Chaves AR, Tremblay S, Pilutti L, Ploughman M. Lowered ratio of corticospinal excitation to inhibition predicts greater disability, poorer motor and cognitive function in multiple sclerosis.
Heliyon 2024;
10:e35834. [PMID:
39170378 PMCID:
PMC11337054 DOI:
10.1016/j.heliyon.2024.e35834]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Objective
Investigate excitatory-inhibitory (E/I) (im)balance using transcranial magnetic stimulation (TMS) in individuals with Multiple Sclerosis (MS) and determine its validity as a neurophysiological biomarker of disability.
Methods
Participants with MS (n = 83) underwent TMS, cognitive, and motor function assessments. TMS-induced motor evoked potential amplitudes (excitability) and cortical silent periods (inhibition) were assessed bilaterally through recruitment curves. The E/I ratio was calculated as the ratio of excitation to inhibition.
Results
Participants with greater disability (Expanded Disability Status Scale, EDSS≥3) exhibited lower excitability and increased inhibition compared to those with lower disability (EDSS<3). This resulted in lower E/I ratios in the higher disability group. Individuals with higher disability presented with asymmetrical E/I ratios between brain hemispheres, a pattern not present in the group with lower disability. In regression analyses controlling for demographics, lowered TMS-probed E/I ratio predicted variance in disability (R2 = 0.37, p < 0.001), upper extremity function (R2 = 0.35, p < 0.001), walking speed (R2 = 0.22, p = 0.005), and cognitive performance (R2 = 0.25, p = 0.007). Receiver Operating Characteristic curve analysis confirmed 'excellent' discriminative ability of the E/I ratio in distinguishing high and low disability. Finally, excitation superiorly correlated with the E/I ratio than overall inhibition in both hemispheres (p ≤ 0.01).
Conclusion
The E/I ratio is a potential neurophysiological biomarker of disability level in MS, especially when assessed in the hemisphere corresponding to the weaker body side. Interventions aimed at increasing cortical excitation or reducing inhibition may restore E/I balance potentially stalling progression or improving function in MS.
Collapse