Ludwig-Maximilian University, Munich, Germany (K.P., V.K., L.N., K.S.)
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany (K.P., V.K., L.N., K.S.)
| | - Corinna Losert
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany (C.L., M.H.)
- Department of Computer Science, TUM School of Computation, Information & Technology, Garching, Germany (C.L., M.H.)
| | - Viktoria Knottenberg
- Medizinische Klinik und Poliklinik I, University Hospital, Ludwig-Maximilian University, Munich, Germany (K.P., V.K., L.N., K.S.)
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany (K.P., V.K., L.N., K.S.)
| | - Matthias Heinig
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany (C.L., M.H.)
- Department of Computer Science, TUM School of Computation, Information & Technology, Garching, Germany (C.L., M.H.)
- Department of Informatics, Ludwig-Maximilians Universität München, Munich, Germany (M.H.)
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital, Ludwig-Maximilian University, Munich, Germany (K.P., V.K., L.N., K.S.)
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany (K.P., V.K., L.N., K.S.)
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, University Hospital, Ludwig-Maximilian University, Munich, Germany (K.P., V.K., L.N., K.S.)
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany (K.P., V.K., L.N., K.S.)
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands (P.v.d.H.)
| | - Lude Franke
- Department of Genetics (I.V.B., R.O., L.F., M.G.P.v.d.W.), University Medical Center Groningen, Groningen, the Netherlands
| | - Monique G.P. van der Wijst
- Department of Genetics (I.V.B., R.O., L.F., M.G.P.v.d.W.), University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Elahimanesh M, Shokri N, Mahdinia E, Mohammadi P, Parvaz N, Najafi M. Differential gene expression patterns in ST-elevation Myocardial Infarction and Non-ST-elevation Myocardial Infarction. Sci Rep 2024; 14:3424. [PMID: 38341440 PMCID: PMC10858964 DOI: 10.1038/s41598-024-54086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
The ST-elevation Myocardial Infarction (STEMI) and Non-ST-elevation Myocardial Infarction (NSTEMI) might occur because of coronary artery stenosis. The gene biomarkers apply to the clinical diagnosis and therapeutic decisions in Myocardial Infarction. The aim of this study was to introduce, enrich and estimate timely the blood gene profiles based on the high-throughput data for the molecular distinction of STEMI and NSTEMI. The text mining data (50 genes) annotated with DisGeNET data (144 genes) were merged with the GEO gene expression data (5 datasets) using R software. Then, the STEMI and NSTEMI networks were primarily created using the STRING server, and improved using the Cytoscape software. The high-score genes were enriched using the KEGG signaling pathways and Gene Ontology (GO). Furthermore, the genes were categorized to determine the NSTEMI and STEMI gene profiles. The time cut-off points were identified statistically by monitoring the gene profiles up to 30 days after Myocardial Infarction (MI). The gene heatmaps were clearly created for the STEMI (high-fold genes 69, low-fold genes 45) and NSTEMI (high-fold genes 68, low-fold genes 36). The STEMI and NSTEMI networks suggested the high-score gene profiles. Furthermore, the gene enrichment suggested the different biological conditions for STEMI and NSTEMI. The time cut-off points for the NSTEMI (4 genes) and STEMI (13 genes) gene profiles were established up to three days after Myocardial Infarction. The study showed the different pathophysiologic conditions for STEMI and NSTEMI. Furthermore, the high-score gene profiles are suggested to measure up to 3 days after MI to distinguish the STEMI and NSTEMI.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Elmira Mahdinia
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Payam Mohammadi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Najmeh Parvaz
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Rydell E, Jacobsson LT, Saxne T, Turesson C. Cardiovascular disease risk in early rheumatoid arthritis: the impact of cartilage oligomeric matrix protein (COMP) and disease activity. BMC Rheumatol 2023; 7:43. [PMID: 38037148 PMCID: PMC10690963 DOI: 10.1186/s41927-023-00367-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND To investigate whether baseline serum cartilage oligomeric matrix protein (COMP), patient characteristics, traditional cardiovascular disease (CVD) risk factors and disease activity over time predict CVD, in early rheumatoid arthritis (RA). METHODS This study included patients with early RA (< 12 months disease duration) (n = 233) recruited 1995-2005. Potential predictors of CVD and coronary artery disease (CAD) were assessed using Cox regression. RESULTS A first ever diagnosis of CVD occurred in 70 patients, and CAD in 52. Age, sex, hypertension and diabetes predicted CVD and CAD. COMP was associated with increased risk of CVD and CAD [crude hazard ratios (HRs) per SD 1.45; 95% CI 1.17-1.80 and 1.51; 95% CI 1.18-1.92, respectively]. When adjusted for age, sex, hypertension, diabetes and ESR, results where similar but did not reach significance [HRs 1.32, 95% CI 0.99-1.74 and 1.35, 95% CI 0.99-1.86]. Baseline disease activity did not independently predict CVD. High DAS28 (> 5.1) at two years was associated with increased risk of subsequent CVD [adjusted HR 2.58; 95% CI 1.10-6.04] and CAD. ESR and CRP at two years as well as cumulative disease activity over 2 years independently predicted CVD and CAD. CONCLUSION COMP may be a novel predictor of CVD and CAD in RA. Active disease two years after RA diagnosis, as well as cumulative disease activity, was associated with increased risk of CVD and CAD, independent of traditional CVD risk factors. Awareness of the particularly increased CVD risk among difficult to treat patients is important in order to further reduce CVD in RA.
Collapse
Affiliation(s)
- Emil Rydell
- Rheumatology, Department of Clinical Sciences, Lund University, Jan Waldenströms gata 1B, Malmö, Malmö, SE-205 02, Sweden.
| | - Lennart Th Jacobsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at Gothenburg University, Guldhedsgatan 10 A, Göteborg, SE-405 30, Sweden
| | - Tore Saxne
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences, Lund University, Kioskgatan 3, Lund, Lund, SE-222 42, Sweden
| | - Carl Turesson
- Rheumatology, Department of Clinical Sciences, Lund University, Jan Waldenströms gata 1B, Malmö, Malmö, SE-205 02, Sweden
- Department of Rheumatology, Skåne University Hospital, Jan Waldenströms gata 1B, Malmö, SE-205 02, Sweden
| |
Collapse
|
4
|
Forbes T, Pauza AG, Adams JC. In the balance: how do thrombospondins contribute to the cellular pathophysiology of cardiovascular disease? Am J Physiol Cell Physiol 2021; 321:C826-C845. [PMID: 34495764 DOI: 10.1152/ajpcell.00251.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thrombospondins (TSPs) are multidomain, secreted proteins that associate with cell surfaces and extracellular matrix. In mammals, there is a large body of data on functional roles of various TSP family members in cardiovascular disease (CVD), including stroke, cardiac remodeling and fibrosis, atherosclerosis, and aortic aneurysms. Coding single nucleotide polymorphisms (SNPs) of TSP1 or TSP4 are also associated with increased risk of several forms of CVD. Whereas interactions and functional effects of TSPs on a variety of cell types have been studied extensively, the molecular and cellular basis for the differential effects of the SNPs remains under investigation. Here, we provide an integrative review on TSPs, their roles in CVD and cardiovascular cell physiology, and known properties and mechanisms of TSP SNPs relevant to CVD. In considering recent expansions to knowledge of the fundamental cellular roles and mechanisms of TSPs, as well as the effects of wild-type and variant TSPs on cells of the cardiovascular system, we aim to highlight knowledge gaps and areas for future research or of translational potential.
Collapse
Affiliation(s)
- Tessa Forbes
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Audrys G Pauza
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
5
|
Chen Y, Luan J, Jiang T, Cai D, Sun C, Wang X, Zhao X, Gou X. Knockdown of EMMPRIN (OX47) in MRMT-1 Carcinoma Cells Inhibits Tumor Growth and Decreases Cancer-Induced Bone Destruction and Pain. Cancer Res Treat 2020; 53:576-583. [PMID: 33138345 PMCID: PMC8053874 DOI: 10.4143/crt.2020.801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/20/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose Bone destruction and pain caused by cancer is one of the most devastating complications of cancer patients with bone metastases, and it seriously affects the quality of patients’ life. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a cell adhesion molecule with increased expression in a variety of tumors. This study focused to clarify the specific function of EMMPRIN in bone metastasis of breast cancer. Materials and Methods Adenovirus with shRNA-EMMPRIN was transfected into MRMT-1 rat breast carcinoma cells, and the MRMT-1 cells with different expression levels of EMMPRIN were implanted into the bone marrow cavity of rat tibia. Next, the effect of down-regulation of EMMPRIN was evaluated as follows: bone damage was detected by X-ray radiological and tartrate-resistant acid phosphatase staining; the tumor burden was evaluated by hematoxylin and eosin staining; the test of pain-related behaviors was assessed used the bilateral paw withdrawal mechanical threshold; and the levels of secretory factors in tumor conditioned medium were determined by using enzyme-linked immunosorbent assay. Results We found that down-regulation of EMMPRIN in tumor cells can simultaneously reduce tumor burden, relieve cancer-induced bone destruction and pain. Conclusion EMMPRIN is expected to be a therapeutic target for relieving bone metastasis of breast cancer and alleviating cancer-induced bone destruction and pain. The method of targeting EMMPRIN may be a promising strategy for the treatment of cancer in the future.
Collapse
Affiliation(s)
- Yanke Chen
- Department of Cell Biology and Genetics and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Jing Luan
- Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Ting Jiang
- Department of Cell Biology and Genetics and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Donghui Cai
- Department of Cell Biology and Genetics and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Chao Sun
- Department of Obstetrics, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Zhao
- Department of Cell Biology and Genetics and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
6
|
Serum Cartilage Oligomeric Matrix Protein in Late-Stage Osteoarthritis: Association with Clinical Features, Renal Function, and Cardiovascular Biomarkers. J Clin Med 2020; 9:jcm9010268. [PMID: 31963737 PMCID: PMC7019234 DOI: 10.3390/jcm9010268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/20/2022] Open
Abstract
This study aimed to assess associations between serum cartilage oligomeric matrix protein (sCOMP) and phenotypic characteristics in late-stage hip and knee Osteoarthritis (OA) as well as its correlation with further serum markers of possible comorbidities in the Ulm Osteoarthritis Study. Moreover, the prognostic relevance of preoperative sCOMP concentrations for short-term functionality and pain outcomes after hip or knee joint replacement was explored. Preoperative serum samples and detailed information about the health status (i.e., WOMAC scores, Hannover Functionality Status (FFbH)) of 754 OA patients undergoing total joint replacement were included. Spearman rank-correlation coefficients and multiple linear regression models were used to evaluate the relationships between sCOMP, other serum markers, and health outcomes. There was a significant positive association between sCOMP and markers of renal (cystatin C, creatinine, and eGFR) and cardiac (e.g., NT-proBNP) impairment. Since renal failure might cause accumulation of sCOMP, additional adjustment with eGFR was performed. Preoperative sCOMP levels in knee OA but not hip OA patients were positively associated with FFbH, WOMAC function sub-scale and total WOMAC scale as well as the post-operative WOMAC stiffness sub-scale six months after surgery. Our data clearly demonstrate an association between sCOMP and renal function as well as other confounding factors, which should be considered in future biomarker studies.
Collapse
|
7
|
Weng Y, Chen T, Ren J, Lu D, Liu X, Lin S, Xu C, Lou J, Chen X, Tang L. The Association Between Extracellular Matrix Metalloproteinase Inducer Polymorphisms and Coronary Heart Disease: A Potential Way to Predict Disease. DNA Cell Biol 2020; 39:244-254. [PMID: 31928425 DOI: 10.1089/dna.2019.5015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Extracellular matrix metalloproteinase inducer (EMMPRIN) had been reported to be involved in the occurrence and development of coronary heart disease (CHD) in previous studies. This study aimed to investigate whether single nucleotide polymorphisms of EMMPRIN and matrix metalloproteinase-9 (MMP-9) contributed to the onset and severity of CHD. One thousand seventy patients suspected to have CHD were enrolled into the study. Each patient had undergone coronary angiogram, and the severity of coronary artery stenosis was assessed by Gensini score. Eight hundred twelve patients were confirmed to have CHD, while 258 patients were selected as non-CHD control. All patients were genotyped for five EMMPRIN polymorphisms (rs8259, rs28915400, rs4919859, rs6758, and rs8637) and one MMP-9 polymorphism (rs3918242) by polymerase chain reaction-restriction fragment length polymorphism and confirmed by direct sequencing. EMMPRIN polymorphism rs8259 and MMP-9 polymorphism rs3918242 were found to be associated with CHD (rs8259: AT vs. AA, adjusted odds ratio [OR] = 2.038, adjusted 95% confidence interval [CI] = 1.080-3.847, p = 0.028; rs3918242: CT vs. CC, adjusted OR = 0.607, adjusted 95% CI = 0.403-0.916, p = 0.017, TT vs. CC, adjusted OR = 2.559, adjusted 95% CI = 1.326-4.975, p = 0.006). No crossover effects were observed although a single environmental or genetic factor had an impact on the occurrence of CHD. The value of the Gensini score revealed that severity of CHD decreased in the rs3918242 CT carriers in both the male and female population. Our study suggested that EMMPRIN rs8259 and MMP-9 rs3918242 polymorphisms may contribute to pathological process of CHD. It could play a critical role in the prediction of CHD.
Collapse
Affiliation(s)
- Yingzheng Weng
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Tingting Chen
- Department of Cardiology, Taizhou Hospital, Taizhou, China.,Department of Medicine, The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jianfei Ren
- Department of Internal Medicine, Lihuili Hospital Affiliated Ningbo University, Ningbo, China
| | - Difan Lu
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaowei Liu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Senna Lin
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Chenkai Xu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Jiangjie Lou
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Xiaofeng Chen
- Department of Cardiology, Taizhou Hospital, Taizhou, China.,Department of Medicine, The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China.,Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China.,Department of Cardiology, Taizhou Hospital, Taizhou, China.,Department of Medicine, The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China.,Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Piepoli MF. Editor’s presentation. Eur J Prev Cardiol 2019; 26:115-116. [DOI: 10.1177/2047487318821813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Dregan A. Cardiovascular disease risk and mortality within inflammatory bowel disorders: Opposing or congruent effects? Eur J Prev Cardiol 2018; 25:1621-1622. [DOI: 10.1177/2047487318797401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Alex Dregan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, UK
| |
Collapse
|
10
|
Evaluation of potential effects of Plastin 3 overexpression and low-dose SMN-antisense oligonucleotides on putative biomarkers in spinal muscular atrophy mice. PLoS One 2018; 13:e0203398. [PMID: 30188931 PMCID: PMC6126849 DOI: 10.1371/journal.pone.0203398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Spinal muscular atrophy (SMA) is a devastating motor neuron disorder caused by homozygous loss of the survival motor neuron 1 (SMN1) gene and insufficient functional SMN protein produced by the SMN2 copy gene. Additional genetic protective modifiers such as Plastin 3 (PLS3) can counteract SMA pathology despite insufficient SMN protein. Recently, Spinraza, an SMN antisense oligonucleotide (ASO) that restores full-length SMN2 transcripts, has been FDA- and EMA-approved for SMA therapy. Hence, the availability of biomarkers allowing a reliable monitoring of disease and therapy progression would be of great importance. Our objectives were (i) to analyse the feasibility of SMN and of six SMA biomarkers identified by the BforSMA study in the Taiwanese SMA mouse model, (ii) to analyse the effect of PLS3 overexpression on these biomarkers, and (iii) to assess the impact of low-dose SMN-ASO therapy on the level of SMN and the six biomarkers. METHODS At P10 and P21, the level of SMN and six putative biomarkers were compared among SMA, heterozygous and wild type mice, with or without PLS3 overexpression, and with or without presymptomatic low-dose SMN-ASO subcutaneous injection. SMN levels were measured in whole blood by ECL immunoassay and of six SMA putative biomarkers, namely Cartilage Oligomeric Matrix Protein (COMP), Dipeptidyl Peptidase 4 (DPP4), Tetranectin (C-type Lectin Family 3 Member B, CLEC3B), Osteopontin (Secreted Phosphoprotein 1, SPP1), Vitronectin (VTN) and Fetuin A (Alpha 2-HS Glycoprotein, AHSG) in plasma. RESULTS SMN levels were significantly discernible between SMA, heterozygous and wild type mice. However, no significant differences were measured upon low-dose SMN-ASO treatment compared to untreated animals. Of the six biomarkers, only COMP and DPP4 showed high and SPP1 moderate correlation with the SMA phenotype. PLS3 overexpression neither influenced the SMN level nor the six biomarkers, supporting the hypothesis that PLS3 acts as an independent protective modifier.
Collapse
|
11
|
Aimo A, Botto N, Vittorini S, Emdin M. Polymorphisms in the eNOS gene and the risk of coronary artery disease: Making the case for genome-wide association studies. Eur J Prev Cardiol 2018; 26:157-159. [DOI: 10.1177/2047487318797402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alberto Aimo
- Cardiology Division, University Hospital of Pisa, Italy
| | - Nicoletta Botto
- Cardiology and Cardiovascular Medicine Division, Fondazione Toscana G. Monasterio, Italy
| | - Simona Vittorini
- Cardiology and Cardiovascular Medicine Division, Fondazione Toscana G. Monasterio, Italy
| | - Michele Emdin
- Cardiology and Cardiovascular Medicine Division, Fondazione Toscana G. Monasterio, Italy
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Italy
| |
Collapse
|
12
|
Nielsen SH, Mouton AJ, DeLeon-Pennell KY, Genovese F, Karsdal M, Lindsey ML. Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes. Matrix Biol 2017; 75-76:43-57. [PMID: 29247693 DOI: 10.1016/j.matbio.2017.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/02/2017] [Accepted: 12/08/2017] [Indexed: 01/08/2023]
Abstract
Cardiovascular Disease (CVD) is the most common cause of death in industrialized countries, and myocardial infarction (MI) is a major CVD with significant morbidity and mortality. Following MI, the left ventricle (LV) undergoes a wound healing response to ischemia that results in extracellular matrix (ECM) scar formation to replace necrotic myocytes. While ECM accumulation following MI is termed cardiac fibrosis, this is a generic term that does not differentiate between ECM accumulation that occurs in the infarct region to form a scar that is structurally necessary to preserve left ventricle (LV) wall integrity and ECM accumulation that increases LV wall stiffness to exacerbate dilation and stimulate the progression to heart failure. This review focuses on post-MI LV ECM remodeling, targeting the discussion on ECM biomarkers that could be useful for predicting MI outcomes.
Collapse
Affiliation(s)
- Signe Holm Nielsen
- Fibrosis Biology and Biomarkers, Nordic Bioscience, Herlev, Denmark; Disease Systems Immunology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Alan J Mouton
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kristine Y DeLeon-Pennell
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA
| | | | - Morten Karsdal
- Fibrosis Biology and Biomarkers, Nordic Bioscience, Herlev, Denmark
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA.
| |
Collapse
|
13
|
Piepoli MF. Editor’s Presentation. Eur J Prev Cardiol 2017; 24:1123-1125. [DOI: 10.1177/2047487317713862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|