1
|
Liang W, Zhou C, Bai J, Zhang H, Jiang B, Wang J, Fu L, Long H, Huang X, Zhao J, Zhu H. Current advancements in therapeutic approaches in orthopedic surgery: a review of recent trends. Front Bioeng Biotechnol 2024; 12:1328997. [PMID: 38405378 PMCID: PMC10884185 DOI: 10.3389/fbioe.2024.1328997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
Recent advancements in orthopedic surgery have greatly improved the management of musculoskeletal disorders and injuries. This review discusses the latest therapeutic approaches that have emerged in orthopedics. We examine the use of regenerative medicine, including stem cell therapy and platelet-rich plasma (PRP) injections, to accelerate healing and promote tissue regeneration. Additionally, we explore the application of robotic-assisted surgery, which provides greater precision and accuracy during surgical procedures. We also delve into the emergence of personalized medicine, which tailors treatments to individual patients based on their unique genetic and environmental factors. Furthermore, we discuss telemedicine and remote patient monitoring as methods for improving patient outcomes and reducing healthcare costs. Finally, we examine the growing interest in using artificial intelligence and machine learning in orthopedics, particularly in diagnosis and treatment planning. Overall, these advancements in therapeutic approaches have significantly improved patient outcomes, reduced recovery times, and enhanced the overall quality of care in orthopedic surgery.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiangwei Wang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaogang Huang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Haibing Zhu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
2
|
Gordon A, Newsome F, Ahern DP, McDonnell JM, Cunniffe G, Butler JS. Iliac crest bone graft versus cell-based grafts to augment spinal fusion: a systematic review and meta-analysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:253-263. [PMID: 37740784 DOI: 10.1007/s00586-023-07941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/25/2023]
Abstract
INTRODUCTION Despite successful fusion rates with iliac crest bone graft (ICBG), donor-site morbidity and increased operating time remain a considerable limitation and drive the search for alternatives. In this systematic review, grafts with additional cellular supplementation were compared with ICBG for spinal arthrodesis. We compared safety, efficacy and long-term outcomes, thus providing the current and relevant evidence for orthopaedic surgeons to make informed choices regarding this rapidly developing field. METHODS An electronic literature search was conducted according to the PRISMA guidelines by two independent reviewers for articles published up to 1st March 2023 using PubMed, EMBASE and the Cochrane Central Register of Controlled Trial. Cellular allografts were not included. The following data were extracted: Number of patients, type of graft, fusion assessment method, follow-up duration, fusion rates, clinical outcomes and complications. The methodological quality of evidence (MQOE) was assessed using the Risk of Bias 2 (RoB-2) tool and Risk of Bias In Non-Randomised Studies (ROBINS) tool developed by Cochrane for evaluating bias in randomised and non-randomised studies. RESULTS Ten studies fulfiled the inclusion criteria, including 465 patients. The mean number of patients per study was 43.8 (std dev. 28.81, range 12-100). Two studies demonstrated cell-based therapy to be significantly more successful in terms of fusion rates compared to ICBG. However, the remaining eight demonstrated equivocal results. No study found that cell-based therapy was inferior. No difference was seen between the two groups in three studies who focused on degenerative cohorts. No difference in functional outcome scores was seen between the groups. A number of different preparation techniques for cell-based grafts were used throughout the studies. CONCLUSION Cell-based therapy offers a promising alternative to ICBG in spinal fusion surgery, which could help reduce the associated morbidity to patients. This review found that cell-based therapy is non-inferior to iliac crest bone graft and may offer patients an alternative treatment option with fewer complications and reduced post-operative pain. However, the literature to date is limited by heterogeneity of the cell preparation and grafting process. Future research with a unified approach to the cell preparation process is required to fully delineate the potential advantages of this technology.
Collapse
Affiliation(s)
- Aoife Gordon
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Fiona Newsome
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Daniel P Ahern
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland.
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
- Department of Trauma and Orthopaedics, Tallaght University Hospital, Dublin, Ireland.
| | - Jake M McDonnell
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Grainne Cunniffe
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Joseph S Butler
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Rahyussalim AJ, Aprilya D, Handidwiono R, Whulanza Y, Ramahdita G, Kurniawati T. The Use of 3D Polylactic Acid Scaffolds with Hydroxyapatite/Alginate Composite Injection and Mesenchymal Stem Cells as Laminoplasty Spacers in Rabbits. Polymers (Basel) 2022; 14:polym14163292. [PMID: 36015548 PMCID: PMC9416571 DOI: 10.3390/polym14163292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Several types of laminoplasty spacer have been used to fill bone gaps and maintain a widened canal. A 3D scaffold can be used as an alternative spacer to minimize the risk observed in allografts or autografts. This study aims to evaluate the in vivo biocompatibility and tissue−scaffold integration of a polylactic acid (PLA) scaffold with the addition of alginate/hydroxyapatite (HA) and mesenchymal stem cell (MSc) injections. This is an experimental study with a pretest and post-test control group design. A total of 15 laminoplasty rabbit models were divided into five groups with variations in the autograft, PLA, HA/alginate, and MSc scaffold. In general, there were no signs of inflammation in most samples (47%), and there were no samples with areas of necrosis. There were no significant differences in the histopathological results and microstructural assessment between the five groups. This demonstrates that the synthetic scaffolds that we used had a similar tissue reaction and tissue integration profile as the autograft (p > 0.05). We recommend further translational studies in humans so that this biocompatible fabricated scaffold can be used to fill bone defects.
Collapse
Affiliation(s)
- Ahmad Jabir Rahyussalim
- Department of Orthopaedic & Traumatology, Cipto Mangunkusumo National General Hospital and Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia
- Stem Cells and Tissue Engineering Research Cluster, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Dina Aprilya
- Department of Orthopaedic & Traumatology, Cipto Mangunkusumo National General Hospital and Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Correspondence:
| | - Raden Handidwiono
- Department of Orthopaedic & Traumatology, Cipto Mangunkusumo National General Hospital and Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Yudan Whulanza
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
- Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Ghiska Ramahdita
- Mechanical Engineering and Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tri Kurniawati
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia
- Stem Cells and Tissue Engineering Research Cluster, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
4
|
Muthu S, Jeyaraman M, Ganie PA, Khanna M. Is Platelet-Rich Plasma Effective in Enhancing Spinal Fusion? Systematic Overview of Overlapping Meta-Analyses. Global Spine J 2022; 12:333-342. [PMID: 33472410 PMCID: PMC8907645 DOI: 10.1177/2192568220988278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
STUDY DESIGN Systematic review. OBJECTIVES We performed this systematic overview on overlapping meta-analyses that analyzed the role of platelet-rich plasma(PRP) in enhancing spinal fusion and identify which study provides the current best evidence on the topic and generate recommendations for the same. MATERIALS AND METHODS We conducted independent and duplicate electronic database searches in PubMed, Web of Science, Embase, Cochrane Database of Systematic Reviews, and Database of Abstracts of Reviews of Effects till October-2020 for meta-analyses that analyzed the role of PRP in spinal fusion procedures. Methodological quality assessment was made using Oxford Levels of Evidence, AMSTAR scoring, and AMSTAR 2 grades. We then utilized the Jadad decision algorithm to identify the study with highest quality to represent the current best evidence to generate recommendations. RESULTS 3 meta-analyses fulfilling the eligibility criteria were included. The AMSTAR scores of included studies varied from 5-8(mean:6.3) and all included studies had critically low reliability in their summary of results due to their methodological flaws according to AMSTAR 2 grades. The current best evidence showed that utilization of PRP was not associated with significant improvement in patient-reported outcomes such as Visual Analog Score for pain compared to the standard fusion procedure. Moreover, PRP was found to be associated with lower fusion rates. CONCLUSION Based on this systematic overview, the effectiveness of PRP as a biological agent in augmenting spinal fusion is limited. Current evidence does not support the use of PRP as an adjuvant to enhance spinal fusion.
Collapse
Affiliation(s)
- Sathish Muthu
- Indian Stem Cell Study Group,
Lucknow, India
- Sathish Muthu, Member, Indian Stem Cell
Study Group, Lucknow, India.
| | | | | | | |
Collapse
|
5
|
Yu L, Shi Q, Zhang B, Xu J. Genetically modified mesenchymal stem cells promote spinal fusion through polarized macrophages. J Transl Med 2022; 102:312-319. [PMID: 34764437 PMCID: PMC8860744 DOI: 10.1038/s41374-021-00693-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023] Open
Abstract
Spinal fusion is an effective treatment for low back pain and typically applied with prosthetic fixation devices. Spinal fusion can be improved by transplantation of mesenchymal stem cells (MSCs) into the paraspinal muscle. However, in contrast to the direct contribution of MSCs to spinal fusion, the indirect effects of MSCs on spinal infusion have not been studied and were thus addressed here. The correlation between the outcome of spinal fusion and the local macrophage number, polarization and the levels of placental growth factor (PlGF) in patients was analyzed. MSCs were genetically modified to overexpress PlGF, and its effects on macrophage proliferation and polarization were analyzed in vitro in a transwell co-culture system, as well as in vivo in a mouse model for spinal fusion, for which the cells were bilaterally injected into paravertebral muscles of the mouse lumbar spine. The effects on spinal fusion were assessed by microcomputed tomography and a custom four-point bending apparatus for structural bending stiffness. Local macrophages were analyzed by flow cytometry. We found that posterior spinal fusion could be improved by PlGF-expressing MSCs, compared to the control MSCs, evident by significant improvement of bone bridging of the targeted vertebrae. Mechanistically, PlGF-expressing MSCs appeared to attract macrophages and induce their M2 polarization, which in turn promotes the bone formation. Together, our data suggest that PlGF-expressing MSCs may improve spinal fusion through macrophage recruitment and polarization.
Collapse
Affiliation(s)
- Luchao Yu
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Department of Orthopedic Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Qiang Shi
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Baokun Zhang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jianguang Xu
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
6
|
Pinter ZW, Elder BD, Kaye ID, Kepler CK, Wagner S, Freedman BA, Sebastian AS. A Review of Commercially Available Cellular-based Allografts. Clin Spine Surg 2022; 35:E77-E86. [PMID: 34654775 DOI: 10.1097/bsd.0000000000001262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/15/2021] [Indexed: 11/27/2022]
Abstract
STUDY DESIGN This was a narrative review. OBJECTIVE This review discusses our current knowledge regarding cellular-based allografts while highlighting the key gaps in the literature that must be addressed before their widespread adoption. SUMMARY OF BACKGROUND DATA Iliac crest bone graft is the gold-standard bone graft material but is associated with donor site morbidity. Commonly utilized bone graft extenders such as demineralized bone matrix and bone morphogenetic protein have conflicting data supporting their efficacy and lack the osteogenic potential of new cellular-based allograft options. METHODS An extensive literature review was performed. The literature was then summarized in accordance with the authors' clinical experience. RESULTS There is not widespread evidence thus far that the addition of the osteogenic cellular component to allograft enhances spinal fusion, as a recent study by Bhamb and colleagues demonstrated superior bone formation during spine fusion in an aythmic rat model when demineralized bone matrix was used in comparison to Osteocel Plus. Furthermore, the postimplantation cellular viability and osteogenic and osteoinductive capacity of cellular-based allografts need to be definitively established, especially given that a recent study by Lina and colleagues demonstrated a paucity of bone marrow cell survival in an immunocompetent mouse posterolateral spinal fusion model. CONCLUSIONS This data indicates that the substantially increased cost of these cellular allografts may not be justified. LEVEL OF EVIDENCE Level V.
Collapse
Affiliation(s)
| | | | - I David Kaye
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA
| | | | - Scott Wagner
- Walter Reed National Military Medical Center, Bethesda, MD
| | | | | |
Collapse
|
7
|
Zhang Y, Jiang Y, Zou D, Yuan B, Ke HZ, Li W. Therapeutics for enhancement of spinal fusion: A mini review. J Orthop Translat 2021; 31:73-79. [PMID: 34934624 DOI: 10.1016/j.jot.2021.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022] Open
Abstract
Objective With the advances in biological technologies over the past 20 years, a number of new therapies to promote bone healing have been introduced. Particularly in the spinal surgery field, more unprecedented biological therapeutics become available to enhance spinal fusion success rate along with advanced instrumentation approaches. Yet surgeons may not have been well informed about their safety and efficacy profiles in order to improve clinical practices. Therefore there is a need to summarize the evidence and bring the latest progress to surgeons for better clinical services for patients. Methods We comprehensively reviewed the literatures in regard to the biological therapeutics for enhancement of spinal fusion published in the last two decades. Results Autograft bone is still the gold standard for bone grafting in spinal fusion surgery due to its good osteoconductive, osteoinductive, and osteogenic abilities. Accumulating evidence suggests that adding rhBMPs in combination with autograft effectively promotes the fusion rate and improves surgical outcomes. However, the stimulating effect on spinal fusion of other growth factors, including PDGF, VEGF, TGF-beta, and FGF, is not convincing, while Nell-1 and activin A exhibited preliminary efficacy. In terms of systemic therapeutic approaches, the osteoporosis drug Teriparatide has played a positive role in promoting bone healing after spinal surgery, while new medications such as denosumab and sclerostin antibodies still need further validation. Currently, other treatment, such as controlled-release formulations and carriers, are being studied for better releasing profile and the administration convenience of the active ingredients. Conclusion As the world's population continues to grow older, the number of spinal fusion cases grows substantially due to increased surgical needs for spinal degenerative disease (SDD). Critical advancements in biological therapeutics that promote spinal fusion have brought better clinical outcomes to patients lately. With the accumulation of higher-level evidence, the safety and efficacy of present and emerging products are becoming more evident. These emerging therapeutics will shift the landscape of perioperative therapy for the enhancement of spinal fusion.
Collapse
Affiliation(s)
- Yidan Zhang
- Angitia Biopharmaceuticals, Guangzhou, China
| | - Yu Jiang
- Orthopaedic Department, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
| | - Da Zou
- Orthopaedic Department, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
| | - Baozhi Yuan
- Angitia Biopharmaceuticals, Guangzhou, China
| | - Hua Zhu Ke
- Angitia Biopharmaceuticals, Guangzhou, China
| | - Weishi Li
- Orthopaedic Department, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
| |
Collapse
|
8
|
Kumar N, Lopez KG, Alathur Ramakrishnan S, Hallinan JTPD, Fuh JYH, Pandita N, Madhu S, Kumar A, Benneker LM, Vellayappan BA. Evolution of materials for implants in metastatic spine disease till date - Have we found an ideal material? Radiother Oncol 2021; 163:93-104. [PMID: 34419506 DOI: 10.1016/j.radonc.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/30/2021] [Accepted: 08/13/2021] [Indexed: 12/30/2022]
Abstract
"Metastatic Spine Disease" (MSD) often requires surgical intervention and instrumentation with spinal implants. Ti6Al4V is widely used in metastatic spine tumor surgery (MSTS) and is the current implant material of choice due to improved biocompatibility, mechanical properties, and compatibility with imaging modalities compared to stainless steel. However, it is still not the ideal implant material due to the following issues. Ti6Al4V implants cause stress-shielding as their Young's modulus (110 gigapascal [GPa]) is higher than cortical bone (17-21 GPa). Ti6Al4V also generates artifacts on CT and MRI, which interfere with the process of postoperative radiotherapy (RT), including treatment planning and delivery. Similarly, charged particle therapy is hindered in the presence of Ti6Al4V. In addition, artifacts on CT and MRI may result in delayed recognition of tumor recurrence and postoperative complications. In comparison, polyether-ether-ketone (PEEK) is a promising alternative. PEEK has a low Young's modulus (3.6 GPa), which results in optimal load-sharing and produces minimal artifacts on imaging with less hinderance on postoperative RT. However, PEEK is bioinert and unable to provide sufficient stability in the immediate postoperative period. This issue may possibly be mitigated by combining PEEK with other materials to form composites or through surface modification, although further research is required in these areas. With the increasing incidence of MSD, it is an opportune time for the development of spinal implants that possess all the ideal material properties for use in MSTS. Our review will explore whether there is a current ideal implant material, available alternatives and whether these require further investigation.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Orthopaedic Surgery, National University Health System, Singapore.
| | - Keith Gerard Lopez
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | | | | | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Naveen Pandita
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - Sirisha Madhu
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - Aravind Kumar
- Department of Orthopaedic Surgery, Ng Teng Fong General Hospital, Singapore
| | - Lorin M Benneker
- Department of Orthopaedics, Spine Surgery, Sonnenhofspital, Bern, Switzerland
| | | |
Collapse
|
9
|
Rahyussalim AJ, Sahputra RE, Yanwirasti, Manjas M, Whulanza Y, Kurniawati T, Aprilya D, Zufar MLL. The Effect of Mesenchymal Stem Cell-Enriched Scaffolds on MMP-8 and TGF-β Levels of Vertebrae Postlaminoplasty in Rabbit Model. Stem Cells Cloning 2021; 14:27-37. [PMID: 34285511 PMCID: PMC8285295 DOI: 10.2147/sccaa.s314107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Some laminoplasty procedures still have restenosis because of bony-bridging failure of the laminar hinge. The present study aimed to determine the effect of mesenchymal stem cell (MSC)-enriched scaffolds on vertebral regeneration after laminoplasty on the basis of the number of osteoblasts, matrix metalloproteinase-8 (MMP-8), and transforming growth factor-beta (TGF-β) levels. METHODS Laminoplasty procedure using the Hirabayashi technique was conducted at the lumbar level in 32 rabbits that were divided into four and three groups of the control (C) and treatment groups, respectively, with different types of laminoplasty spacer (T1, autograft; T2, scaffold; and T3, scaffold with MSCs). Histopathological studies were conducted to calculate the number of osteoblasts and enzyme-linked immunosorbent assay tests to detect MMP-8 and TGF-β 4 weeks after the surgery. RESULTS The results showed a significant decrease in MMP-8 level in the T3 group compared with that in the control group (p < 0.05). A significant difference exists between the average number of newly formed osteoblasts in the control group compared with that in the T3 group (p < 0.05) with a higher mean blood TGF-β level of all experimental groups compared with that of the control group (p = 0.58). CONCLUSION The significant decrease in MMP-8 levels, increase in TGF-β levels, and increased number of osteoblasts on MSC-seeded polylactic acid scaffolds could be useful to support the laminoplasty procedure to prevent restenosis because it was biocompatible and promoted the bone healing process.
Collapse
Affiliation(s)
- Ahmad Jabir Rahyussalim
- Department of Orthopedics and Traumatology Clinics, Faculty of Medicine, Universitas of Indonesia-Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
- Stem Cell and Tissue Engineering Cluster, IMERI Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Roni Eka Sahputra
- Department of Surgery, Faculty of Medicine, Universitas Andalas-RSUP M. Djamil, Padang, Indonesia
| | - Yanwirasti
- Department of Anatomy, Faculty of Medicine, Universitas Andalas-RSUP M. Djamil, Padang, Indonesia
| | - Menkher Manjas
- Department of Surgery, Faculty of Medicine, Universitas Andalas-RSUP M. Djamil, Padang, Indonesia
| | - Yudan Whulanza
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Jakarta, Indonesia
| | - Tri Kurniawati
- Stem Cell and Tissue Engineering Cluster, IMERI Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Dina Aprilya
- Department of Orthopedics and Traumatology Clinics, Faculty of Medicine, Universitas of Indonesia-Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Muhammad Luqman Labib Zufar
- Department of Orthopedics and Traumatology Clinics, Faculty of Medicine, Universitas of Indonesia-Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| |
Collapse
|
10
|
Shum LC, Hollenberg AM, Baldwin AL, Kalicharan BH, Maqsoodi N, Rubery PT, Mesfin A, Eliseev RA. Role of oxidative metabolism in osseointegration during spinal fusion. PLoS One 2020; 15:e0241998. [PMID: 33166330 PMCID: PMC7652281 DOI: 10.1371/journal.pone.0241998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/24/2020] [Indexed: 12/05/2022] Open
Abstract
Spinal fusion is a commonly performed orthopedic surgery. Autologous bone graft obtained from the iliac crest is frequently employed to perform spinal fusion. Osteogenic bone marrow stromal (a.k.a. mesenchymal stem) cells (BMSCs) are believed to be responsible for new bone formation and development of the bridging bone during spinal fusion, as these cells are located in both the graft and at the site of fusion. Our previous work revealed the importance of mitochondrial oxidative metabolism in osteogenic differentiation of BMSCs. Our objective here was to determine the impact of BMSC oxidative metabolism on osseointegration of the graft during spinal fusion. The first part of the study was focused on correlating oxidative metabolism in bone graft BMSCs to radiographic outcomes of spinal fusion in human patients. The second part of the study was focused on mechanistically proving the role of BMSC oxidative metabolism in osseointegration during spinal fusion using a genetic mouse model. Patients’ iliac crest-derived graft BMSCs were identified by surface markers. Mitochondrial oxidative function was detected in BMSCs with the potentiometric probe, CMXRos. Spinal fusion radiographic outcomes, determined by the Lenke grade, were correlated to CMXRos signal in BMSCs. A genetic model of high oxidative metabolism, cyclophilin D knockout (CypD KO), was used to perform spinal fusion in mice. Graft osseointegration in mice was assessed with micro-computed tomography. Our study revealed that higher CMXRos signal in patients’ BMSCs correlated with a higher Lenke grade. Mice with higher oxidative metabolism (CypD KO) had greater mineralization of the spinal fusion bridge, as compared to the control mice. We therefore conclude that higher oxidative metabolism in BMSCs correlates with better spinal fusion outcomes in both human patients and in a mouse model. Altogether, our study suggests that promoting oxidative metabolism in osteogenic cells could improve spinal fusion outcomes for patients.
Collapse
Affiliation(s)
- Laura C. Shum
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Alex M. Hollenberg
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Avionna L. Baldwin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Brianna H. Kalicharan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Noorullah Maqsoodi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Paul T. Rubery
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Addisu Mesfin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Roman A. Eliseev
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
Spinal fusion surgery is performed all over the world to help patients with cervical and thoracolumbar pathology. As outcomes continue to improve in patients with spine-related pathology, it is important to understand how we got to modern day spinal fusion surgery. Scientific innovations have ranged from the first spinal fusions performed with basic instrumentation in the late nineteenth century to contemporary tools such as pedicle screws, bone grafts, and interbody devices. This article tracks this technological growth so that surgeons may better serve their patients in treating spine-related pain and disability.
Collapse
|
12
|
Picken A, Harriman J, Iftimia-Mander A, Johnson L, Prosser A, Quirk R, Thomas R. A Monte Carlo framework for managing biological variability in manufacture of autologous cell therapy from mesenchymal stromal cells therapies. Cytotherapy 2020; 22:227-238. [DOI: 10.1016/j.jcyt.2020.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/28/2022]
|
13
|
Abstract
There are a number of bone regeneration therapeutics available to aid spinal fusion; however, many are associated with pseudarthrosis, inflammation, and other complications. Mesenchymal stem cells for fusion has been promoted to mitigate these risks and achieve successful bony fusion. This article reviews the clinical studies available with use in spinal fusion. Preliminary results demonstrate that stem cells can provide high rates of fusion, comparable to autograft, without associated morbidity. Autologous and allogeneic stem cell sources showed similar rates of fusion in this review. Further research is required to evaluate which clinical situations are the optimum for stem cell use.
Collapse
Affiliation(s)
- Vivek P Shah
- Department of Orthopedic Surgery - Hsu Lab, Northwestern University, Chicago, IL 60611, USA.
| | - Wellington K Hsu
- Northwestern Department of Orthopedic Surgery, 259 East Erie Street 13th Floor Lavin Family Pavilion, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Implant Design and the Anchoring Mechanism Influence the Incidence of Heterotopic Ossification in Cervical Total Disc Replacement at 2-year Follow-up. Spine (Phila Pa 1976) 2019; 44:1471-1480. [PMID: 31568185 DOI: 10.1097/brs.0000000000003098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A nonrandomized, prospective, and single-center clinical trial. OBJECTIVE The aim of this study was to determine whether the prosthesis design, and especially changes in the primary anchoring mechanism between the keel-based ProDisc C and the spike-based ProDisc Vivo, affects the frequency of heterotopic ossification (HO) formation over time. SUMMARY OF BACKGROUND DATA The occurrence of motion-restricting HO as well as underlying risk factors has so far been a widely discussed, but not well understand phenomenon. The anchoring mechanism and the opening of the anterior cortex may be possible causes of this unwanted complication. METHODS Forty consecutive patients treated with the ProDisc C and 42 consecutive patients treated with the ProDisc Vivo were compared with respect to radiological and clinical outcome, with 2 years of follow-up. Clinical outcome scores included the Neck Disability Index (NDI), Visual Analogue Scale (VAS), and arm and neck pain self-assessment questionnaires. Radiological outcomes included the segmental lordosis and range of motion (ROM) of the index-segment as well as the occurrence of HO. RESULTS The clinical outcome parameters improved in both groups significantly. [ProDisc C: VAS arm and neck pain from 6.3 and 6.2 preoperatively to 0.7 and 1.3; NDI from 23.0 to 3.7; ProDisc Vivo: VAS arm and neck pain from 6.3 and 4.9 to 1.4 and 1.6, NDI from 34.1 to 8.7; 2-year follow-up (FU)]. The ProDisc Vivo cohort demonstrated a significantly lower incidence of HO than the ProDisc C group at 1-year FU (P = 0.0005) and 2-year FU (P = 0.005). Specifically, high-grade HO occurred in 9% versus 31%. CONCLUSION These findings demonstrate that prosthesis designs that allow primary anchoring without violation of the cortical surface help to reduce the incidence of severe ossification, possibly affecting the functionality and mobility of the artificial disc device over of time. LEVEL OF EVIDENCE 3.
Collapse
|
15
|
Abdelrazik H, Giordano E, Barbanti Brodano G, Griffoni C, De Falco E, Pelagalli A. Substantial Overview on Mesenchymal Stem Cell Biological and Physical Properties as an Opportunity in Translational Medicine. Int J Mol Sci 2019; 20:ijms20215386. [PMID: 31671788 PMCID: PMC6862078 DOI: 10.3390/ijms20215386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) have piqued worldwide interest for their extensive potential to treat a large array of clinical indications, their unique and controversial immunogenic and immune modulatory properties allowing ample discussions and debates for their possible applications. Emerging data demonstrating that the interaction of biomaterials and physical cues with MSC can guide their differentiation into specific cell lineages also provide new interesting insights for further MSC manipulation in different clinical applications. Moreover, recent discoveries of some regulatory molecules and signaling pathways in MSC niche that may regulate cell fate to distinct lineage herald breakthroughs in regenerative medicine. Although the advancement and success in the MSC field had led to an enormous increase in the amount of ongoing clinical trials, we still lack defined clinical therapeutic protocols. This review will explore the exciting opportunities offered by human and animal MSC, describing relevant biological properties of these cells in the light of the novel emerging evidence mentioned above while addressing the limitations and challenges MSC are still facing.
Collapse
Affiliation(s)
- Heba Abdelrazik
- Department of Clinical Pathology, Cairo University, Cairo 1137, Egypt.
- Department of Diagnosis, central laboratory department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16131 Genoa, Italy.
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, 47522 Cesena, Italy.
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Cristiana Griffoni
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
16
|
Hsieh PC, Buser Z, Skelly AC, Brodt ED, Brodke D, Meisel HJ, Park JB, Yoon ST, Wang JC. Allogenic Stem Cells in Spinal Fusion: A Systematic Review. Global Spine J 2019; 9:22S-38S. [PMID: 31157144 PMCID: PMC6512196 DOI: 10.1177/2192568219833336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY DESIGN Systematic review. OBJECTIVES To review, critically appraise, and synthesize evidence on the use of allogenic stem cell products for spine fusion compared with other bone graft materials. METHODS Systematic searches of PubMed/MEDLINE, through October 31, 2018 and of EMBASE and ClinicalTrials.gov through April 13, 2018 were conducted for literature comparing allogenic stem cell sources for fusion in the lumbar or cervical spine with other fusion methods. In the absence of comparative studies, case series of ≥10 patients were considered. RESULTS From 382 potentially relevant citations identified, 6 publications on lumbar fusion and 5 on cervical fusion met the inclusion criteria. For lumbar arthrodesis, mean Oswestry Disability Index (ODI), visual analogue scale (VAS) pain score, and fusion rates were similar for anterior lumbar interbody fusion (ALIF) using allogenic multipotent adult progenitor cells (Map3) versus recombinant human bone morphogenetic protein-2 (rhBMP-2) in the one comparative lumbar study (90% vs 92%). Across case series of allogenic stem cell products, function and pain were improved relative to baseline and fusion occurred in ≥90% of patients at ≥12 months. For cervical arthrodesis across case series, stem cell products improved function and pain compared with baseline at various time frames. In a retrospective cohort study fusion rates were not statistically different for Osteocel compared with Vertigraft allograft (88% vs 95%). Fusion rates varied across time frames and intervention products in case series. CONCLUSIONS The overall quality (strength) of evidence of effectiveness and safety of allogenic stem cells products for lumbar and cervical arthrodesis was very low, meaning that we have very little confidence that the effects seen are reflective of the true effects.
Collapse
Affiliation(s)
| | - Zorica Buser
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Darrel Brodke
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | | | | |
Collapse
|
17
|
Lina IA, Ishida W, Liauw JA, Lo SFL, Elder BD, Perdomo-Pantoja A, Theodros D, Witham TF, Holmes C. A mouse model for the study of transplanted bone marrow mesenchymal stem cell survival and proliferation in lumbar spinal fusion. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 28:710-718. [PMID: 30511246 DOI: 10.1007/s00586-018-5839-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/21/2018] [Accepted: 11/25/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Bone marrow aspirate has been successfully used alongside a variety of grafting materials to clinically augment spinal fusion. However, little is known about the fate of these transplanted cells. Herein, we develop a novel murine model for the in vivo monitoring of implanted bone marrow cells (BMCs) following spinal fusion. METHODS A clinical-grade scaffold was implanted into immune-intact mice undergoing spinal fusion with or without freshly isolated BMCs from either transgenic mice which constitutively express the firefly luciferase gene or syngeneic controls. The in vivo survival, distribution and proliferation of these luciferase-expressing cells was monitored via bioluminescence imaging over a period of 8 weeks and confirmed via immunohistochemistry. MicroCT imaging was performed 8 weeks to assess fusion. RESULTS Bioluminescence imaging indicated transplanted cell survival and proliferation over the first 2 weeks, followed by a decrease in cell numbers, with transplanted cell survival still evident at the end of the study. New bone formation and increased fusion mass volume were observed in mice implanted with cell-seeded scaffolds. CONCLUSIONS By enabling the tracking of transplanted bone marrow-derived cells during spinal fusion in vivo, this mouse model will be integral to developing a deeper understanding of the biological processes underlying spinal fusion in future studies. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Ioan A Lina
- Department of Otolaryngology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wataru Ishida
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1550 Orleans St, Rm 2M-51, Baltimore, MD, 21287, USA
| | - Jason A Liauw
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1550 Orleans St, Rm 2M-51, Baltimore, MD, 21287, USA
| | - Sheng-Fu L Lo
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1550 Orleans St, Rm 2M-51, Baltimore, MD, 21287, USA
| | - Benjamin D Elder
- Department of Neurological Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Alexander Perdomo-Pantoja
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1550 Orleans St, Rm 2M-51, Baltimore, MD, 21287, USA
| | - Debebe Theodros
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1550 Orleans St, Rm 2M-51, Baltimore, MD, 21287, USA
| | - Timothy F Witham
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1550 Orleans St, Rm 2M-51, Baltimore, MD, 21287, USA
| | - Christina Holmes
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1550 Orleans St, Rm 2M-51, Baltimore, MD, 21287, USA.
| |
Collapse
|