1
|
Albakri AA, Alzahrani MM, Alghamdi SH. Medical Imaging in Pregnancy: Safety, Appropriate Utilization, and Alternative Modalities for Imaging Pregnant Patients. Cureus 2024; 16:e54346. [PMID: 38500900 PMCID: PMC10945608 DOI: 10.7759/cureus.54346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/20/2024] Open
Abstract
This article reviews the existing literature on diagnostic and medical imaging of pregnant women, the risks and safety measures of different medical imaging modalities, and alternative modalities for imaging pregnant patients. Different medical imaging modalities such as MRI, CT scan, ultrasound, nuclear medicine, and X-ray imaging help to evaluate women with recognized or unrecognized pregnancies and identify any underlying complications among pregnant patients. Fetuses are more sensitive to radiation and the effects of medical imaging as compared to adults since they have a rapidly developing cell system. During cell proliferation, migration, and differentiation, fetuses suffer greatly from imaging radiation since they are developing under a dynamic system. To ensure safety, pregnant women should discuss the benefits and risks of medical imaging with their physicians. In addition, radiologists should not perform any medical imaging procedure without the patient's consent, unless the patient cannot make any sound decision. Fetal risks of medical imaging include slow growth and development of the fetus, abortion, malformations, impaired brain function, abnormal childhood growth, and neurological development. Diagnostic imaging procedures are necessary when a condition that needs medical evaluation arises during pregnancy such as appendicitis.
Collapse
Affiliation(s)
| | | | - Saeed H Alghamdi
- Interventional Radiology, King Fahad General Hospital, Al Baha, SAU
| |
Collapse
|
2
|
Mainprize JG, Yaffe MJ, Chawla T, Glanc P. Effects of ionizing radiation exposure during pregnancy. Abdom Radiol (NY) 2023; 48:1564-1578. [PMID: 36933026 PMCID: PMC10024285 DOI: 10.1007/s00261-023-03861-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023]
Abstract
PURPOSE To review the effects of ionizing radiation to the conceptus and the relationship to the timing of the exposure during pregnancy. To consider strategies that would mitigate potential harms associated with exposure to ionizing radiation during pregnancy. METHODS Data reported in the peer-reviewed literature on entrance KERMA received from specific radiological examinations were combined with published results from experiment or Monte Carlo modeling of tissue and organ doses per entrance KERMA to estimate total doses that could be received from specific procedures. Data reported in the peer-reviewed literature on dose mitigation strategies, best practices for shielding, consent, counseling and emerging technologies were reviewed. RESULTS For procedures utilizing ionizing radiation for which the conceptus is not included in the primary radiation beam, typical doses are well below the threshold for causing tissue reactions and the risk of induction of childhood cancer is low. For procedures that include the conceptus in the primary radiation field, longer fluoroscopic interventional procedures or multiphase/multiple exposures potentially could approach or exceed thresholds for tissue reactions and the risk of cancer induction must be weighed against the expected risk/benefit of performing (or not) the imaging examination. Gonadal shielding is no longer considered best practice. Emerging technologies such as whole-body DWI/MRI, dual-energy CT and ultralow dose studies are gaining importance for overall dose reduction strategies. CONCLUSION The ALARA principle, considering potential benefits and risks should be followed with respect to the use of ionizing radiation. Nevertheless, as Wieseler et al. (2010) state, "no examination should be withheld when an important clinical diagnosis is under consideration." Best practices require updates on current available technologies and guidelines.
Collapse
Affiliation(s)
- James G. Mainprize
- Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Ave., Rm S632/S657, Toronto, ON M4N 3M5 Canada
| | - Martin J. Yaffe
- Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Ave., Rm S632/S657, Toronto, ON M4N 3M5 Canada
- Departments of Medical Biophysics and Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave., Rm S657, Toronto, ON M4N 3M5 Canada
| | - Tanya Chawla
- Joint Department of Medical Imaging, Mount Sinai Hospital, University of Toronto, 600 University Avenue, Toronto, ON M5G 1X5 Canada
| | - Phyllis Glanc
- Departments Medical Imaging, Obstetrics & Gynecology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Rm MG 160, Toronto, ON M4N 3M5 Canada
| |
Collapse
|
3
|
Carvajal J, Casanello P, Toso A, Farías M, Carrasco-Negue K, Araujo K, Valero P, Fuenzalida J, Solari C, Sobrevia L. Functional consequences of SARS-CoV-2 infection in pregnant women, fetoplacental unit, and neonate. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166582. [PMID: 36273675 PMCID: PMC9581789 DOI: 10.1016/j.bbadis.2022.166582] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022]
Abstract
The SARS-CoV-2 infection causes COVID-19 disease, characterized by acute respiratory distress syndrome, bilateral pneumonia, and organ failure. The consequences of maternal SARS-CoV-2 infection for the pregnant woman, fetus, and neonate are controversial. Thus, it is required to determine whether there is viral and non-viral vertical transmission in COVID-19. The disease caused by SARS-CoV-2 leads to functional alterations in asymptomatic and symptomatic pregnant women, the fetoplacental unit and the neonate. Several diseases of pregnancy, including COVID-19, affect the fetoplacental function, which causes in utero programming for young and adult diseases. A generalized inflammatory state and a higher risk of infection are seen in pregnant women with COVID-19. Obesity, diabetes mellitus, and hypertension may increase the vulnerability of pregnant women to infection by SARS-CoV-2. Alpha, Delta, and Omicron variants of SARS-CoV-2 show specific mutations that seem to increase the capacity of the virus to infect the pregnant woman, likely due to increasing its interaction via the virus S protein and angiotensin-converting enzyme 2 receptors. This review shows the literature addressing to what extent COVID-19 in pregnancy affects the pregnant woman, fetoplacental unit, and neonate. Prospective studies that are key in managing SARS-CoV-2 infection in pregnancy are discussed.
Collapse
Affiliation(s)
- Jorge Carvajal
- Department of Obstetrics, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Paola Casanello
- Department of Obstetrics, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Neonatology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen (UMCG), 9713GZ, Groningen, the Netherlands
| | - Alberto Toso
- Department of Neonatology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Marcelo Farías
- Department of Obstetrics, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Karina Carrasco-Negue
- Department of Obstetrics, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Kenny Araujo
- Department of Obstetrics, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Paola Valero
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
| | - Javiera Fuenzalida
- Department of Obstetrics, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Caterina Solari
- Department of Obstetrics, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Department of Obstetrics, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Brazil; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston 4029, Queensland, Australia; Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen (UMCG), 9713GZ, Groningen, the Netherlands; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico.
| |
Collapse
|