1
|
Sourkatti H, Pajula J, Keski-Kuha T, Koivisto J, Hilvo M, Lähteenmäki J. Predictive modeling for identification of older adults with high utilization of health and social services. Scand J Prim Health Care 2024; 42:609-616. [PMID: 38958358 PMCID: PMC11552250 DOI: 10.1080/02813432.2024.2372297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
AIM Machine learning techniques have demonstrated success in predictive modeling across various clinical cases. However, few studies have considered predicting the use of multisectoral health and social services among older adults. This research aims to utilize machine learning models to detect high-risk groups of excessive health and social services utilization at early stage, facilitating the implementation of preventive interventions. METHODS We used pseudonymized data covering a four-year period and including information on a total of 33,374 senior citizens from Southern Finland. The endpoint was defined based on the occurrence of unplanned healthcare visits and the total number of different services used. Input features included individual's basic demographics, health status and past usage of healthcare resources. Logistic regression and eXtreme Gradient Boosting (XGBoost) methods were used for binary classification, with the dataset split into 70% training and 30% testing sets. RESULTS Subgroup-based results mirrored trends observed in the full cohort, with age and certain health issues, e.g. mental health, emerging as positive predictors for high service utilization. Conversely, hospital stay and urban residence were associated with decreased risk. The models achieved a classification performance (AUC) of 0.61 for the full cohort and varying in the range of 0.55-0.62 for the subgroups. CONCLUSIONS Predictive models offer potential for predicting future high service utilization in the older adult population. Achieving high classification performance remains challenging due to diverse contributing factors. We anticipate that classification performance could be increased by including features based on additional data categories such as socio-economic data.
Collapse
Affiliation(s)
- Heba Sourkatti
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Juha Pajula
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Teemu Keski-Kuha
- Finnish Institute of Health and Welfare (THL), Helsinki, Finland
| | - Juha Koivisto
- Finnish Institute of Health and Welfare (THL), Helsinki, Finland
| | - Mika Hilvo
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | | |
Collapse
|
2
|
Li B, Beaton D, Eisenberg N, Lee DS, Wijeysundera DN, Lindsay TF, de Mestral C, Mamdani M, Roche-Nagle G, Al-Omran M. Using machine learning to predict outcomes following carotid endarterectomy. J Vasc Surg 2023; 78:973-987.e6. [PMID: 37211142 DOI: 10.1016/j.jvs.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
OBJECTIVE Prediction of outcomes following carotid endarterectomy (CEA) remains challenging, with a lack of standardized tools to guide perioperative management. We used machine learning (ML) to develop automated algorithms that predict outcomes following CEA. METHODS The Vascular Quality Initiative (VQI) database was used to identify patients who underwent CEA between 2003 and 2022. We identified 71 potential predictor variables (features) from the index hospitalization (43 preoperative [demographic/clinical], 21 intraoperative [procedural], and 7 postoperative [in-hospital complications]). The primary outcome was stroke or death at 1 year following CEA. Our data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, we trained six ML models using preoperative features (Extreme Gradient Boosting [XGBoost], random forest, Naïve Bayes classifier, support vector machine, artificial neural network, and logistic regression). The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). After selecting the best performing algorithm, additional models were built using intra- and postoperative data. Model robustness was evaluated using calibration plots and Brier scores. Performance was assessed on subgroups based on age, sex, race, ethnicity, insurance status, symptom status, and urgency of surgery. RESULTS Overall, 166,369 patients underwent CEA during the study period. In total, 7749 patients (4.7%) had the primary outcome of stroke or death at 1 year. Patients with an outcome were older with more comorbidities, had poorer functional status, and demonstrated higher risk anatomic features. They were also more likely to undergo intraoperative surgical re-exploration and have in-hospital complications. Our best performing prediction model at the preoperative stage was XGBoost, achieving an AUROC of 0.90 (95% confidence interval [CI], 0.89-0.91). In comparison, logistic regression had an AUROC of 0.65 (95% CI, 0.63-0.67), and existing tools in the literature demonstrate AUROCs ranging from 0.58 to 0.74. Our XGBoost models maintained excellent performance at the intra- and postoperative stages, with AUROCs of 0.90 (95% CI, 0.89-0.91) and 0.94 (95% CI, 0.93-0.95), respectively. Calibration plots showed good agreement between predicted and observed event probabilities with Brier scores of 0.15 (preoperative), 0.14 (intraoperative), and 0.11 (postoperative). Of the top 10 predictors, eight were preoperative features, including comorbidities, functional status, and previous procedures. Model performance remained robust on all subgroup analyses. CONCLUSIONS We developed ML models that accurately predict outcomes following CEA. Our algorithms perform better than logistic regression and existing tools, and therefore, have potential for important utility in guiding perioperative risk mitigation strategies to prevent adverse outcomes.
Collapse
Affiliation(s)
- Ben Li
- Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Toronto, ON, Canada
| | - Derek Beaton
- Data Science and Advanced Analytics Department, Unity Health Toronto, University of Toronto, Toronto, ON, Canada
| | - Naomi Eisenberg
- Division of Vascular Surgery, Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Douglas S Lee
- Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; ICES, University of Toronto, Toronto, ON, Canada
| | - Duminda N Wijeysundera
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; ICES, University of Toronto, Toronto, ON, Canada; Department of Anesthesia, St Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Thomas F Lindsay
- Department of Surgery, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Division of Vascular Surgery, Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Charles de Mestral
- Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; ICES, University of Toronto, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Muhammad Mamdani
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Toronto, ON, Canada; Data Science and Advanced Analytics Department, Unity Health Toronto, University of Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; ICES, University of Toronto, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Graham Roche-Nagle
- Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Vascular Surgery, Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Mohammed Al-Omran
- Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada; Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
4
|
Lareyre F, Behrendt CA, Chaudhuri A, Lee R, Carrier M, Adam C, Lê CD, Raffort J. Applications of artificial intelligence for patients with peripheral artery disease. J Vasc Surg 2023; 77:650-658.e1. [PMID: 35921995 DOI: 10.1016/j.jvs.2022.07.160] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/06/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Applications of artificial intelligence (AI) have been reported in several cardiovascular diseases but its interest in patients with peripheral artery disease (PAD) has been so far less reported. The aim of this review was to summarize current knowledge on applications of AI in patients with PAD, to discuss current limits, and highlight perspectives in the field. METHODS We performed a narrative review based on studies reporting applications of AI in patients with PAD. The MEDLINE database was independently searched by two authors using a combination of keywords to identify studies published between January 1995 and December 2021. Three main fields of AI were investigated including natural language processing (NLP), computer vision and machine learning (ML). RESULTS NLP and ML brought new tools to improve the screening, the diagnosis and classification of the severity of PAD. ML was also used to develop predictive models to better assess the prognosis of patients and develop real-time prediction models to support clinical decision-making. Studies related to computer vision mainly aimed at creating automatic detection and characterization of arterial lesions based on Doppler ultrasound examination or computed tomography angiography. Such tools could help to improve screening programs, enhance diagnosis, facilitate presurgical planning, and improve clinical workflow. CONCLUSIONS AI offers various applications to support and likely improve the management of patients with PAD. Further research efforts are needed to validate such applications and investigate their accuracy and safety in large multinational cohorts before their implementation in daily clinical practice.
Collapse
Affiliation(s)
- Fabien Lareyre
- Department of Vascular Surgery, Hospital of Antibes Juan-les-Pins, Antibes, France; Université Côte d'Azur, INSERM U1065, C3M, Nice, France.
| | - Christian-Alexander Behrendt
- Research Group GermanVasc, Department of Vascular Medicine, University Heart and Vascular Centre UKE Hamburg, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Arindam Chaudhuri
- Bedfordshire-Milton Keynes Vascular Centre, Bedfordshire Hospitals NHS Foundation Trust, Bedford, UK
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Marion Carrier
- Laboratory of Applied Mathematics and Computer Science (MICS), CentraleSupélec, Université Paris-Saclay, Paris, France
| | - Cédric Adam
- Laboratory of Applied Mathematics and Computer Science (MICS), CentraleSupélec, Université Paris-Saclay, Paris, France
| | - Cong Duy Lê
- Department of Vascular Surgery, Hospital of Antibes Juan-les-Pins, Antibes, France; Université Côte d'Azur, INSERM U1065, C3M, Nice, France
| | - Juliette Raffort
- Université Côte d'Azur, INSERM U1065, C3M, Nice, France; Clinical Chemistry Laboratory, University Hospital of Nice, Nice, France; AI Institute 3IA Côte d'Azur, Université Côte d'Azur, Côte d'Azur, France
| |
Collapse
|