1
|
Kadian LK, Verma D, Lohani N, Yadav R, Ranga S, Gulshan G, Pal S, Kumari K, Chauhan SS. Long non-coding RNAs in cancer: multifaceted roles and potential targets for immunotherapy. Mol Cell Biochem 2024; 479:3229-3254. [PMID: 38413478 DOI: 10.1007/s11010-024-04933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Cancer remains a major global health concern with high mortality rates mainly due to late diagnosis and poor prognosis. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression in human cancer, functioning through various mechanisms including as competing endogenous RNAs (ceRNAs) and indirectly regulating miRNA expression. LncRNAs have been found to have both oncogenic and tumor-suppressive roles in cancer, with the former promoting cancer cell proliferation, migration, invasion, and poor prognosis. Recent research has shown that lncRNAs are expressed in various immune cells and are involved in cancer cell immune escape and the modulation of the tumor microenvironment, thus highlighting their potential as targets for cancer immunotherapy. Targeting lncRNAs in cancer or immune cells could enhance the anti-tumor immune response and improve cancer immunotherapy outcomes. However, further research is required to fully understand the functional roles of lncRNAs in cancer and the immune system and their potential as targets for cancer immunotherapy. This review offers a comprehensive examination of the multifaceted roles of lncRNAs in human cancers, with a focus on their potential as targets for cancer immunotherapy. By exploring the intricate mechanisms underlying lncRNA-mediated regulation of cancer cell proliferation, invasion, and immune evasion, we provide insights into the diverse therapeutic applications of these molecules.
Collapse
Affiliation(s)
- Lokesh K Kadian
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
- Dept of Dermatology, Indiana University School of Medicine, Indianapolis, 46202, USA
| | - Deepika Verma
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neelam Lohani
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ritu Yadav
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Shalu Ranga
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Gulshan Gulshan
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Sanghapriya Pal
- Dept of Biochemistry, Maulana Azad Medical College and Associated Hospital, New Delhi, 110002, India
| | - Kiran Kumari
- Dept of Forensic Science, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Shyam S Chauhan
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
2
|
Razavinia A, Razavinia A, Jamshidi Khalife Lou R, Ghavami M, Shahri F, Tafazoli A, Khalesi B, Hashemi ZS, Khalili S. Exosomes as novel tools for renal cell carcinoma therapy, diagnosis, and prognosis. Heliyon 2024; 10:e32875. [PMID: 38948044 PMCID: PMC11211897 DOI: 10.1016/j.heliyon.2024.e32875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/06/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Background Renal Cell Carcinoma (RCC) stands as a formidable challenge within the field of oncology, despite considerable research endeavors. The advanced stages of this malignancy present formidable barriers to effective treatment and management. Objective This review aims to explore the potential of exosomes in addressing the diagnostic and therapeutic challenges associated with RCC. Specifically, it investigates the role of exosomes as biomarkers and therapeutic vehicles in the context of RCC management. Methods For this review article, a comprehensive literature search was conducted using databases such as PubMed, employing relevant keywords to identify research articles pertinent to the objectives of the review. Initially, 200 articles were identified, which underwent screening to remove duplicates and assess relevance based on titles and abstracts, followed by a detailed examination of full texts. From the selected articles, relevant data were extracted and synthesized to address the review's objectives. The conclusions were drawn based on a thorough analysis of the findings. The quality was ensured through independent review and resolution of discrepancies among multiple reviewers. Results Exosomes demonstrate potential as diagnostic tools for early detection, prognosis, and treatment monitoring in RCC. Their ability to deliver various therapeutic agents, such as small interfering RNAs, lncRNAs, chemotherapeutic drugs, and immune-stimulating agents, allows for a personalized approach to RCC management. By leveraging exosome-based technologies, precision and efficacy in treatment strategies can be significantly enhanced. Conclusion Despite the promising advancements enabled by exosomes in the management of RCC, further research is necessary to refine exosome-based technologies and validate their efficacy, safety, and long-term benefits through rigorous clinical trials. Embracing exosomes as integral components of RCC diagnosis and treatment represents a significant step towards improving patient outcomes and addressing the persistent challenges posed by this malignancy in the field of oncology.
Collapse
Affiliation(s)
- Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abazar Razavinia
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roya Jamshidi Khalife Lou
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahlegha Ghavami
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Forouzan Shahri
- Department of Chemistry, Faculty of Sciences, University of Guilan, Iran
| | - Aida Tafazoli
- Department of Bacterial and Virology, Shiraz medical school, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
3
|
Ma Y, Wang Y, Wang C, Wang Y, Hu J, Zhang Z, Dong T, Chen X. miR-200a-3p promotes the malignancy of endometrial carcinoma through negative regulation of epithelial-mesenchymal transition. Discov Oncol 2024; 15:243. [PMID: 38916621 PMCID: PMC11199454 DOI: 10.1007/s12672-024-01106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND miR-200a-3p is involved in the progression of malignant behavior in various tumors, and its mechanism of action in endometrial cancer is speculated to be related to epithelial-mesenchymal transition (EMT). Therefore, this study explored the metastatic mechanism of miR-200a-3p and EMT in endometrial cancer, with the aim of identifying potential therapeutic targets. METHODS qRT-PCR was used to analyze miR-200a-3p expression in HEC-1B and Ishikawa cell lines. The cell proliferation assay, transwell assay, and cell scratch test were used to assess changes in the malignant phenotypes of cells after regulating miR-200a-3p expression. Changes in EMT-related protein zinc finger E-box binding homeobox 1 (ZEB1) were detected after regulating miR-200a-3p expression. An endometrial carcinoma transplantation mouse tumor model was constructed, and multiple EMT-related proteins were examined. RESULTS The expression of miR-200a-3p and ZEB1 in the endometrial cancer cell lines was higher than in normal endometrial epithelial cell lines (P < 0.05). After silencing miR-200a-3p, the expression of EMT-related protein ZEB1 increased, indicating a negative correlation. Simultaneously, the proliferation, invasion, and metastasis of endometrial cancer cells were significantly enhanced. After miR-200a-3p overexpression, the corresponding malignant phenotype was reversed (P < 0.05). In in vivo experiments, the degree of tumor malignancy and the expression level of EMT-related proteins were significantly reduced in the miR-200a-3p mimic group (P < 0.05). CONCLUSION This study found that miR-200a-3p is a promising target, regulating the EMT process and promoting endometrial cancer progression.
Collapse
Affiliation(s)
- Ying Ma
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Yiru Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Can Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Yan Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Jingshu Hu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Zexue Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Tuo Dong
- Department of Hygienic Microbiology, Public Health College, Harbin Medical University, No. 157 Baojian Road, Harbin, 150081, Heilongjiang, China.
| | - Xiuwei Chen
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
4
|
Xu D, Wang W, Wang D, Ding J, Zhou Y, Zhang W. Long noncoding RNA MALAT-1: A versatile regulator in cancer progression, metastasis, immunity, and therapeutic resistance. Noncoding RNA Res 2024; 9:388-406. [PMID: 38511067 PMCID: PMC10950606 DOI: 10.1016/j.ncrna.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 03/22/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA transcripts longer than 200 nucleotides that do not code for proteins but have been linked to cancer development and metastasis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) influences crucial cancer hallmarks through intricate molecular mechanisms, including proliferation, invasion, angiogenesis, apoptosis, and the epithelial-mesenchymal transition (EMT). The current article highlights the involvement of MALAT-1 in drug resistance, making it a potential target to overcome chemotherapy refractoriness. It discusses the impact of MALAT-1 on immunomodulatory molecules, such as major histocompatibility complex (MHC) proteins and PD-L1, leading to immune evasion and hindering anti-tumor immune responses. MALAT-1 also plays a significant role in cancer immunology by regulating diverse immune cell populations. In summary, MALAT-1 is a versatile cancer regulator, influencing tumorigenesis, chemoresistance, and immunotherapy responses. Understanding its precise molecular mechanisms is crucial for developing targeted therapies, and therapeutic strategies targeting MALAT-1 show promise for improving cancer treatment outcomes. However, further research is needed to fully uncover the role of MALAT-1 in cancer biology and translate these findings into clinical applications.
Collapse
Affiliation(s)
- Dexin Xu
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Wenhai Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Duo Wang
- Department of Geriatrics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Jian Ding
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Yunan Zhou
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Wenbin Zhang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| |
Collapse
|
5
|
Luo H, Jing H, Chen W. An extensive overview of the role of lncRNAs generated from immune cells in the etiology of cancer. Int Immunopharmacol 2024; 133:112063. [PMID: 38677091 DOI: 10.1016/j.intimp.2024.112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Long non-coding RNAs (lncRNAs) are involved in the control of critical tumor-suppressor and oncogenic pathways in cancer. These types of non-coding RNAs could affect both immune and cancer cells. The thorough analysis of lncRNAs derived from immune cells and the incorporation of new findings significantly advance our understanding of the complex role of lncRNAs in the context of cancer. This work highlights the promise of lncRNAs for translational therapeutic approaches while also establishing a solid foundation for comprehending the complex link between lncRNAs and cancer through a coherent narrative. The main findings of this article are that types of lncRNAs derived from immune cells, such as MM2P and MALAT1, can affect the behaviors of cancer cells, like invasion, angiogenesis, and proliferation. As research in this area grows, the therapeutic potential of targeting these lncRNAs offers promising opportunities for expanding our understanding of cancer biology and developing cutting-edge, precision-based therapies for cancer therapy.
Collapse
Affiliation(s)
- Hong Luo
- Department of Oncology, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu Province, China.
| | - Hailiang Jing
- Department of Integrative Medicine, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu Province, China
| | - Wei Chen
- Department of Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
6
|
Li J, Dhilipkannah P, Holden VK, Sachdeva A, Todd NW, Jiang F. Dysregulation of lncRNA MALAT1 Contributes to Lung Cancer in African Americans by Modulating the Tumor Immune Microenvironment. Cancers (Basel) 2024; 16:1876. [PMID: 38791954 PMCID: PMC11119359 DOI: 10.3390/cancers16101876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
African American (AA) populations present with notably higher incidence and mortality rates from lung cancer in comparison to other racial groups. Here, we elucidated the contribution of long non-coding RNAs (lncRNAs) in the racial disparities and their potential clinical applications in both diagnosis and therapeutic strategies. AA patients had elevated plasma levels of MALAT1 and PVT1 compared with cancer-free smokers. Incorporating these lncRNAs as plasma biomarkers, along with smoking history, achieved 81% accuracy in diagnosis of lung cancer in AA patients. We observed a rise in MALAT1 expression, correlating with increased levels of monocyte chemoattractant protein-1 (MCP-1) and CD68, CD163, CD206, indicative of tumor-associated macrophages in lung tumors of AA patients. Forced MALAT1 expression led to enhanced growth and invasiveness of lung cancer cells, both in vitro and in vivo, accompanied by elevated levels of MCP-1, CD68, CD163, CD206, and KI67. Mechanistically, MALAT1 acted as a competing endogenous RNA to directly interact with miR-206, subsequently affecting MCP-1 expression and macrophage activity, and enhanced the tumorigenesis. Targeting MALAT1 significantly reduced tumor sizes in animal models. Therefore, dysregulated MALAT1 contributes to lung cancer disparities in AAs by modulating the tumor immune microenvironment through its interaction with miR-206, thereby presenting novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Jin Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Pushpa Dhilipkannah
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Van K. Holden
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ashutosh Sachdeva
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nevins W. Todd
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Imran M, Abida, Eltaib L, Siddique MI, Kamal M, Asdaq SMB, Singla N, Al-Hajeili M, Alhakami FA, AlQarni AF, Abdulkhaliq AA, Rabaan AA. Beyond the genome: MALAT1's role in advancing urologic cancer care. Pathol Res Pract 2024; 256:155226. [PMID: 38452585 DOI: 10.1016/j.prp.2024.155226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Urologic cancers (UCs), which include bladder, kidney, and prostate tumors, account for almost a quarter of all malignancies. Long non-coding RNAs (lncRNAs) are tissue-specific RNAs that influence cell growth, death, and division. LncRNAs are dysregulated in UCs, and their abnormal expression may allow them to be used in cancer detection, outlook, and therapy. With the identification of several novel lncRNAs and significant exploration of their functions in various illnesses, particularly cancer, the study of lncRNAs has evolved into a new obsession. MALAT1 is a flexible tumor regulator implicated in an array of biological activities and disorders, resulting in an important research issue. MALAT1 appears as a hotspot, having been linked to the dysregulation of cell communication, and is intimately linked to cancer genesis, advancement, and response to treatment. MALAT1 additionally operates as a competitive endogenous RNA, binding to microRNAs and resuming downstream mRNA transcription and operation. This regulatory system influences cell growth, apoptosis, motility, penetration, and cell cycle pausing. MALAT1's evaluation and prognosis significance are highlighted, with a thorough review of its manifestation levels in several UC situations and its association with clinicopathological markers. The investigation highlights MALAT1's adaptability as a possible treatment target, providing fresh ways for therapy in UCs as we integrate existing information The article not only gathers current knowledge on MALAT1's activities but also lays the groundwork for revolutionary advances in the treatment of UCs.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Muhammad Irfan Siddique
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Marwan Al-Hajeili
- Department of Medicine, King Abdulaziz University, Jeddah 23624, Saudi Arabia
| | - Fatemah Abdulaziz Alhakami
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Saudi Arabia
| | - Ahmed Farhan AlQarni
- Histopathology Laboratory, Najran Armed Forces Hospital, Najran 66251, Saudi Arabia
| | - Altaf A Abdulkhaliq
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| |
Collapse
|
8
|
Zabeti Touchaei A, Vahidi S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int 2024; 24:102. [PMID: 38462628 PMCID: PMC10926683 DOI: 10.1186/s12935-024-03293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment by harnessing the power of the immune system to eliminate tumors. Immune checkpoint inhibitors (ICIs) block negative regulatory signals that prevent T cells from attacking cancer cells. Two key ICIs target the PD-1/PD-L1 pathway, which includes programmed death-ligand 1 (PD-L1) and its receptor programmed death 1 (PD-1). Another ICI targets cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). While ICIs have demonstrated remarkable efficacy in various malignancies, only a subset of patients respond favorably. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, play a crucial role in modulating immune checkpoints, including PD-1/PD-L1 and CTLA-4. This review summarizes the latest advancements in immunotherapy, highlighting the therapeutic potential of targeting PD-1/PD-L1 and CTLA-4 immune checkpoints and the regulatory role of miRNAs in modulating these pathways. Consequently, understanding the complex interplay between miRNAs and immune checkpoints is essential for developing more effective and personalized immunotherapy strategies for cancer treatment.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Zhou Y, Wang F, Li G, Xu J, Zhang J, Gullen E, Yang J, Wang J. From immune checkpoints to therapies: understanding immune checkpoint regulation and the influence of natural products and traditional medicine on immune checkpoint and immunotherapy in lung cancer. Front Immunol 2024; 15:1340307. [PMID: 38426097 PMCID: PMC10902058 DOI: 10.3389/fimmu.2024.1340307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is a disease of global concern, and immunotherapy has brought lung cancer therapy to a new era. Besides promising effects in the clinical use of immune checkpoint inhibitors, immune-related adverse events (irAEs) and low response rates are problems unsolved. Natural products and traditional medicine with an immune-modulating nature have the property to influence immune checkpoint expression and can improve immunotherapy's effect with relatively low toxicity. This review summarizes currently approved immunotherapy and the current mechanisms known to regulate immune checkpoint expression in lung cancer. It lists natural products and traditional medicine capable of influencing immune checkpoints or synergizing with immunotherapy in lung cancer, exploring both their effects and underlying mechanisms. Future research on immune checkpoint modulation and immunotherapy combination applying natural products and traditional medicine will be based on a deeper understanding of their mechanisms regulating immune checkpoints. Continued exploration of natural products and traditional medicine holds the potential to enhance the efficacy and reduce the adverse reactions of immunotherapy.
Collapse
Affiliation(s)
- Yibin Zhou
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fenglan Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guangda Li
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Zhang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Elizabeth Gullen
- Department of Pharmacology, Yale Medical School, New Haven, CT, United States
| | - Jie Yang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Al-Hawary SIS, Saleh RO, Taher SG, Ahmed SM, Hjazi A, Yumashev A, Ghildiyal P, Qasim MT, Alawadi A, Ihsan A. Tumor-derived lncRNAs: Behind-the-scenes mediators that modulate the immune system and play a role in cancer pathogenesis. Pathol Res Pract 2024; 254:155123. [PMID: 38277740 DOI: 10.1016/j.prp.2024.155123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Having been involved in complex cellular regulatory networks and cell-to-cell communications, non-coding RNAs (lncRNAs) have become functional carriers that transmit information between cells and tissues, modulate tumor microenvironments, encourage angiogenesis and invasion, and make tumor cells more resistant to drugs. Immune cells' exosomal lncRNAs may be introduced into tumor cells to influence the tumor's course and the treatment's effectiveness. Research has focused on determining if non-coding RNAs affect many target genes to mediate regulating recipient cells. The tumor microenvironment's immune and cancer cells are influenced by lncRNAs, which may impact a treatment's efficacy. The lncRNA-mediated interaction between cancer cells and immune cells invading the tumor microenvironment has been the subject of numerous recent studies. On the other hand, tumor-derived lncRNAs' control over the immune system has not gotten much attention and is still a relatively new area of study. Tumor-derived lncRNAs are recognized to contribute to tumor immunity, while the exact mechanism is unclear.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Sada Gh Taher
- National University of Science and Technology, Dhi Qar, Iraq
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Ahmed Alawadi
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq; College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq
| | - Ali Ihsan
- College of Technical Engineering, the Islamic University of Babylon, Iraq; Department of Pediatrics, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; Department of Medical Laboratory Technique, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
11
|
Bhat AA, Afzal O, Afzal M, Gupta G, Thapa R, Ali H, Hassan Almalki W, Kazmi I, Alzarea SI, Saleem S, Samuel VP, Gubbiyappa SK, Subramaniyan V. MALAT1: A key regulator in lung cancer pathogenesis and therapeutic targeting. Pathol Res Pract 2024; 253:154991. [PMID: 38070223 DOI: 10.1016/j.prp.2023.154991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
Lung cancer remains a formidable global health burden, necessitating a comprehensive understanding of the underlying molecular mechanisms driving its progression. Recently, lncRNAs have become necessary controllers of various biological functions, including cancer development. MALAT1 has garnered significant attention due to its multifaceted role in lung cancer progression. Lung cancer, among other malignancies, upregulates MALAT1. Its overexpression has been associated with aggressive tumor behavior and poor patient prognosis. MALAT1 promotes cellular proliferation, epithelial-mesenchymal transition (EMT), and angiogenesis in lung cancer, collectively facilitating tumor growth and metastasis. Additionally, MALAT1 enhances cancer cell invasion by interacting with numerous signaling pathways. Furthermore, MALAT1 has been implicated in mediating drug resistance in lung cancer, contributing to the limited efficacy of conventional therapies. Recent advancements in molecular biology and high-throughput sequencing technologies have offered fresh perspectives into the regulatory networks of MALAT1 in lung cancer. It exerts its oncogenic effects by acting as a ceRNA to sponge microRNAs, thereby relieving their inhibitory effects on target genes. Moreover, MALAT1 also influences chromatin remodeling and post-translational modifications to modulate gene expression, further expanding its regulatory capabilities. This review sheds light on the multifaceted roles of MALAT1 in lung cancer progression, underscoring its potential as an innovative therapeutic target and diagnostic biomarker. Targeting MALAT1 alone or combined with existing therapies holds promise to mitigate lung cancer progression and improve patient outcomes.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur 302017, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur 302017, India
| | - Haider Ali
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health. College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | | | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
12
|
Zhou Z, Wang H, Li J, Jiang X, Li Z, Shen J. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Int J Biol Macromol 2024; 254:127911. [PMID: 37939766 DOI: 10.1016/j.ijbiomac.2023.127911] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Currently, immune checkpoint blockade (ICB) therapies that target the programmed cell death ligand-1 (PD-L1) have been used as revolutionary cancer treatments in the clinic. Apart from restoring the antitumor response of cytotoxic T cells by blocking the interaction between PD-L1 on tumor cells and programmed cell death-1 (PD-1) on T cells, PD-L1 proteins were also newly revealed to possess the capacity to accelerate DNA damage repair (DDR) and enhance tumor growth through multiple mechanisms, leading to the impaired efficacy of tumor therapies. Nevertheless, current free anti-PD-1/PD-L1 therapy still suffered from poor therapeutic outcomes in most solid tumors due to the non-selective tumor accumulation, ineludible severe cytotoxic effects, as well as the common occurrence of immune resistance. Recently, nanoparticles with efficient tumor-targeting capacity, tumor-responsive prosperity, and versatility for combination therapy were identified as new avenues for PD-L1 targeting cancer immunotherapies. In this review, we first summarized the multiple functions of PD-L1 protein in promoting tumor growth, accelerating DDR, as well as depressing immunotherapy efficacy. Following this, the effects and mechanisms of current clinically widespread tumor therapies on tumor PD-L1 expression were discussed. Then, we reviewed the recent advances in nanoparticles for anti-PD-L1 therapy via using PD-L1 antibodies, small interfering RNA (siRNA), microRNA (miRNA), clustered, regularly interspaced, short palindromic repeats (CRISPR), peptide, and small molecular drugs. At last, we discussed the challenges and perspectives to promote the clinical application of nanoparticles-based PD-L1-targeting therapy.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhangping Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
13
|
Wu Y, Sun K, Tu Y, Li P, Hao D, Yu P, Chen A, Wan Y, Shi L. miR-200a-3p regulates epithelial-mesenchymal transition and inflammation in chronic rhinosinusitis with nasal polyps by targeting ZEB1 via ERK/p38 pathway. Int Forum Allergy Rhinol 2024; 14:41-56. [PMID: 37318032 DOI: 10.1002/alr.23215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Several biological processes are regulated by miR-200a-3p, including cell proliferation, migration, and epithelial-mesenchymal transition (EMT). In this study we aimed to uncover the diagnostic value and molecular mechanisms of miR-200a-3p in chronic rhinosinusitis with nasal polyps (CRSwNP). METHODS The expressions of miR-200a-3p were detected by quantitative real-time polymerase chain reaction (qRT-PCR), Zinc finger E-box binding homeobox 1 (ZEB1) levels were examined by qRT-PCR and immunofluorescence staining. The interaction between miR-200a-3p and ZEB1 was predicted by TargetScan Human 8.0 and confirmed by dual-luciferase reporter assays. In addition, the effect of miR-200a-3p and ZEB1 on EMT-related makers and inflammation cytokines was assessed by qRT-PCR and Western blotting in human nasal epithelial cells (hNEpCs) and primary human nasal mucosal epithelial cells (hNECs). RESULTS We found that miR-200a-3p was downregulated in non-eosinophilic and eosinophilic CRSwNP patients when compared with controls. The diagnostic value of miR-200a-3p in serum is reflected by the receiver operating characteristic curve and the 22-item Sino-Nasal Outcome Test. Bioinformatic analysis and luciferase reporter assay identified ZEB1 as a target of miR-200a-3p. ZEB1 was more highly expressed in CRSwNP than in controls. Furthermore, miR-200a-3p inhibitor or ZEB1 overexpression significantly suppressed the epithelial marker E-cadherin; promoted the activation of vimentin, α-spinal muscle atrophy, and N-cadherin; and aggravated inflammation in hNEpCs. Knockdown of ZEB1 significantly alleviated the cellular remodeling caused by miR-200a-3p inhibitor via the extracellular signal-regulated kinase (ERK)/p38 pathway in hNECs. CONCLUSIONS miR-200a-3p suppresses EMT and inflammation by regulating the expression of ZEB1 via the ERK/p38 pathway. Our study presents new ideas for protecting nasal epithelial cells from tissue remodeling and finding a possible target for disease.
Collapse
Affiliation(s)
- Yisha Wu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Kaiyue Sun
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanyi Tu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Ping Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Dingqian Hao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Peng Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Aiping Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Yuzhu Wan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Sun Z, Mai H, Xue C, Fan Z, Li J, Chen H, Huo N, Kang X, Tang C, Fang L, Zhao H, Han Y, Sun C, Peng H, Du Y, Yang J, Du N, Xu X. Hsa-LINC02418/mmu-4930573I07Rik regulated by METTL3 dictates anti-PD-L1 immunotherapeutic efficacy via enhancement of Trim21-mediated PD-L1 ubiquitination. J Immunother Cancer 2023; 11:e007415. [PMID: 38040417 PMCID: PMC10693898 DOI: 10.1136/jitc-2023-007415] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Limited response to programmed death ligand-1 (PD-L1)/programmed death 1 (PD-1) immunotherapy is a major hindrance of checkpoint immunotherapy in non-small cell lung cancer (NSCLC). The abundance of PD-L1 on the tumor cell surface is crucial for the responsiveness of PD-1/PD-L1 immunotherapy. However, the negative control of PD-L1 expression and the physiological significance of the PD-L1 inhibition in NSCLC immunotherapy remain obscure. METHODS Bioinformatics analysis was performed to profile and investigate the long non-coding RNAs that negatively correlated with PD-L1 expression and positively correlated with CD8+T cell infiltration in NSCLC. Immunofluorescence, in vitro PD-1 binding assay, T cell-induced apoptosis assays and in vivo syngeneic mouse models were used to investigate the functional roles of LINC02418 and mmu-4930573I07Rik in regulating anti-PD-L1 therapeutic efficacy in NSCLC. The molecular mechanism of LINC02418-enhanced PD-L1 downregulation was explored by immunoprecipitation, RNA immunoprecipitation (RIP), and ubiquitination assays. RIP, luciferase reporter, and messenger RNA degradation assays were used to investigate the m6A modification of LINC02418 or mmu-4930573I07Rik expression. Bioinformatics analysis and immunohistochemistry (IHC) verification were performed to determine the significance of LINC02418, PD-L1 expression and CD8+T cell infiltration. RESULTS LINC02418 is a negative regulator of PD-L1 expression that positively correlated with CD8+T cell infiltration, predicting favorable clinical outcomes for patients with NSCLC. LINC02418 downregulates PD-L1 expression by enhancing PD-L1 ubiquitination mediated by E3 ligase Trim21. Both hsa-LINC02418 and mmu-4930573I07Rik (its homologous RNA in mice) regulate PD-L1 therapeutic efficacy in NSCLC via Trim21, inducing T cell-induced apoptosis in vitro and in vivo. Furthermore, METTL3 inhibition via N6-methyladenosine (m6A) modification mediated by YTHDF2 reader upregulates hsa-LINC02418 and mmu-4930573I07Rik. In patients with NSCLC, LINC02418 expression is inversely correlated with PD-L1 expression and positively correlated with CD8+T infiltration. CONCLUSION LINC02418 functions as a negative regulator of PD-L1 expression in NSCLC cells by promoting the degradation of PD-L1 through the ubiquitin-proteasome pathway. The expression of LINC02418 is regulated by METTL3/YTHDF2-mediated m6A modification. This study illuminates the underlying mechanisms of PD-L1 negative regulation and presents a promising target for improving the effectiveness of anti-PD-L1 therapy in NSCLC.
Collapse
Affiliation(s)
- Zhijia Sun
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
- Department of Radiation Oncology, Air Force Medical Center PLA, Air Force Medical University, Beijing, China
| | - Haixing Mai
- Department of Urology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Chunyuan Xue
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhongyi Fan
- Department of Biotherapy Center, Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiangbo Li
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing, China
| | - Hairui Chen
- Department of Urology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Nan Huo
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaofeng Kang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Chuanhao Tang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Liaoxin Fang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Hui Zhao
- Department of Oncology, Chinese PLA General Hospital Fifth Medical Center, Beijing, China
| | - Yuchen Han
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Chao Sun
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Huanyan Peng
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yimeng Du
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jing Yang
- Department of Oncology, Chinese PLA General Hospital Second Medical Center, Beijing, China
| | - Nan Du
- Department of Oncology, Chinese PLA General Hospital Fifth Medical Center, Beijing, China
| | - Xiaojie Xu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
15
|
Chen YL, Liu YN, Lin YT, Tsai MF, Wu SG, Chang TH, Hsu CL, Wu HD, Shih JY. LncRNA SLCO4A1-AS1 suppresses lung cancer progression by sequestering the TOX4-NTSR1 signaling axis. J Biomed Sci 2023; 30:80. [PMID: 37726723 PMCID: PMC10507979 DOI: 10.1186/s12929-023-00973-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Metastasis is a multistep process involving the migration and invasion of cancer cells and is a hallmark of cancer malignancy. Long non-coding RNAs (lncRNAs) play critical roles in the regulation of metastasis. This study aims to elucidate the role of the lncRNA solute carrier organic anion transporter family member 4A1-antisense 1 (SLCO4A1-AS1) in metastasis and its underlying regulatory mechanisms. METHODS A comprehensive analysis of the Gene Expression Omnibus (GEO) database were used to identify metastasis-associated lncRNAs. Transwell migration and invasion assays, and a tail vein-injection mouse model were used to assess the migration and invasion of cancer cells in vitro and in vivo, respectively. High-throughput screening methods, including MASS Spectrometry and RNA sequencing (RNA-seq), were used to identify the downstream targets of SLCO4A1-AS1. Reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blotting, RNA pull-down, RNA immunoprecipitation (RIP), fluorescence in situ hybridization (FISH), and chromatin immunoprecipitation (ChIp) assays were conducted to identify and validate the underlying regulatory mechanisms of SLCO4A1-AS1. RESULTS SLCO4A1-AS1 reduced cancer cell migration and invasion by disrupting cytoskeleton filaments, and was associated with longer overall survival in patients with lung adenocarcinoma. SLCO4A1-AS1 directly interacted with the DNA-binding protein, TOX High Mobility Group Box Family Member 4 (TOX4), to inhibit TOX4-induced migration and invasion. Furthermore, RNA-seq revealed that neurotensin receptor 1 (NTSR1) is a novel and convergent downstream target of SLCO4A1-AS1 and TOX4. Mechanistically, SLCO4A1-AS1 functions as a decoy of TOX4 by interrupting its interaction with the NTSR1 promoter and preventing NTSR1 transcription. Functionally, NTSR1 promotes cancer cell migration and invasion through cytoskeletal remodeling, and knockdown of NTSR1 significantly inhibits TOX4-induced migration and invasion. CONCLUSION These findings demonstrated that SLCO4A1-AS1 antagonizes TOX4/NTSR1 signaling, underscoring its pivotal role in lung cancer cell migration and invasion. These findings hold promise for the development of novel therapeutic strategies targeting the SLCO4A1-AS1/TOX4/NTSR1 axis as a potential avenue for effective therapeutic intervention in lung cancer.
Collapse
Affiliation(s)
- Yi-Ling Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, #7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Yi-Nan Liu
- Department of Internal Medicine, National Taiwan University Hospital, #7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Yen-Ting Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, #7, Chung-Shan South Road, Taipei, 100, Taiwan
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Meng-Feng Tsai
- Department of Biomedical Sciences, Da-Yeh University, Changhua, Taiwan
| | - Shang-Gin Wu
- Department of Internal Medicine, National Taiwan University Hospital, #7, Chung-Shan South Road, Taipei, 100, Taiwan
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Tzu-Hua Chang
- Department of Internal Medicine, National Taiwan University Hospital, #7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Huey-Dong Wu
- Division of Respiratory Therapy, Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Yuan Shih
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital, #7, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
16
|
Tufail M. The MALAT1-breast cancer interplay: insights and implications. Expert Rev Mol Diagn 2023; 23:665-678. [PMID: 37405385 DOI: 10.1080/14737159.2023.2233902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Breast cancer (BC) is a major public health concern, and identifying new biomarkers and therapeutic targets is critical to improving patient outcomes. MALAT1, a long noncoding RNA, has emerged as a promising candidate due to its overexpression in BC and the associated poor prognosis. Understanding the role of MALAT1 in BC progression is paramount for the development of effective therapeutic strategies. COVERED AREA This review delves into the structure and function of MALAT1, and examines its expression pattern in breast cancer (BC) and its association with different BC subtypes. This review focuses on the interactions between MALAT1 and microRNAs (miRNAs) and the various signaling pathways involved in BC. Furthermore, this study investigates the influence of MALAT1 on the BC tumor microenvironment and the possible influence of MALAT1 on immune checkpoint regulation. This study also sheds light the role of MALAT1 in breast cancer resistance. EXPERT OPINION MALAT1 has been shown to play a key role in the progression of BC, highlighting its importance as a potential therapeutic target. Further studies are needed to elucidate the underlying molecular mechanisms by which MALAT1 contributes to the development of BC. In combination with standard therapy, there is a need to evaluates the potential of treatments targeting MALAT1, which may lead to improved treatment outcomes. Moreover, study of MALAT1 as a diagnostic and prognostic marker promises improved BC management. Continued efforts to decipher the functional role of MALAT1 and explore its clinical utility are critical to advancing the BC research field.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
17
|
Baba SK, Baba SK, Mir R, Elfaki I, Algehainy N, Ullah MF, Barnawi J, Altemani FH, Alanazi M, Mustafa SK, Masoodi T, Akil ASA, Bhat AA, Macha MA. Long non-coding RNAs modulate tumor microenvironment to promote metastasis: novel avenue for therapeutic intervention. Front Cell Dev Biol 2023; 11:1164301. [PMID: 37384249 PMCID: PMC10299194 DOI: 10.3389/fcell.2023.1164301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Cancer is a devastating disease and the primary cause of morbidity and mortality worldwide, with cancer metastasis responsible for 90% of cancer-related deaths. Cancer metastasis is a multistep process characterized by spreading of cancer cells from the primary tumor and acquiring molecular and phenotypic changes that enable them to expand and colonize in distant organs. Despite recent advancements, the underlying molecular mechanism(s) of cancer metastasis is limited and requires further exploration. In addition to genetic alterations, epigenetic changes have been demonstrated to play an important role in the development of cancer metastasis. Long non-coding RNAs (lncRNAs) are considered one of the most critical epigenetic regulators. By regulating signaling pathways and acting as decoys, guides, and scaffolds, they modulate key molecules in every step of cancer metastasis such as dissemination of carcinoma cells, intravascular transit, and metastatic colonization. Gaining a good knowledge of the detailed molecular basis underlying lncRNAs regulating cancer metastasis may provide previously unknown therapeutic and diagnostic lncRNAs for patients with metastatic disease. In this review, we concentrate on the molecular mechanisms underlying lncRNAs in the regulation of cancer metastasis, the cross-talk with metabolic reprogramming, modulating cancer cell anoikis resistance, influencing metastatic microenvironment, and the interaction with pre-metastatic niche formation. In addition, we also discuss the clinical utility and therapeutic potential of lncRNAs for cancer treatment. Finally, we also represent areas for future research in this rapidly developing field.
Collapse
Affiliation(s)
- Sana Khurshid Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, India
| | - Sadaf Khursheed Baba
- Department of Microbiology, Sher-I-Kashmir Institute of Medical Science (SKIMS), Soura, Kashmir, India
| | - Rashid Mir
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Fahad Ullah
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Jameel Barnawi
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal H. Altemani
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Alanazi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Tariq Masoodi
- Human Immunology Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Ammira S. Alshabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity, and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity, and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, India
| |
Collapse
|
18
|
Gencel-Augusto J, Wu W, Bivona TG. Long Non-Coding RNAs as Emerging Targets in Lung Cancer. Cancers (Basel) 2023; 15:3135. [PMID: 37370745 DOI: 10.3390/cancers15123135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) are mRNA-like molecules that do not encode for proteins and that are longer than 200 nucleotides. LncRNAs play important biological roles in normal cell physiology and organism development. Therefore, deregulation of their activities is involved in disease processes such as cancer. Lung cancer is the leading cause of cancer-related deaths due to late stage at diagnosis, distant metastasis, and high rates of therapeutic failure. LncRNAs are emerging as important molecules in lung cancer for their oncogenic or tumor-suppressive functions. LncRNAs are highly stable in circulation, presenting an opportunity for use as non-invasive and early-stage cancer diagnostic tools. Here, we summarize the latest works providing in vivo evidence available for lncRNAs role in cancer development, therapy-induced resistance, and their potential as biomarkers for diagnosis and prognosis, with a focus on lung cancer. Additionally, we discuss current therapeutic approaches to target lncRNAs. The evidence discussed here strongly suggests that investigation of lncRNAs in lung cancer in addition to protein-coding genes will provide a holistic view of molecular mechanisms of cancer initiation, development, and progression, and could open up a new avenue for cancer treatment.
Collapse
Affiliation(s)
- Jovanka Gencel-Augusto
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Wei Wu
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
19
|
Li S, Xie Y, Zhou W, Zhou Q, Tao D, Yang H, Mao K, Li S, Lei J, Wu Y, Wang Y. Association of long noncoding RNA MALAT1 with the radiosensitivity of lung adenocarcinoma cells via the miR-140/PD-L1 axis. Heliyon 2023; 9:e16868. [PMID: 37332979 PMCID: PMC10272336 DOI: 10.1016/j.heliyon.2023.e16868] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Objective To investigate the effect of MALAT1 on the modulating the radiosensitivity of lung adenocarcinoma, through regulation of the expression of the miR-140/PD-L1 axis. Methods The online databases UALCAN and dbDEMC were searched for the MALAT1 and miR-140 expressions in patients with lung adenocarcinoma (LUAD), respectively. Then analyze their relationship with overall survival rates separately in the UALCAN and ONCOMIR databases. A functional analysis was performed for A549 cells by transfecting small-interfering RNAs or corresponding plasmids after radiotherapy. Xenograft models of LUAD exposed to radiation were established to further observe the effects of MALAT1 on the radiosensitivity of LUAD. The luciferase assay and reverse transcription-polymerase chain reaction were performed to assess the interaction between miR-140 and MALAT1 or PD-L1. Results MALAT1 were overexpressed in human LUAD tumor tissues and cell lines, while miR-140 were inhibited. MALAT1 knockdown or miR-140 increase suppressed cell proliferation and promoted cell apoptosis in LUAD after irradiation. LUAD xenograft tumor growth was also inhibited by MALAT1 knockdown combined with irradiation. miR-140 could directly bind with MALAT1 or PD-L1. Furthermore, MALAT1 knockdown inhibited PD-L1 mRNA and protein expressions by upregulating miR-140 in LUAD cells. Conclusion MALAT1 may function as a sponge for miR-140a-3p to enhance the PD-L1 expression and decrease the radiosensitivity of LUAD. Our results suggest that MALAT1 might be a promising therapeutic target for the radiotherapy sensitization of LUAD.
Collapse
Affiliation(s)
- Shujie Li
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Yue Xie
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Wei Zhou
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Qian Zhou
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Dan Tao
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Haonan Yang
- College of Bioengineering, Chongqing University, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Kaijin Mao
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Shi Li
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jinyan Lei
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Yongzhong Wu
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Ying Wang
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| |
Collapse
|
20
|
Hajibabaei S, Nafissi N, Azimi Y, Mahdian R, Rahimi-Jamnani F, Valizadeh V, Rafiee MH, Azizi M. Targeting long non-coding RNA MALAT1 reverses cancerous phenotypes of breast cancer cells through microRNA-561-3p/TOP2A axis. Sci Rep 2023; 13:8652. [PMID: 37244966 DOI: 10.1038/s41598-023-35639-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/21/2023] [Indexed: 05/29/2023] Open
Abstract
Non-coding RNAs, including Inc-RNA and miRNA, have been reported to regulate gene expression and are associated with cancer progression. MicroRNA-561-3p (miR-561-3p), as a tumor suppressor, has been reported to play a role in preventing cancer cell progression, and MALAT1 (Lnc-RNA) have also been demonstrated to promote malignancy in various cancers, such as breast cancer (BC). In this study, we aimed to determine the correlation between miR-561-3p and MALAT1 and their roles in breast cancer progression. The expression of MALAT1, mir-561-3p, and topoisomerase alpha 2 (TOP2A) as a target of miR-561-3p was determined in BC clinical samples and cell lines via qRT-PCR. The binding site between MALAT1, miR-561-3p, and TOP2A was investigated by performing the dual luciferase reporter assay. MALAT1 was knocked down by siRNA, and cell proliferation, apoptotic assays, and cell cycle arrest were evaluated. MALAT1 and TOP2A were significantly upregulated, while mir-561-3p expression was downregulated in BC samples and cell lines. MALAT1 knockdown significantly increased miR-561-3p expression, which was meaningfully inverted by co-transfection with the miR 561-3p inhibitor. Furthermore, the knockdown of MALAT1 by siRNA inhibited proliferation, induced apoptosis, and arrested the cell cycle at the G1 phase in BC cells. Notably, the mechanistic investigation revealed that MALAT1 predominantly acted as a competing endogenous RNA in BC by regulating the miR-561-3p/TOP2A axis. Based on our results, MALAT1 upregulation in BC may function as a tumor promoter in BC via directly sponging miRNA 561-3p, and MALAT1 knockdown serves a vital antitumor role in BC cell progression through the miR-561-3p/TOP2A axis.
Collapse
Affiliation(s)
- Sara Hajibabaei
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Nahid Nafissi
- Breast Surgery Department, Iran University of Medical Sciences, Tehran, Iran
| | - Yasamin Azimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Reza Mahdian
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Fatemeh Rahimi-Jamnani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Vahideh Valizadeh
- Department of Nano-Biotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hessam Rafiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran.
| |
Collapse
|
21
|
Fonseca-Montaño MA, Cisneros-Villanueva M, Coales I, Hidalgo-Miranda A. LINC00426 is a potential immune phenotype-related biomarker and an overall survival predictor in PAM50 luminal B breast cancer. Front Genet 2023; 14:1034569. [PMID: 37260772 PMCID: PMC10228735 DOI: 10.3389/fgene.2023.1034569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Background: Breast cancer (BRCA) represents the most frequent diagnosed malignancy in women worldwide. Despite treatment advances, BRCAs eventually develop resistance to targeted therapies, resulting in poor prognosis. The identification of new biomarkers, like immune-related long non-coding RNAs (lncRNAs), could contribute to the clinical management of BRCA patients. In this report, we evaluated the LINC00426 expression in PAM50 BRCA subtypes from two clinical independent cohorts (BRCA-TCGA and GEO-GSE96058 datasets). Methods and results: Using Cox regression models and Kaplan-Meier survival analyses, we identified that LINC00426 expression was a consistent overall survival (OS) predictor in luminal B (LB) BRCA patients. Subsequently, differential gene expression and gene set enrichment analyses identified that LINC00426 expression was associated with different immune-related and cancer-related pathways and processes in LB BRCA. Additionally, the LINC00426 expression was correlated with the infiltration level of diverse immune cell populations, alongside immune checkpoint and cytolytic activity-related gene expression. Conclusion: This evidence suggests that LINC00426 is a potential biomarker of immune phenotype and an OS predictor in PAM50 LB BRCA.
Collapse
Affiliation(s)
- Marco Antonio Fonseca-Montaño
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado, Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Mireya Cisneros-Villanueva
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Isabelle Coales
- Centre for Host Microbiome Interactions, King’s College London, London, United Kingdom
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
22
|
Li Z, Zheng B, Liu C, Zhao X, Zhao Y, Wang X, Hou L, Yang Z. BMSC-Derived Exosomes Alleviate Sepsis-Associated Acute Respiratory Distress Syndrome by Activating the Nrf2 Pathway to Reverse Mitochondrial Dysfunction. Stem Cells Int 2023; 2023:7072700. [PMID: 37035447 PMCID: PMC10081904 DOI: 10.1155/2023/7072700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 04/03/2023] Open
Abstract
Type II alveolar epithelial cell (AECII) apoptosis is one of the most vital causes of sepsis-induced acute respiratory distress syndrome (ARDS). Recent evidence has proved that bone mesenchymal stem cell-derived exosomes (BMSC-exos) can effectively reduce sepsis-induced ARDS. However, the function and molecular mechanism of BMSC-exos in sepsis-induced AECII apoptosis remain to be elucidated. In the present study, a more significant number of AECII apoptosis, high mitochondrial fission p-Drp1 protein levels, and low levels of mitochondrial biogenesis-related PGC1α, Tfam, and Nrf1 proteins accompanied with ATP content depression were confirmed in AECIIs in response to sepsis. Surprisingly, BMSC-exos successfully recovered mitochondrial biogenesis, including the upregulated expression of PGC1α, Tfam, Nrf1 proteins, and ATP contents, and prohibited p-Drp1-mediated mitochondrial fission by promoting Nrf2 expression. However, the aforementioned BMSC-exo reversal of mitochondrial dysfunction in AECIIs can be blocked by Nrf2 inhibitor ML385. Finally, BMSC-exos ameliorated the mortality rate, AECII apoptosis, inflammatory cytokine storm including HMGB1 and IL-6, and pathological lung damage in sepsis mice, which also could be prevented by ML385. These findings reveal a new mechanism of BMSC-exos in reversing mitochondrial dysfunction to alleviate AECII apoptosis, which may provide novel strategies for preventing and treating sepsis-induced ARDS.
Collapse
|
23
|
Li R, Qiu T, Zhou Q, He F, Jie C, Zheng X, Lu Z, Wu Q, Xie C. Histone acetylation-related IncRNA: Potential biomarkers for predicting prognosis and immune response in lung adenocarcinoma, and distinguishing hot and cold tumours. Front Immunol 2023; 14:1139599. [PMID: 37006256 PMCID: PMC10064094 DOI: 10.3389/fimmu.2023.1139599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
BackgroundHistone acetylation-related lncRNAs (HARlncRNAs) play significant roles in various cancers, but their impact on lung adenocarcinoma (LUAD) remains unclear. This study aimed to develop a new HARlncRNA-based prognostic model for LUAD and to explore its potential biological mechanisms.MethodsWe identified 77 histone acetylation genes based on previous studies. HARlncRNAs related to prognosis were screened by co-expression, univariate and multivariate analyses, and least absolute shrinkage selection operator regression (LASSO). Afterward, a prognostic model was established based on the screened HARlncRNAs. We analysed the relationship between the model and immune cell infiltration characteristics, immune checkpoint molecule expression, drug sensitivity, and tumour mutational burden (TMB). Finally, the entire sample was divided into three clusters to further distinguish between hot and cold tumours.ResultsA seven-HARlncRNA-based prognostic model was established for LUAD. The area under the curve (AUC) of the risk score was the highest among all the analysed prognostic factors, indicating the accuracy and robustness of the model. The patients in the high-risk group were predicted to be more sensitive to chemotherapeutic, targeted, and immunotherapeutic drugs. It was worth noting that clusters could effectively identify hot and cold tumours. In our study, clusters 1 and 3 were considered hot tumours that were more sensitive to immunotherapy drugs.ConclusionWe developed a risk-scoring model based on seven prognostic HARlncRNAs that promises to be a new tool for evaluating the prognosis and efficacy of immunotherapy in patients with LUAD.
Collapse
Affiliation(s)
- Rumeng Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tingting Qiu
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, China
| | - Qiangqiang Zhou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fajian He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Jie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinyu Zheng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zeguang Lu
- The Second Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Conghua Xie, ; Qiuji Wu,
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Conghua Xie, ; Qiuji Wu,
| |
Collapse
|
24
|
Pan X, Li C, Feng J. The role of LncRNAs in tumor immunotherapy. Cancer Cell Int 2023; 23:30. [PMID: 36810034 PMCID: PMC9942365 DOI: 10.1186/s12935-023-02872-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Cancer immunotherapy is a major breakthrough in the history of tumor therapy in the last decade. Immune checkpoint inhibitors blocking CTLA-4/B7 or PD-1/PD-L1 pathways have greatly prolonged the survival of patients with different cancers. Long non-coding RNAs (lncRNAs) are abnormally expressed in tumors and play an important role in tumor immunotherapy through immune regulation and immunotherapy resistance. In this review, we summarized the mechanisms of lncRNAs in regulating gene expression and well-studied immune checkpoint pathways. The crucial regulatory function of immune-related lncRNAs in cancer immunotherapy was also described. Further understanding of the underlying mechanisms of these lncRNAs is of great importance to the development of taking lncRNAs as novel biomarkers and therapeutic targets for immunotherapy.
Collapse
Affiliation(s)
- Xuan Pan
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Chenchen Li
- grid.89957.3a0000 0000 9255 8984Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
25
|
Saklani N, Chauhan V, Akhtar J, Upadhyay SK, Sirdeshmukh R, Gautam P. In silico analysis to identify novel ceRNA regulatory axes associated with gallbladder cancer. Front Genet 2023; 14:1107614. [PMID: 36873948 PMCID: PMC9978489 DOI: 10.3389/fgene.2023.1107614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Competitive endogenous RNA (ceRNA) networks are reported to play a crucial role in regulating cancer-associated genes. Identification of novel ceRNA networks in gallbladder cancer (GBC) may improve the understanding of its pathogenesis and might yield useful leads on potential therapeutic targets for GBC. For this, a literature survey was done to identify differentially expressed lncRNAs (DELs), miRNAs (DEMs), mRNAs (DEGs) and proteins (DEPs) in GBC. Ingenuity pathway analysis (IPA) using DEMs, DEGs and DEPs in GBC identified 242 experimentally observed miRNA-mRNA interactions with 183 miRNA targets, of these 9 (CDX2, MTDH, TAGLN, TOP2A, TSPAN8, EZH2, TAGLN2, LMNB1, and PTMA) were reported at both mRNA and protein levels. Pathway analysis of 183 targets revealed p53 signaling among the top pathway. Protein-protein interaction (PPI) analysis of 183 targets using the STRING database and cytoHubba plug-in of Cytoscape software revealed 5 hub molecules, of which 3 of them (TP53, CCND1 and CTNNB1) were associated with the p53 signaling pathway. Further, using Diana tools and Cytoscape software, novel lncRNA-miRNA-mRNA networks regulating the expression of TP53, CCND1, CTNNB1, CDX2, MTDH, TOP2A, TSPAN8, EZH2, TAGLN2, LMNB1, and PTMA were constructed. These regulatory networks may be experimentally validated in GBC and explored for therapeutic applications.
Collapse
Affiliation(s)
- Neeraj Saklani
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, New Delhi, India
| | - Varnit Chauhan
- Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Javed Akhtar
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, New Delhi, India
| | - Santosh Kumar Upadhyay
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Bhimtal, Kumaun University, Nainital, Uttarakhand, India
| | - Ravi Sirdeshmukh
- Manipal Academy of Higher Education (MAHE), Manipal, India.,Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Poonam Gautam
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, New Delhi, India
| |
Collapse
|
26
|
Saadi W, Fatmi A, Pallardó FV, García-Giménez JL, Mena-Molla S. Long Non-Coding RNAs as Epigenetic Regulators of Immune Checkpoints in Cancer Immunity. Cancers (Basel) 2022; 15:cancers15010184. [PMID: 36612180 PMCID: PMC9819025 DOI: 10.3390/cancers15010184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
In recent years, cancer treatment has undergone significant changes, predominantly in the shift towards immunotherapeutic strategies using immune checkpoint inhibitors. Despite the clinical efficacy of many of these inhibitors, the overall response rate remains modest, and immunotherapies for many cancers have proved ineffective, highlighting the importance of knowing the tumor microenvironment and heterogeneity of each malignancy in patients. Long non-coding RNAs (lncRNAs) have attracted increasing attention for their ability to control various biological processes by targeting different molecular pathways. Some lncRNAs have a regulatory role in immune checkpoints, suggesting they might be utilized as a target for immune checkpoint treatment. The focus of this review is to describe relevant lncRNAs and their targets and functions to understand key regulatory mechanisms that may contribute in regulating immune checkpoints. We also provide the state of the art on super-enhancers lncRNAs (selncRNAs) and circular RNAs (circRNAs), which have recently been reported as modulators of immune checkpoint molecules within the framework of human cancer. Other feasible mechanisms of interaction between lncRNAs and immune checkpoints are also reported, along with the use of miRNAs and circRNAs, in generating new tumor immune microenvironments, which can further help avoid tumor evasion.
Collapse
Affiliation(s)
- Wiam Saadi
- Department of Biology, Faculty of Nature, Life and Earth Sciences, University of Djillali Bounaama, Khemis Miliana 44225, Algeria
- Correspondence: (W.S.); (S.M.-M.)
| | - Ahlam Fatmi
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
| | - Federico V. Pallardó
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Salvador Mena-Molla
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (W.S.); (S.M.-M.)
| |
Collapse
|
27
|
Li S, Chen Z, Zhou R, Wang S, Wang W, Liu D, Li M, Guo T. Hsa_circ_0048674 facilitates hepatocellular carcinoma progression and natural killer cell exhaustion depending on the regulation of miR-223-3p/PDL1. Histol Histopathol 2022; 37:1185-1199. [PMID: 35187630 DOI: 10.14670/hh-18-440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) play vital regulatory roles in human cancers, including hepatocellular carcinoma (HCC). In this study, we aimed to explore the functions of hsa_circ_0048674 in HCC development. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) assay was used to detect hsa_circ_0048674, ubiquitin-like with PHD and RING finger domains 1 (UHRF1), microRNA-223-3p (miR-223-3p) and programmed death ligand 1 (PDL1). RNase R assay and Actinomycin D assay were employed to analyze the stability of hsa_circ_0048674. Cell Counting Kit-8 (CCK-8) assay, colony formation assay and 5-ethynyl-2'- deoxyuridine (EdU) assay were conducted to assess cell proliferation. Flow cytometry analysis, transwell assay and tube formation assay were carried out for cell apoptosis, migration, invasion and angiogenesis, respectively. Western blot assay was adopted for protein levels. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were used to analyze the relationship between miR-223-3p and hsa_circ_0048674 or PDL1. Murine xenograft model assay was conducted for the function of hsa_circ_0048674 in vivo. Immunohistochemistry (IHC) assay was used to detect Ki-67 level in tumor tissues. Enzyme linked immunosorbent assay (ELISA) kits were employed for the concentrations of inflammatory factors. RESULTS Hsa_circ_0048674 was highly expressed in HCC tissues and cells. Silencing of hsa_circ_0048674 repressed cell growth, migration, invasion and angiogenesis and promoted apoptosis in HCC cells in vitro and hampered tumor growth in vivo. Hsa_circ_0048674 served as an miR-223-3p sponge to alter PDL1 expression. MiR-223-3p inhibition or PDL1 overexpression restored the impacts of hsa_circ_0048674 silencing on HCC malignant behaviors. In addition, hsa_circ_0048674 knockdown promoted natural killer (NK) cell-mediated cytotoxicity to HCC cells. CONCLUSION Hsa_circ_0048674 knockdown decelerated HCC progression through the mediation of the miR-223-3p/PDL1 axis.
Collapse
Affiliation(s)
- Suihui Li
- Tumor Center, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhuangzhong Chen
- Tumor Center, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Ruisheng Zhou
- Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Sisi Wang
- Tumor Center, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenping Wang
- Tumor Center, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - De Liu
- Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengquan Li
- Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tiansheng Guo
- Department of Oncology, Panyu Hospital of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
28
|
Tang W, Liu H, Li X, Ooi TC, Rajab NF, Cao H, Sharif R. Efficacy of zinc carnosine in the treatment of colorectal cancer and its potential in combination with immunotherapy in vivo. Aging (Albany NY) 2022; 14:8688-8699. [DOI: 10.18632/aging.204380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022]
Affiliation(s)
- Weiwei Tang
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, Jiangsu, China
| | - Hanyuan Liu
- General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Xiao Li
- General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Theng Choon Ooi
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Nor Fadilah Rajab
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Hongyong Cao
- General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Razinah Sharif
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Biocompatibility Laboratory, Centre for Research and Instrumentation, University Kebangsaan Malaysia, UKM Bangi, Bangi 43600, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
29
|
Machine learning-based exceptional response prediction of nivolumab monotherapy with circulating microRNAs in non-small cell lung cancer. Lung Cancer 2022; 173:107-115. [DOI: 10.1016/j.lungcan.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022]
|
30
|
Ghafouri-Fard S, Shoorei H, Hussen BM, Poornajaf Y, Taheri M, Sharifi G. Interplay between programmed death-ligand 1 and non-coding RNAs. Front Immunol 2022; 13:982902. [PMID: 36405753 PMCID: PMC9667550 DOI: 10.3389/fimmu.2022.982902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) is a transmembrane protein with essential roles in the suppression of adaptive immune responses. As an immune checkpoint molecule, PD-L1 can be exploited by cancer cells to evade the anti-tumor attacks initiated by the immune system. Thus, blockade of the PD1/PD-L1 axis can eliminate the suppressive signals and release the antitumor immune responses. Identification of the underlying mechanisms of modulation of the activity of the PD1/PD-L1 axis would facilitate the design of more efficacious therapeutic options and better assignment of patients for each option. Recent studies have confirmed the interactions between miRNAs/lncRNAs/circ-RNAs and the PD1/PD-L1 axis. In the current review, we give a summary of interactions between these transcripts and PD-L1 in the context of cancer. We also overview the consequences of these interactions in the determination of the response of patients to anti-cancer drugs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Iraq,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan, Iraq
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Institute of Human Genetics, Jena University Hospital, Jena, Germany,*Correspondence: Mohammad Taheri, ; Guive Sharifi,
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Mohammad Taheri, ; Guive Sharifi,
| |
Collapse
|
31
|
Shadbad MA, Ghorbaninezhad F, Hassanian H, Ahangar NK, Hosseinkhani N, Derakhshani A, Shekari N, Brunetti O, Silvestris N, Baradaran B. A scoping review on the significance of programmed death-ligand 1-inhibiting microRNAs in non-small cell lung treatment: A single-cell RNA sequencing-based study. Front Med (Lausanne) 2022; 9:1027758. [PMID: 36388933 PMCID: PMC9659572 DOI: 10.3389/fmed.2022.1027758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The programmed death-ligand 1 (PD-L1)/PD-1 axis is one of the well-established inhibitory axes in regulating immune responses. Besides the significance of tumor-intrinsic PD-L1 expression in immune evasion, its oncogenic role has been implicated in various malignancies, like non-small cell lung cancer (NSCLC). As small non-coding RNAs, microRNAs (miRs) have pivotal roles in cancer biology. The current study aimed to systematically review the current knowledge about the significance of PD-L1-inhibiting miRs in NSCLC inhibition and their underlying mechanisms. MATERIALS AND METHODS We conducted the current scoping review based on the PRISMA-ScR statement. We systematically searched Embase, Scopus, Web of Science, PubMed, Ovid, EBSCO, ProQuest, Cochrane Library, African Index Medicus, and Pascal-Francis up to 4 April 2021. We also performed in silico tumor bulk RNA sequencing and single-cell RNA sequencing to further the current knowledge of the non-coding RNA-mediated tumor-intrinsic PD-L1 regulation and the PD-L1/PD-1 axis in NSCLC. RESULTS The ectopic expression of hsa-miR-194-5p, hsa-miR-326, hsa-miR-526b-3p, hsa-miR-34a-5p, hsa-miR-34c-5p, hsa-miR-138-5p, hsa-miR-377-3p, hsa-let-7c-5p, hsa-miR-200a-3p, hsa-miR-200b-3p, hsa-miR-200c-3p, and hsa-miR-197-3p, as PD-L1-inhibiting miR, inhibits NSCLC development. These PD-L1-inhibiting miRs can substantially regulate the cell cycle, migration, clonogenicity, invasion, apoptosis, tumor chemosensitivity, and host anti-tumoral immune responses. Based on single-cell RNA sequencing results, PD-L1 inhibition might liberate the tumor-infiltrated CD8+ T-cells and dendritic cells (DCs)-mediated anti-tumoral immune responses via disrupting the PD-L1/PD-1 axis. CONCLUSION Given the promising preclinical results of these PD-L1-inhibiting miRs in inhibiting NSCLC development, their ectopic expression might improve NSCLC patients' prognosis; however, further studies are needed to translate this approach into clinical practice.
Collapse
Affiliation(s)
| | | | - Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Noora Karim Ahangar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Hosseinkhani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, Istituto Di Ricovero e Cura a Carattere Scientifico Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Najibeh Shekari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi, University of Messina, Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Song Z, Wang X, Chen F, Chen Q, Liu W, Yang X, Zhu X, Liu X, Wang P. LncRNA MALAT1 regulates METTL3-mediated PD-L1 expression and immune infiltrates in pancreatic cancer. Front Oncol 2022; 12:1004212. [PMID: 36212476 PMCID: PMC9533337 DOI: 10.3389/fonc.2022.1004212] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer death in the United States. The main methods of treating pancreatic cancer are surgery and chemotherapy, but the treatment efficacy is low with a poor prognosis. Immunotherapy represented by PD-1/PD-L1 has brought a milestone progress in the treatment of pancreatic cancer. However, the unique tumor microenvironment of pancreatic cancer presents challenges for immunotherapy. In addition, m6A is a common RNA modification and a potential molecular target in tumor therapy. The expression pattern of m6A in pancreatic cancer is still unclear. LncRNAs also play an essential role in pancreatic cancer development and treatment. In this study, we found that some m6A regulators were significantly elevated in pancreatic cancer and associated with the expression of PD-1/PD-L1. Moreover, we observed that METTL3 can increase the expression of PD-L1. Notably, METTL3 positively regulates the expression of lncRNA MALAT1 in pancreatic cancer cells. Strikingly, lncRNA MALAT1 increased the expression of PD-L1 in pancreatic cancer cells. This finding indicated that METTL3 regulated the expression of PD-L1 possibly via targeting lncRNA MALAT1 in pancreatic cancer cells. Lastly, MALAT1 governed the viability of pancreatic cancer cells. Taken together, lncRNA MALAT1 is involved in METTL3-mediated promotion of PD-L1 expression in pancreatic cancer.
Collapse
Affiliation(s)
- Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Fei Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiuli Chen
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
| | - Wenjun Liu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
| | - Xiaodan Yang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xun Zhu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaorong Liu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Xiaorong Liu, ; Peter Wang,
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
- *Correspondence: Xiaorong Liu, ; Peter Wang,
| |
Collapse
|
33
|
The Features of Immune Checkpoint Gene Regulation by microRNA in Cancer. Int J Mol Sci 2022; 23:ijms23169324. [PMID: 36012588 PMCID: PMC9409052 DOI: 10.3390/ijms23169324] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, the search for new promising tools of immunotherapy continues. In this regard, microRNAs (miRNAs) that influence immune checkpoint (IC) gene expression in tumor and T-cells and may be important regulators of immune cells are considered. MiRNAs regulate gene expression by blocking mRNA translation. An important feature of miRNA is its ability to affect the expression of several genes simultaneously, which corresponds to the trend toward the use of combination therapy. The article provides a list of miRNAs acting simultaneously on several ICs and miRNAs that, in addition to IC, can regulate the expression of targeted therapy genes. There is dependence of miRNA interactions with IC genes on the type of cancer. The analysis of the accumulated data demonstrates that only about 14% (95% CI: 9.8–20.1%) of the studied miRNAs regulate the expression of specific IC in more than one type of cancer. That is, there is tumor specificity in the miRNA action on ICs. A number of miRNAs demonstrated high efficiency in vitro and in vivo. This indicates the potential of miRNAs as promising agents for cancer immunotherapy. Additional studies of the miRNA–gene interaction features and the search for an optimal miRNA mimic structure are necessary.
Collapse
|
34
|
Peña-Flores JA, Bermúdez M, Ramos-Payán R, Villegas-Mercado CE, Soto-Barreras U, Muela-Campos D, Álvarez-Ramírez A, Pérez-Aguirre B, Larrinua-Pacheco AD, López-Camarillo C, López-Gutiérrez JA, Garnica-Palazuelos J, Estrada-Macías ME, Cota-Quintero JL, Barraza-Gómez AA. Emerging role of lncRNAs in drug resistance mechanisms in head and neck squamous cell carcinoma. Front Oncol 2022; 12:965628. [PMID: 35978835 PMCID: PMC9376329 DOI: 10.3389/fonc.2022.965628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) originates in the squamous cell lining the mucosal surfaces of the head and neck region, including the oral cavity, nasopharynx, tonsils, oropharynx, larynx, and hypopharynx. The heterogeneity, anatomical, and functional characteristics of the patient make the HNSCC a complex and difficult-to-treat disease, leading to a poor survival rate and a decreased quality of life due to the loss of important physiologic functions and aggressive surgical injury. Alteration of driver-oncogenic and tumor-suppressing lncRNAs has recently been recently in HNSCC to obtain possible biomarkers for diagnostic, prognostic, and therapeutic approaches. This review provides current knowledge about the implication of lncRNAs in drug resistance mechanisms in HNSCC. Chemotherapy resistance is a major therapeutic challenge in HNSCC in which lncRNAs are implicated. Lately, it has been shown that lncRNAs involved in autophagy induced by chemotherapy and epithelial–mesenchymal transition (EMT) can act as mechanisms of resistance to anticancer drugs. Conversely, lncRNAs involved in mesenchymal–epithelial transition (MET) are related to chemosensitivity and inhibition of invasiveness of drug-resistant cells. In this regard, long non-coding RNAs (lncRNAs) play a pivotal role in both processes and are important for cancer detection, progression, diagnosis, therapy response, and prognostic values. As the involvement of more lncRNAs is elucidated in chemoresistance mechanisms, an improvement in diagnostic and prognostic tools could promote an advance in targeted and specific therapies in precision oncology.
Collapse
Affiliation(s)
- José A. Peña-Flores
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
- *Correspondence: Mercedes Bermúdez,
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | - Uriel Soto-Barreras
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | | | | | | | | | | | - Jorge A. López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | | | - Juan L. Cota-Quintero
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Odontology , Autonomous University of Sinaloa, Culiacán, Mexico
| | | |
Collapse
|
35
|
Kong X, Zheng Z, Song G, Zhang Z, Liu H, Kang J, Sun G, Sun G, Huang T, Li X, Rong D, Wang K, Tang W, Xia Y. Over-Expression of GUSB Leads to Primary Resistance of Anti-PD1 Therapy in Hepatocellular Carcinoma. Front Immunol 2022; 13:876048. [PMID: 35812439 PMCID: PMC9257027 DOI: 10.3389/fimmu.2022.876048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Immunotherapy treatments, particularly immune checkpoint blockade, can result in benefits in clinical settings. But many pre-clinical and clinical studies have shown that resistance to anti-PD1 therapy frequently occurs, leading to tumor recurrence and treatment failure, including in patients with hepatocellular carcinoma (HCC). In this study, 10 patients with HCC were remedied with anti-PD1, and pre-treatment biopsy samples were sequenced for 289 nanostring panel RNA to compare responsive and non-responsive tumors to identify possible pretreatment biomarkers or targets of anti-PD1 therapeutic responses. Fortunately, the expression of β-Glucuronidase (GUSB) in the non-responding tumors was found to be remarkably higher than that in responding tumors. Results of the cell counting kit 8 (CCK8), 5-ethynyl-2’-deoxyuridine (EdU), transwell, wound healing test, and flow cytometry showed that GUSB facilitated proliferation, invasion, as well as migration of human HCC cells and downregulated PD-L1 expression by promoting miR-513a-5p. Additionally, as a GUSB inhibitor, amoxapine can reduce the progression of human HCC cells, and was an effective treatment for HCC and improved the sensitivity of anti-PD1 therapy. In summary, this study reveals that increased GUSB downregulates PD-L1 expression by promoting miR-513a-5p, leading to primary resistance to anti-PD1 treatment in HCC, and amoxapine enhances the sensitivity of anti-PD1 therapy by inhibiting GUSB, providing a new strategy and method for improving the efficacy of anti-PD1 therapy and bringing new prospects for therapy of HCC.
Collapse
Affiliation(s)
- Xiangyi Kong
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zhiying Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoxin Song
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zihao Zhang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hanyuan Liu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junwei Kang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tian Huang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xiao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dawei Rong
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ke Wang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- *Correspondence: Yongxiang Xia, ; Weiwei Tang, ; Ke Wang,
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- *Correspondence: Yongxiang Xia, ; Weiwei Tang, ; Ke Wang,
| | - Yongxiang Xia
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- *Correspondence: Yongxiang Xia, ; Weiwei Tang, ; Ke Wang,
| |
Collapse
|
36
|
Zhou D, Wang Y, Hu H, Liu H, Deng J, Li L, Zheng C. lncRNA MALAT1 promotes HCC metastasis through the peripheral vascular infiltration via miRNA-613: a primary study using contrast ultrasound. World J Surg Oncol 2022; 20:203. [PMID: 35706002 PMCID: PMC9202184 DOI: 10.1186/s12957-022-02655-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Background This study aimed to explore the specific pathogenesis of lncRNA MALAT1 promoting the invasion and metastasis of hepatocellular carcinoma (HCC) through peripheral blood vessels by regulating the expression of miRNA-613 molecule. Methods The data of 60 HCC metastatic patients and 60 HCC non-metastatic patients detected by the contrast-enhanced ultrasound (CEUS) in the Second Affiliated Hospital of Qiqihar Medical College from January 2020 to June 2021 were collected, as well as postoperatively retained HCC tissues and paired paracancer tissues (5 cm laterally from the edge of the cancer area), to study the changes of microangiogenesis in HCC tissues with CEUS. The correlation between CEUS grading and lncRNA MALAT1 in patients with HCC was analyzed through Pearson correlation analysis, lncRNA MALAT1 and miRNA-613 in HCC tissues of patients with HCC were detected by qRT-PCR, followed by the bioinformatic analysis for the relationship between lncRNA MALAT1 and miRNA-613. The Log-growing human HCC cell strain, HepG2, was selected for experiments. Adenovirus transfection knocked down lncRNA MALAT1 in HCC cells, which was divided into two groups (inhibitor-NC group and lncR-inhibitor group), followed by knocking down miRNA-613 on the basis of knocking down lncRNA MALAT1, which was divided into three groups (inhibitor-NC group, lncR-inhibitor groups, and lncR/miR613-inhibitor group). The expression of miRNA-613 and lncRNA MALAT1 in each group was detected by qRT-PCR. The migration and invasiveness of cells in each group were detected by Transwell assay. Results CEUS of HCC and Pearson correlation analysis showed that CEUS grading and lncRNA MALAT1 were positively correlated in patients with HCC. In HCC tissues of patients with HCC, lncRNA MALAT1 expressed high and miRNA-613 expressed low. The results of bioinformatic analysis showed the targeting of lncRNA MALAT1 and miRNA-613. Knocking down lncRNA MALAT1 could increase miRNA-613 expression significantly, and reduce the migration of HCC cells. Inhibiting miRNA-613 based on knocking down lncRNA MALAT1 could increase the survival and migration of HCC cells. Conclusions lncRNA MALAT1 can promote HCC metastasis through the peripheral vascular infiltration by inhibiting the level of MiRNA-613, which can, therefore, be used as a potential target for the treatment of HCC. 1. Contrast-enhanced ultrasound (CEUS) grading was positively correlated with lncRNA MALAT1 in patients with hepatocellular carcinoma (HCC). 2. lncRNA MALAT1 expressed high and miRNA-613 expressed low in HCC tissues of patients with HCC. 3. lncRNA MALAT1 was targeted with miRNA-613. 4. Knocking down lncRNA MALAT1 could significantly increase miRNA-613 expression. 5. Knocking down lncRNA MALAT1 could reduce the migration of HCC cells. 6. Inhibiting miRNA-613 on the basis of knocking down lncRNA MALAT1 could increase the survival and migration of HCC cells.
Collapse
Affiliation(s)
- Dandan Zhou
- Department of Ultrasound, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| | - Ying Wang
- Department of Ultrasound, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China.
| | - Haifeng Hu
- Department of Magnetic Resonance Imaging, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| | - Huilin Liu
- Department of Ultrasound, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| | - Jiajia Deng
- Department of Ultrasound, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| | - Lu Li
- Department of Ultrasound, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| | - Chunlei Zheng
- Department of Oncology, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| |
Collapse
|
37
|
Jo H, Shim K, Jeoung D. Potential of the miR-200 Family as a Target for Developing Anti-Cancer Therapeutics. Int J Mol Sci 2022; 23:ijms23115881. [PMID: 35682560 PMCID: PMC9180509 DOI: 10.3390/ijms23115881] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (18–24 nucleotides) that play significant roles in cell proliferation, development, invasion, cancer development, cancer progression, and anti-cancer drug resistance. miRNAs target multiple genes and play diverse roles. miRNAs can bind to the 3′UTR of target genes and inhibit translation or promote the degradation of target genes. miR-200 family miRNAs mostly act as tumor suppressors and are commonly decreased in cancer. The miR-200 family has been reported as a valuable diagnostic and prognostic marker. This review discusses the clinical value of the miR-200 family, focusing on the role of the miR-200 family in the development of cancer and anti-cancer drug resistance. This review also provides an overview of the factors that regulate the expression of the miR-200 family, targets of miR-200 family miRNAs, and the mechanism of anti-cancer drug resistance regulated by the miR-200 family.
Collapse
|
38
|
Chen ML, Fan L, Huang GR, Sun ZF. lncRNA EGFR-AS1 facilitates leiomyosarcoma progression and immune escape via the EGFR-MYC-PD-L1 axis. Int Immunol 2022; 34:365-377. [PMID: 35485964 DOI: 10.1093/intimm/dxac014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
AIM this study was aimed to investigate the role of lncRNA EGFR-AS1, an antisense transcript of EGFR, in leiomyosarcoma (LMS) and the underling mechanisms. METHODS levels of EGFR-AS1 and PD-L1 were measured in LMS tissues and cell lines using qRT-PCR, as well as western blotting and/or immunohistochemical staining; flow cytometry was employed to validate the role of EGFR-AS1 on altering the activity of CD8 + T cells; interaction of EGFR-AS1 and EGFR was determined by fluorescent in situ hybridization (FISH) and RNA pull-down; regulation of MYC on PD-L1 promoter was assessed by chromatin immunoprecipitation (ChIP); a xenograft in vivo tumor growth assay was applied to verify the EGFR-AS1/EGFR/MYC/PD-L1 axis in vivo. RESULTS up-regulation of EGFR-AS1 and PD-L1 in LMS tissues was negatively correlated with CD8 + T cell infiltration; EGFR-AS1 positively regulated PD-L1, thereby strengthening interaction of LMS cells and CD8 + T cells and triggering CD8 + T cells apoptosis via the PD-1/PD-L1 checkpoint; EGFR-AS1 co-localized and interacted with EGFR to promote MYC activity; MYC was identified as a transcriptional activator of PD-L1. CONCLUSION lncRNA EGFR-AS1 was demonstrated to increase PD-L1 expression through the EGFR/MYC pathway in LMS cells, thereby repressing T cell infiltration and contributing to immune escape.
Collapse
Affiliation(s)
- Mei-Ling Chen
- Biomedical Engineering College, Hubei University of Medicine, Shiyan 442000, Hubei Province, P.R. China.,Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, P.R. China.,Gynecology department, Shenzhen Bao'an Traditional Chinese Medicine Hospital,Guangzhou University of Chinese Medicine, Shenzhen 518100, Guangdong Province, P.R. China
| | - Li Fan
- Gynecology department, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, P.R. China
| | - Guang-Rong Huang
- Gynecology department, Shenzhen Bao'an Traditional Chinese Medicine Hospital,Guangzhou University of Chinese Medicine, Shenzhen 518100, Guangdong Province, P.R. China
| | - Zhi-Feng Sun
- Biomedical Engineering College, Hubei University of Medicine, Shiyan 442000, Hubei Province, P.R. China.,Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, P.R. China.,Hubei clinical research center for reproductive medicine, Hubei University of Medicine, Shiyan 442000, Hubei Province, P.R.China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, Hubei Province, P.R.China
| |
Collapse
|
39
|
Ghafouri-Fard S, Hussen BM, Mohaqiq M, Shoorei H, Baniahmad A, Taheri M, Jamali E. Interplay Between Non-Coding RNAs and Programmed Cell Death Proteins. Front Oncol 2022; 12:808475. [PMID: 35402235 PMCID: PMC8983884 DOI: 10.3389/fonc.2022.808475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/25/2022] [Indexed: 12/25/2022] Open
Abstract
Programmed cell death (PDCD) family of proteins includes at least 12 members, function of seven of them being more investigated. These members are PDCD1, PDCD2, PDCD4, PDCD5, PDCD6, PDCD7 and PDCD10. Consistent with the important roles of these proteins in the regulation of apoptosis, dysregulation of PDCDs is associated with diverse disorders ranging from intervertebral disc degeneration, amyotrophic lateral sclerosis, immune thrombocytopenia, type 1 diabetes, congenital hypothyroidism, Alzheimer’s disease to different types of cancers. More recently, the interaction between non-coding RNAs and different members of PDCD family is being discovered. In the current study, we described the functional interactions between PDCDs and two classes of non-coding RNAs, namely microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). miR-21 and miR-183 are two miRNAs whose interactions with PDCDs have been assessed in different contexts. The lncRNAs interaction with PDCDs is mainly assessed in the context of neoplasia indicating the role of MALAT1, MEG3, SNHG14 and LINC00473 in this process.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti Universality of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Toronto, ON, Canada
- The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti Universality of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Elena Jamali,
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti Universality of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Elena Jamali,
| |
Collapse
|
40
|
Wu X, Liu H, Zhang M, Ma J, Qi S, Tan Q, Jiang Y, Hong Y, Yan L. miR-200a-3p promoted cell proliferation and metastasis by downregulating SOX17 in non-small cell lung cancer cells. J Biochem Mol Toxicol 2022; 36:e23037. [PMID: 35293083 DOI: 10.1002/jbt.23037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 11/06/2022]
Abstract
Lung cancer has high mortality and incidence rates in which non-small cell lung cancer (NSCLC) is the primary type of lung cancer that accounts for about 80%-85% of total patients. It has been demonstrated that microRNAs (miRNAs) are critical in the incidence and progression of tumors, while the role and inner mechanism of miR-200a-3p, one type of essential miRNAs, in NSCLC have yet to be revealed. Herein, we investigated the in vitro and vivo pro-/antiproliferative influence of miR-200a-3p on NSCLC cells and utilized bioinformatic programs to further predict the SOX17 gene as miR-200a-3p's potential target. A double luciferase reporter gene experiment was performed to confirm that miR-200a-3p interacts with the SOX17 3'-UTR region specifically. On the basis of the results of Western blot and quantitative reverse-transcription polymerase chain reaction (qRT-PCR), miR-200a-3p impacted the posttranscriptional levels of SOX17 rather than influencing its mRNA expression. In the end, we found that overexpressed SOX17 can reverse miR-200a-3p's impact on NSCLC cell proliferation and metastasis. Therefore, this study demonstrated that miR-200a-3p influences NSCLC cell proliferation and metastasis by modulating the levels of SOX17.
Collapse
Affiliation(s)
- Xu Wu
- Provincial Key Laboratory of Biological Macro-molecules Research, Department of Biochemistry, School of Biomedicine, Wannan Medical College, Wuhu, China
| | - Haijun Liu
- Provincial Key Laboratory of Biological Macro-molecules Research, Department of Biochemistry, School of Biomedicine, Wannan Medical College, Wuhu, China
| | - Mingkang Zhang
- Provincial Key Laboratory of Biological Macro-molecules Research, Department of Biochemistry, School of Biomedicine, Wannan Medical College, Wuhu, China
| | - Jinzhu Ma
- Provincial Key Laboratory of Biological Macro-molecules Research, Department of Biochemistry, School of Biomedicine, Wannan Medical College, Wuhu, China
| | - Shimei Qi
- Provincial Key Laboratory of Biological Macro-molecules Research, Department of Biochemistry, School of Biomedicine, Wannan Medical College, Wuhu, China
| | - Qiuyu Tan
- Provincial Key Laboratory of Biological Macro-molecules Research, Department of Biochemistry, School of Biomedicine, Wannan Medical College, Wuhu, China
| | - Yuxin Jiang
- Department of Pathogen Biology and Immunology, Jiaxing University College of Medicine, Jiaxing, China
| | - Yeting Hong
- College of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Liang Yan
- Provincial Key Laboratory of Biological Macro-molecules Research, Department of Biochemistry, School of Biomedicine, Wannan Medical College, Wuhu, China
| |
Collapse
|
41
|
Abstract
With the development of precision medicine, the efficiency of tumor treatment has been significantly improved. More attention has been paid to targeted therapy and immunotherapy as the key to precision treatment of cancer. Targeting epidermal growth factor receptor (EGFR) has become one of the most important targeted treatments for various cancers. Comparing with traditional chemotherapy drugs, targeting EGFR is highly selective in killing tumor cells with better safety, tolerability and less side effect. In addition, tumor immunotherapy has become the fourth largest tumor therapy after surgery, radiotherapy and chemotherapy, especially immune checkpoint inhibitors. However, these treatments still produce a certain degree of drug resistance. Non-coding RNAs (ncRNAs) were found to play a key role in carcinogenesis, treatment and regulation of the efficacy of anticancer drugs in the past few years. Therefore, in this review, we aim to summarize the targeted treatment of cancers and the functions of ncRNAs in cancer treatment.
Collapse
|
42
|
Zhao J, Yan W, Huang W, Li Y. Circ_0010235 facilitates lung cancer development and immune escape by regulating miR-636/PDL1 axis. Thorac Cancer 2022; 13:965-976. [PMID: 35167195 PMCID: PMC8977160 DOI: 10.1111/1759-7714.14338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Background Circular RNAs (circRNAs) are a class of important regulators in various human cancers, including lung cancer. Here, we aimed to investigate the role of circ_0010235 in lung cancer. Methods The expression of circ_0010235, microRNA‐636 (miR‐636) and PDL1 was measured by quantitative real‐time PCR (qRT‐PCR). Cell proliferation was evaluated by CCK‐8, colony formation, and 5‐ethynyl‐2′‐deoxyuridine (EdU) assays. Cell apoptosis was detected by flow cytometry. Cell invasion was assessed by transwell assay. All protein levels were determined by western blot assay. In order to detect the roles of circ_0010235 in immune escape, lung cancer cells were cocultured with peripheral blood mononuclear cells (PBMCs) or cytokine‐induced killer (CIK) cells in vitro. The relationship between miR‐636 and circ_0010235 or PDL1 was verified by dual‐luciferase reporter assay and RNA pulldown assay. Immunohistochemistry (IHC) analysis was used to detect Ki67 and programmed death‐ligand 1 (PDL1) expression. A xenograft tumor model was established to verify the function of circ_0010235 in vivo. Results Circ_0010235 was overexpressed in lung cancer. Circ_0010235 knockdown inhibited proliferation, invasion and immune escape and promoted apoptosis of lung cancer cells. MiR‐636 was a target of circ_0010235, and miR‐636 inhibition reversed the effects of circ_0010235 knockdown in lung cancer cells. PDL1 was a direct target of miR‐636, and miR‐636 suppressed the proliferation and invasion and increased apoptosis and antitumor immunity in lung cancer cells by downregulating PDL1. Moreover, circ_0010235 positively regulated PDL1 expression by sponging miR‐636. Additionally, circ_0010235 knockdown hampered tumorigenesis in vivo. Conclusion Circ_0010235 knockdown inhibited lung cancer progression and increased antitumor immunity by regulating the miR‐636/PDL1 axis.
Collapse
Affiliation(s)
- Jixing Zhao
- Department of Thoracic Surgery, Huizhou Central People's Hospital, Huizhou, China
| | - Wu Yan
- Department of Thoracic Surgery, Huizhou Central People's Hospital, Huizhou, China
| | - Wencong Huang
- Department of Thoracic Surgery, Huizhou Central People's Hospital, Huizhou, China
| | - Yongsheng Li
- Department of Thoracic Surgery, Huizhou Central People's Hospital, Huizhou, China
| |
Collapse
|
43
|
Yu J, He X, Fang C, Wu H, Hu L, Xue Y. MicroRNA‑200a‑3p and GATA6 are abnormally expressed in patients with non‑small cell lung cancer and exhibit high clinical diagnostic efficacy. Exp Ther Med 2022; 23:281. [PMID: 35317445 PMCID: PMC8908458 DOI: 10.3892/etm.2022.11210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/16/2021] [Indexed: 11/15/2022] Open
Abstract
Lung cancer is one of the main threats to human health. Survival of patients with lung cancer depends on timely detection and diagnosis. Among the genetic irregularities that control cancer development and progression, there are microRNAs (miRNAs/miRs). The present study aimed to investigate the expression patterns of miR-200a-3p and transcription factor GATA-6 (GATA6) in peripheral blood of patients with non-small cell lung cancer (NSCLC) and their clinical significance. The expression patterns of miR-200a-3p and GATA6 in the peripheral blood of patients with NSCLC and healthy subjects were measured via reverse transcription-quantitative PCR. The correlation between GATA6/miR-200a-3p expression and their diagnostic efficacy were analyzed by receiver operating characteristic curve analysis. The association between miR-200a-3p/GATA6 expression with the patient clinicopathological characteristics, and their correlation with carcinoembryonic antigen (CEA), neuron specific enolase (NSE) and squamous cell carcinoma antigen (SCCAg) were evaluated. The cumulative survival rate was examined, and whether miR-200a-3p and GATA6 expression levels were independently correlated with the prognosis of NSCLC was analyzed using multivariate logistic regression model. The results demonstrated that the expression of miR-200a-3p was high and that of GATA6 was low in the peripheral blood of patients with NSCLC, and both exhibited high clinical diagnostic efficacy. miR-200a-3p was revealed to target GATA6 by dual-luciferase assay. miR-200a-3p in the peripheral blood was correlated with TNM stage, lymph node metastasis and distal metastasis, while GATA6 in the peripheral blood was correlated with TNM stage and lymph node metastasis. miR-200a-3p and GATA6 were positively correlated with CEA and SCCAg, but not with NSE. High expression of miR-200a-3p and low expression of GATA6 predicted poor prognosis in patients with NSCLC. After adjusting for TNM stage, lymph node metastasis, distance metastasis, GATA6, CEA, NSE and SCCAg in the logistic regression model, it was indicated that the high expression of miR-200a-3p increased the risk of death in patients with NSCLC. Collectively, it was revealed that miR-200a-3p and GATA6 were abnormally expressed in the peripheral blood of patients with NSCLC. Serum levels of miR-200a-3p >1.475 and GATA6 <1.195 may assist the early diagnosis of NSCLC. GATA6 may function in NSCLC as a miR-200a-3p target, which may provide a future reference for NSCLC early diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Yu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Xinyun He
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Chunju Fang
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Haixia Wu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Lei Hu
- Department of Laboratory Medicine, Guizhou Women's and Children's Hospital, Guiyang, Guizhou 550003, P.R. China
| | - Yingbo Xue
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| |
Collapse
|
44
|
Yamaguchi H, Hsu JM, Yang WH, Hung MC. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat Rev Clin Oncol 2022; 19:287-305. [DOI: 10.1038/s41571-022-00601-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
|
45
|
Montico B, Giurato G, Pecoraro G, Salvati A, Covre A, Colizzi F, Steffan A, Weisz A, Maio M, Sigalotti L, Fratta E. The pleiotropic roles of circular and long noncoding RNAs in cutaneous melanoma. Mol Oncol 2022; 16:565-593. [PMID: 34080276 PMCID: PMC8807361 DOI: 10.1002/1878-0261.13034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma (CM) is a very aggressive disease, often characterized by unresponsiveness to conventional therapies and high mortality rates worldwide. The identification of the activating BRAFV600 mutations in approximately 50% of CM patients has recently fueled the development of novel small-molecule inhibitors that specifically target BRAFV600 -mutant CM. In addition, a major progress in CM treatment has been made by monoclonal antibodies that regulate the immune checkpoint inhibitors. However, although target-based therapies and immunotherapeutic strategies have yielded promising results, CM treatment remains a major challenge. In the last decade, accumulating evidence points to the aberrant expression of different types of noncoding RNAs (ncRNAs) in CM. While studies on microRNAs have grown exponentially leading to significant insights on CM biology, the role of circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) in this tumor is less understood, and much remains to be discovered. Here, we summarize and critically review the available evidence on the molecular functions of circRNAs and lncRNAs in BRAFV600 -mutant CM and CM immunogenicity, providing recent updates on their functional role in targeted therapy and immunotherapy resistance. In addition, we also include an evaluation of several algorithms and databases for prediction and validation of circRNA and lncRNA functional interactions.
Collapse
Affiliation(s)
- Barbara Montico
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
| | - Alessia Covre
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
| | - Francesca Colizzi
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Agostino Steffan
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Michele Maio
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
- NIBIT Foundation OnlusSienaItaly
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Elisabetta Fratta
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| |
Collapse
|
46
|
Li J, Che L, Xu C, Lu D, Xu Y, Liu M, Chai W. XIST/miR-34a-5p/PDL1 axis regulated the development of lung cancer cells and the immune function of CD8+ T cells. J Recept Signal Transduct Res 2022; 42:469-478. [PMID: 35067156 DOI: 10.1080/10799893.2021.2019274] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jing Li
- Respiratory Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Liyan Che
- Respiratory Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Chang Xu
- Emergency Dpartment, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Dongdong Lu
- Respiratory Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Yan Xu
- Respiratory Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Mengru Liu
- Respiratory Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Wenshu Chai
- Respiratory Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| |
Collapse
|
47
|
JMJD2C-mediated long non-coding RNA MALAT1/microRNA-503-5p/SEPT2 axis worsens non-small cell lung cancer. Cell Death Dis 2022; 13:65. [PMID: 35046387 PMCID: PMC8770565 DOI: 10.1038/s41419-022-04513-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 12/25/2022]
Abstract
Jumonji domain containing protein 2C (JMJD2C) could epigenetically regulate cancer cells. We specifically explored the downstream mechanism of JMJD2C in non-small cell lung cancer (NSCLC) from the long non-coding RNA metastasis associated with lung adenocarcinoma transcript 1/microRNA-503-5p/septin 2 (MALAT1/miR-503-5p/SEPT2) axis. NSCLC clinical tissues were utilized to assess JMJD2C, MALAT1, miR-503-5p and SEPT2 levels. NSCLC cell lines (A549 and H1299) were applied for loss-of-function and gain-of-function tests to identify the functional roles of JMJD2C, MALAT1, miR-503-5p, and SEPT2. The interactions among JMJD2C, MALAT1, miR-503-5p, and SEPT2 were assessed. Augmented JMJD2C, MALAT1, and SEPT2 and reduced miR-503-5p levels were found in NSCLC. Depleting JMJD2C or MALAT1, or restoring miR-503-5p exerted anti-tumor effects on NSCLC cells in vitro and in vivo. JMJD2C is bound to the promoter of MALAT1. MALAT1 bound to miR-503-5p and miR-503-5p targeted SEPT2. Knocking down MALAT1 or SEPT2, or elevating miR-503-5p mitigated the pro-tumor effects of upregulated JMJD2C on NSCLC. It is evident that the JMJD2C-mediated MALAT1/miR-503-5p/SEPT2 axis takes part in the process of NSCLC and even worsens NSCLC.
Collapse
|
48
|
Wan P, Chen Z, Huang M, Jiang H, Wu H, Zhong K, Ding G, Wang B. miR-200a-3p facilitates bladder cancer cell proliferation by targeting the A20 gene. Transl Androl Urol 2022; 10:4262-4274. [PMID: 34984191 PMCID: PMC8661264 DOI: 10.21037/tau-21-941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
Background MicroRNAs (miRs) are endogenous, single-stranded, noncoding RNAs that are involved in various physiological processes, and the development and the progression of various types of cancer. Specifically, the role of miR-200a-3p has been implicated in various types of cancer in contributing to a diverse array of cancer types has been previously reported. The present study aimed to investigate the expression levels of miR-200a-3p in human bladder cancer, as well as its potential role in disease pathogenesis. Methods Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the expression of has-mir-200a-3p and tumor necrosis factor α (TNF-α) induced protein 3 (A20) in tumor tissues and cell lines. Dual-luciferase reporter assay and combination with the expression intervention of hsa-mir-200a-3p and A20 in bladder cancer cell lines to clarify the binding relationship between hsa-mir-200a-3p and A20.After the expression intervention of hsa-mir-200a-3p and A20 in bladder cancer cells, the changes of cell proliferation, cell apoptosis, cell cycle, wound-healing ability and migration ability were detected by CCK8, flow cytometry, wound-healing and Transwell methods. Xenograft transplantation model was performed subcutaneously in nude mice by implantation of J82 and T24 cells, and then the bladder cancer growth curve was calculated from mice exposed to has-mir-200a-3p minic or minic-NC. Results Bladder cancer tissues demonstrated significantly upregulated miR-200a-3p expression levels. Moreover, increased miR-200a-3p expression was significantly associated with distant metastasis and advanced stage. In addition, compared with the miR-control (Ctr) group, miR-200a-3p overexpression promoted bladder cancer cell proliferation, migration, invasion, cell cycle, and release of inflammatory cytokines, but inhibited cell apoptosis. Mechanistically, A20 was identified as a target gene of miR-200a-3p in bladder cancer cell lines. Moreover, compared with the miR-Ctr group, the miR-200a-3p overexpression group exhibited significantly promoted tumor growth in vivo, and A20 overexpression blocked the promoting effect of miR-200a-3p on bladder cancer. Conclusions The results of the present study indicated that miR-200a-3p might serve act as an oncogene in human bladder cancer by targeting a novel the gene A20 gene; therefore, miR-200a-3p and A20 might serve could serve as novel therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Pei Wan
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Zhilin Chen
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Minzhi Huang
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Huiming Jiang
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Huajun Wu
- Department of Urology, Shangrao Municipal Hospital, Shangrao, China
| | - Kaihua Zhong
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Guodong Ding
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Bing Wang
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| |
Collapse
|
49
|
Metastatic EMT Phenotype Is Governed by MicroRNA-200-Mediated Competing Endogenous RNA Networks. Cells 2021; 11:cells11010073. [PMID: 35011635 PMCID: PMC8749983 DOI: 10.3390/cells11010073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a fundamental physiologically relevant process that occurs during morphogenesis and organ development. In a pathological setting, the transition from epithelial toward mesenchymal cell phenotype is hijacked by cancer cells, allowing uncontrolled metastatic dissemination. The competing endogenous RNA (ceRNA) hypothesis proposes a competitive environment resembling a large-scale regulatory network of gene expression circuits where alterations in the expression of both protein-coding and non-coding genes can make relevant contributions to EMT progression in cancer. The complex regulatory diversity is exerted through an array of diverse epigenetic factors, reaching beyond the transcriptional control that was previously thought to single-handedly govern metastatic dissemination. The present review aims to unravel the competitive relationships between naturally occurring ceRNA transcripts for the shared pool of the miRNA-200 family, which play a pivotal role in EMT related to cancer dissemination. Upon acquiring more knowledge and clinical evidence on non-genetic factors affecting neoplasia, modulation of the expression levels of diverse ceRNAs may allow for the development of novel prognostic/diagnostic markers and reveal potential targets for the disruption of cancer-related EMT.
Collapse
|
50
|
Malakoti F, Targhazeh N, Karimzadeh H, Mohammadi E, Asadi M, Asemi Z, Alemi F. The Multiple Function of lncRNA MALAT1 in Cancer Occurrence and Progression. Chem Biol Drug Des 2021; 101:1113-1137. [PMID: 34918470 DOI: 10.1111/cbdd.14006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
Long non-coding RNAs (lncRNAs) have received particular attention in the last decade due to its engaging in carcinogenesis and tumorigenesis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a lncRNA that plays physiological and pathological roles in many aspects of genome function as well as biological processes involved in cell development, differentiation, proliferation, invasion, and migration. In this article, we will review the effects of lncRNA MALAT1 on the progression of six prevalent human cancers by focusing on MALAT1 ability to regulate post-transcriptional modification and signaling pathways.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's Research committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haniye Karimzadeh
- Department of Clinical Biochemistry, School of Pharmacy & Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfan Mohammadi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.,Drugs Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Drugs Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|