1
|
Kolahi S, Tahamtan M, Sarvari M, Zarei D, Afsharzadeh M, Firouznia K, Yousem DM. Diagnostic Performance of TOF, 4D MRA, Arterial Spin-Labeling, and Susceptibility-Weighted Angiography Sequences in the Post-Radiosurgery Monitoring of Brain AVMs. AJNR Am J Neuroradiol 2025; 46:57-65. [PMID: 39025641 PMCID: PMC11735419 DOI: 10.3174/ajnr.a8420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Brain AVMs are congenital anomalies of the cerebrovascular system, often discovered incidentally or through symptomatic presentations such as intracranial hemorrhage, seizure, headache, or neurologic deficits. Various treatment modalities exist for AVMs, including radiosurgery, a treatment technique that is noninvasive and efficient. Accurate imaging is crucial for risk assessment, treatment planning, and monitoring of these patients before and after radiosurgery. PURPOSE Currently, DSA is the preferred imaging technique. Despite its efficacy, DSA is notably invasive, presenting inherent risks to the patients. This systematic review and meta-analysis aimed to evaluate the efficacy of MRI sequences for monitoring brain AVMs after radiosurgery. DATA SOURCE We performed a comprehensive search of PubMed, Scopus, Web of Science, and EMBASE databases and a methodologic quality assessment with the QUADAS-2 checklist diagnostic test accuracy. STUDY SELECTION According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 3,220 abstracts were screened, 98 articles were reviewed in full text, and 14 articles met the inclusion criteria. DATA ANALYSIS We used the bivariate random-effects meta-analysis model with STATA/MP 17 software for data analysis. DATA SYNTHESIS No publication bias was detected. Fourteen studies were eligible for qualitative and quantitative analysis. MRI offers high sensitivity (85%) and specificity (99%) in detecting residual AVMs. Different MRI sequences, including 3D TOF-MRA, 4D MRA, and arterial spin-labeling (ASL) demonstrated varying diagnostic accuracies with areas under the curve of 0.92, 0.97, and 0.96, respectively. 4D MRA had a sensitivity of 72% and specificity of 99%, ASL showed a sensitivity of 90% and specificity of 92%, while 3D TOF-MRA had 90% sensitivity and 87% specificity. LIMITATIONS Meta-regression did not fully explain the sources of heterogeneity. Only 1 study assessed the susceptibility-weighted angiography (SWAN) method, and most studies involved small participant groups with varied MR techniques and sequences. Additionally, the retrospective nature of most studies may introduce bias, warranting cautious interpretation of the results. CONCLUSIONS MRI sequences show acceptable diagnostic performance in postradiosurgery monitoring of brain AVMs, with ASL and 4D MRA showing acceptable diagnostic accuracy. Combining different MRI sequences may further enhance diagnostic reliability. However, further investigation is needed to assess whether MRI sequences can serve as a feasible substitute for DSA, considering their risk-benefit profile, with the potential to establish them as the recommended standard.
Collapse
Affiliation(s)
- Shahriar Kolahi
- From the Advanced Diagnostic and Interventional Radiology Research Center (S.K., M.T., M.S., D.Z., M.A., K.F.), Department of Radiology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Tahamtan
- From the Advanced Diagnostic and Interventional Radiology Research Center (S.K., M.T., M.S., D.Z., M.A., K.F.), Department of Radiology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sarvari
- From the Advanced Diagnostic and Interventional Radiology Research Center (S.K., M.T., M.S., D.Z., M.A., K.F.), Department of Radiology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center (M.S.), Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Diana Zarei
- From the Advanced Diagnostic and Interventional Radiology Research Center (S.K., M.T., M.S., D.Z., M.A., K.F.), Department of Radiology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Afsharzadeh
- From the Advanced Diagnostic and Interventional Radiology Research Center (S.K., M.T., M.S., D.Z., M.A., K.F.), Department of Radiology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Isfahan Neurosciences Research Center (M.A.), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kavous Firouznia
- From the Advanced Diagnostic and Interventional Radiology Research Center (S.K., M.T., M.S., D.Z., M.A., K.F.), Department of Radiology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - David M Yousem
- Office of Faculty (D.M.Y.), Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Radiology (D.M.Y.), Johns Hopkins University School of Medicine (JHUSOM), Baltimore, Maryland
| |
Collapse
|
2
|
Hak JF, Boulouis G, Kerleroux B, Benichi S, Stricker S, Gariel F, Garzelli L, Meyer P, Kossorotoff M, Boddaert N, Girard N, Vidal V, Dangouloff Ros V, Blauwblomme T, Naggara O. Noninvasive Follow-up Imaging of Ruptured Pediatric Brain AVMs Using Arterial Spin-Labeling. AJNR Am J Neuroradiol 2022; 43:1363-1368. [PMID: 36007951 PMCID: PMC9451641 DOI: 10.3174/ajnr.a7612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Brain AVMs represent the main etiology of pediatric intracranial hemorrhage. Noninvasive imaging techniques to monitor the treatment effect of brain AVMs remain an unmet need. In a large cohort of pediatric ruptured brain AVMs, we aimed to investigate the role of arterial spin-labeling for the longitudinal follow-up during treatment and after complete obliteration by analyzing CBF variations across treatment sessions. MATERIALS AND METHODS Consecutive patients with ruptured brain AVMs referred to a pediatric quaternary care center were prospectively included in a registry that was retrospectively queried for children treated between 2011 and 2019 with unimodal or multimodal treatment (surgery, radiosurgery, embolization). We included children who underwent an arterial spin-labeling sequence before and after treatment and a follow-up DSA. CBF variations were analyzed in univariable analyses. RESULTS Fifty-nine children with 105 distinct treatment sessions were included. The median CBF variation after treatment was -43 mL/100 mg/min (interquartile range, -102-5.5), significantly lower after complete nidal surgical resection. Following radiosurgery, patients who were healed on the last DSA follow-up demonstrated a greater CBF decrease on intercurrent MR imaging, compared with patients with a persisting shunt at last follow-up (mean, -62 [SD, 61] mL/100 mg/min versus -17 [SD, 40.1] mL/100 mg/min; P = .02). In children with obliterated AVMs, recurrences occurred in 12% and resulted in a constant increase in CBF (mean, +89 [SD, 77] mL/100 mg/min). CONCLUSIONS Our results contribute data on the role of noninvasive arterial spin-labeling monitoring of the response to treatment or follow-up after obliteration of pediatric AVMs. Future research may help to better delineate how arterial spin-labeling can assist in decisions regarding the optimal timing for DSA.
Collapse
Affiliation(s)
- J F Hak
- From the Department of Pediatric Radiology (J.F.H., G.B., B.K., F.G., L.G., N.B., V.D.R., O.N.)
- Department of Neuroradiology (J.F.H., G.B., B.K., O.N.), GHU Paris, Paris, France
- L'Institut National de la Santé et de la Recherche Médicale, University Hospital Group Paris, 1266, IMA-BRAIN (J.F.H., G.B., B.K., O.N.), Université de Paris, Paris, France
| | - G Boulouis
- From the Department of Pediatric Radiology (J.F.H., G.B., B.K., F.G., L.G., N.B., V.D.R., O.N.)
- Department of Neuroradiology (J.F.H., G.B., B.K., O.N.), GHU Paris, Paris, France
- L'Institut National de la Santé et de la Recherche Médicale, University Hospital Group Paris, 1266, IMA-BRAIN (J.F.H., G.B., B.K., O.N.), Université de Paris, Paris, France
| | - B Kerleroux
- From the Department of Pediatric Radiology (J.F.H., G.B., B.K., F.G., L.G., N.B., V.D.R., O.N.)
- Department of Neuroradiology (J.F.H., G.B., B.K., O.N.), GHU Paris, Paris, France
- L'Institut National de la Santé et de la Recherche Médicale, University Hospital Group Paris, 1266, IMA-BRAIN (J.F.H., G.B., B.K., O.N.), Université de Paris, Paris, France
| | - S Benichi
- Department of Pediatric Neurosurgery (S.B., S.S., T.B.), Institut Imagine, L'Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1163, Assistance Publique-Hôpitaux de Paris, Necker Hospital-Sick Children, Paris, France
| | - S Stricker
- Department of Pediatric Neurosurgery (S.B., S.S., T.B.), Institut Imagine, L'Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1163, Assistance Publique-Hôpitaux de Paris, Necker Hospital-Sick Children, Paris, France
| | - F Gariel
- From the Department of Pediatric Radiology (J.F.H., G.B., B.K., F.G., L.G., N.B., V.D.R., O.N.)
- Department of Neuroradiology (F.G.), University Hospital of Bordeaux, Bordeaux, France
| | - L Garzelli
- From the Department of Pediatric Radiology (J.F.H., G.B., B.K., F.G., L.G., N.B., V.D.R., O.N.)
| | - P Meyer
- Pediatric Neurointensive Care Unit (P.M.)
| | - M Kossorotoff
- Department of Pediatric Neurology (M.K.), Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire, Necker Hospital-Sick Children, Paris, France
- INSERM U894, French Center for Pediatric Stroke (M.K., T.B., O.N.), L'Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - N Boddaert
- From the Department of Pediatric Radiology (J.F.H., G.B., B.K., F.G., L.G., N.B., V.D.R., O.N.)
- Université de Paris (N.B., V.D.R.), L'Institut National de la Santé et de la Recherche Médicale, ERL, Paris, France
- Institut Imagine (N.B., V.D.R.),Université de Paris,Unité Mixte de Recherche 1163, Paris, France
| | - N Girard
- Departments of Neuroradiology (N.G.)
| | - V Vidal
- Radiology (V.V.), University Hospital La Timone Hospital, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - V Dangouloff Ros
- From the Department of Pediatric Radiology (J.F.H., G.B., B.K., F.G., L.G., N.B., V.D.R., O.N.)
- Université de Paris (N.B., V.D.R.), L'Institut National de la Santé et de la Recherche Médicale, ERL, Paris, France
- Institut Imagine (N.B., V.D.R.),Université de Paris,Unité Mixte de Recherche 1163, Paris, France
| | - T Blauwblomme
- Department of Pediatric Neurosurgery (S.B., S.S., T.B.), Institut Imagine, L'Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1163, Assistance Publique-Hôpitaux de Paris, Necker Hospital-Sick Children, Paris, France
- INSERM U894, French Center for Pediatric Stroke (M.K., T.B., O.N.), L'Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - O Naggara
- From the Department of Pediatric Radiology (J.F.H., G.B., B.K., F.G., L.G., N.B., V.D.R., O.N.)
- Department of Neuroradiology (J.F.H., G.B., B.K., O.N.), GHU Paris, Paris, France
- L'Institut National de la Santé et de la Recherche Médicale, University Hospital Group Paris, 1266, IMA-BRAIN (J.F.H., G.B., B.K., O.N.), Université de Paris, Paris, France
- INSERM U894, French Center for Pediatric Stroke (M.K., T.B., O.N.), L'Institut National de la Santé et de la Recherche Médicale, Paris, France
| |
Collapse
|
3
|
Kosaka N, Fujiwara Y, Kurokawa T, Matsuda T, Kanamoto M, Takei N, Takata K, Takahashi J, Yoshida Y, Kimura H. Evaluation of retained products of conception using pulsed continuous arterial spin-labeling MRI: clinical feasibility and initial results. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 31:577-584. [PMID: 29549455 DOI: 10.1007/s10334-018-0681-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVES We evaluated the vascularity of retained products of conception (RPOC) using arterial spin-labeling magnetic resonance imaging (ASL-MRI) to clarify the clinical feasibility of this approach. MATERIALS AND METHODS A pulsed-continuous ASL sequence with echo-planar imaging (EPI) acquisitions was used. Ten consecutive patients with RPOC were enrolled. All ASL images were evaluated visually and semiquantitatively and compared with the findings of Doppler ultrasound (US) and dynamic contrast-enhanced MRI (DCE-MRI). RESULTS The technical success rate was 93.7% (15/16 scans). One failed case was excluded from the analysis. Six patients showed quite high signals over RPOC, while three patients showed no abnormal signals. Doppler US alone failed to detect the hypervascular area in two cases, and ASL-MRI alone failed in three. A significant linear correlation was found between semiquantitative values of ASL-MRI and DCE-MRI. All six patients showing high signals on ASL-MRI underwent follow-up MRI after therapy. High signals in five patients decreased visually and semiquantitatively, while one patient showed signal increases. CONCLUSION Evaluation of RPOC using ASL-MRI was clinically feasible and response to therapy could be evaluated. However, the clinical advantages over conventional imaging remain unclear and need to be evaluated.
Collapse
Affiliation(s)
- Nobuyuki Kosaka
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan.
| | - Yasuhiro Fujiwara
- Department of Medical Imaging, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto, Kumamoto, 862-0976, Japan
| | - Tetsuji Kurokawa
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Tsuyoshi Matsuda
- Global MR Applications and Workflow, GE Healthcare Japan Corporation, 4-7-127, Asahigaoka, Hino, Tokyo, 191-8503, Japan
| | - Masayuki Kanamoto
- Radiological Center, University of Fukui Hospital, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Naoyuki Takei
- Global MR Applications and Workflow, GE Healthcare Japan Corporation, 4-7-127, Asahigaoka, Hino, Tokyo, 191-8503, Japan
| | - Kenji Takata
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Jin Takahashi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Hirohiko Kimura
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| |
Collapse
|
4
|
Abstract
OBJECTIVE Brain arteriovenous malformation (AVM) rupture results in substantial morbidity and mortality. The goal of AVM treatment is eradication of the AVM, but the risk of treatment must be weighed against the risk of future hemorrhage. CONCLUSION Imaging plays a vital role by providing the information necessary for AVM management. Here, we discuss the background, natural history, clinical presentation, and imaging of AVMs. In addition, we explain advances in techniques for imaging AVMs.
Collapse
|
5
|
Tanaka T, Hiramatsu K, Nosaka T, Saito Y, Naito T, Takahashi K, Ofuji K, Matsuda H, Ohtani M, Nemoto T, Suto H, Yamamoto T, Kimura H, Nakamoto Y. Pituitary metastasis of hepatocellular carcinoma presenting with panhypopituitarism: a case report. BMC Cancer 2015; 15:863. [PMID: 26545979 PMCID: PMC4636744 DOI: 10.1186/s12885-015-1831-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/16/2015] [Indexed: 11/24/2022] Open
Abstract
Background Metastasis to the pituitary gland is extremely rare and is often detected incidentally by symptoms associated with endocrine dysfunction. Breast and lung cancer are the most common primary metastasizing to pituitary gland. Metastasis from hepatocellular carcinoma to the pituitary gland is extremely rare, with only 10 cases having been previously reported. We present here the first case of pituitary metastasis of hepatocellular carcinoma presenting with panhypopituitarism diagnosed by magnetic resonance imaging. Case presentation We report the case of an 80-year-old Japanese woman who presented with the sudden onset of hypotension and bradycardia after having previously been diagnosed with hepatocellular carcinoma. Based on low levels of pituitary hormones, she was diagnosed with panhypopituitarism caused by metastasis of the hepatocellular carcinoma to the pituitary gland. Magnetic resonance imaging with arterial spin-labeling was effective in the differential diagnosis of the intrasellar tumor. The patient died despite hormone replacement therapy because of hypovolemic shock. Conclusion Metastasis to the pituitary gland causes various non-specific symptoms, so it is difficult to diagnose. The present case emphasizes the importance of diagnostic imaging in identifying these metastases. Clinicians should consider the possibility of pituitary metastasis in patients with malignant tumors who demonstrate hypopituitarism.
Collapse
Affiliation(s)
- Tomoko Tanaka
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Katsushi Hiramatsu
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Takuto Nosaka
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Yasushi Saito
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Tatsushi Naito
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Kazuto Takahashi
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Kazuya Ofuji
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Hidetaka Matsuda
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Masahiro Ohtani
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Tomoyuki Nemoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Hiroyuki Suto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Tatsuya Yamamoto
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Hirohiko Kimura
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| |
Collapse
|
6
|
A neuroradiologist's guide to arterial spin labeling MRI in clinical practice. Neuroradiology 2015; 57:1181-202. [PMID: 26351201 PMCID: PMC4648972 DOI: 10.1007/s00234-015-1571-z] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/05/2015] [Indexed: 01/01/2023]
Abstract
Arterial spin labeling (ASL) is a non-invasive MRI technique to measure cerebral blood flow (CBF). This review provides a practical guide and overview of the clinical applications of ASL of the brain, as well its potential pitfalls. The technical and physiological background is also addressed. At present, main areas of interest are cerebrovascular disease, dementia and neuro-oncology. In cerebrovascular disease, ASL is of particular interest owing to its quantitative nature and its capability to determine cerebral arterial territories. In acute stroke, the source of the collateral blood supply in the penumbra may be visualised. In chronic cerebrovascular disease, the extent and severity of compromised cerebral perfusion can be visualised, which may be used to guide therapeutic or preventative intervention. ASL has potential for the detection and follow-up of arteriovenous malformations. In the workup of dementia patients, ASL is proposed as a diagnostic alternative to PET. It can easily be added to the routinely performed structural MRI examination. In patients with established Alzheimer’s disease and frontotemporal dementia, hypoperfusion patterns are seen that are similar to hypometabolism patterns seen with PET. Studies on ASL in brain tumour imaging indicate a high correlation between areas of increased CBF as measured with ASL and increased cerebral blood volume as measured with dynamic susceptibility contrast-enhanced perfusion imaging. Major advantages of ASL for brain tumour imaging are the fact that CBF measurements are not influenced by breakdown of the blood–brain barrier, as well as its quantitative nature, facilitating multicentre and longitudinal studies.
Collapse
|