1
|
Li H, Li X, Jain P, Peng H, Rahimi K, Singh S, Pich A. Dual-Degradable Biohybrid Microgels by Direct Cross-Linking of Chitosan and Dextran Using Azide-Alkyne Cycloaddition. Biomacromolecules 2020; 21:4933-4944. [PMID: 33210916 DOI: 10.1021/acs.biomac.0c01158] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this work, biocompatible and degradable biohybrid microgels based on chitosan and dextran were synthesized for drug delivery applications. Two kinds of bio-based building blocks, alkyne-modified chitosan and azide-modified dextran, were used to fabricate microgels via single-step cross-linking in water-in-oil emulsions. The cross-linking was initiated in the presence of copper(II) without the use of any extra cross-linkers. A series of pH-responsive and degradable microgels were successfully synthesized by varying the degree of cross-links. The microgels were characterized using 1H NMR and FTIR spectroscopy which proved the successful cross-linking of alkyne-modified chitosan and azide-modified dextran by copper(II)-mediated click reaction. The obtained microgels exhibit polyampholyte character and can carry positive or negative charges in aqueous solutions at different pH values. Biodegradability of microgels was shown at pH 9 or in the presence of Dextranase due to the hydrolysis of carbonate esters in the microgels or 1,6-α-glucosidic linkages in dextran structure, respectively. Furthermore, the microgels could encapsulate vancomycin hydrochloride (VM), an antibiotic, with a high loading of approximately 93.67% via electrostatic interactions. The payload could be released in the presence of Dextranase or under an alkaline environment, making the microgels potential candidates for drug delivery, such as colon-specific drug release.
Collapse
Affiliation(s)
- Helin Li
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Xin Li
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Puja Jain
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Huan Peng
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Khosrow Rahimi
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Smriti Singh
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52056 Aachen, Germany.,Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|