1
|
Napiórkowska A, Szpicer A, Górska-Horczyczak E, Kurek M. Understanding emulsifier influence on complex coacervation: Essential oils encapsulation perspective. J Food Sci 2024; 89:4997-5015. [PMID: 38980959 DOI: 10.1111/1750-3841.17220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
The objective of this research was to explore the viability of pea protein as a substitute for gelatin in the complex coacervation process, with a specific focus on understanding the impact of incorporating an emulsifier into this process. The study involved the preparation of samples with varying polymer mixing ratios (1:1, 1:2, and 2:1) and emulsifier content. As core substances, black pepper and juniper essential oils were utilized, dissolved beforehand in grape seed oil or soybean oil, to minimize the loss of volatile compounds. In total, 24 distinct samples were created, subjected to freeze-drying to produce powder, and then assessed for their physicochemical properties. Results revealed the significant impact of emulsifier addition on microcapsule parameters. Powders lacking emulsifiers exhibited higher water solubility (57.10%-81.41%) compared to those with emulsifiers (24.64%-40.13%). Moreover, the emulsifier significantly decreased thermal stability (e.g., without emulsifier, Ton = 137.21°C; with emulsifier, Ton = 41.55°C) and adversely impacted encapsulation efficiency (highest efficiency achieved: 67%; with emulsifier: 21%).
Collapse
Affiliation(s)
- Alicja Napiórkowska
- Department of Technique and Product Development, Warsaw University of Life Sciences, Warszawa, Poland
| | - Arkadiusz Szpicer
- Department of Technique and Product Development, Warsaw University of Life Sciences, Warszawa, Poland
| | | | - Marcin Kurek
- Department of Technique and Product Development, Warsaw University of Life Sciences, Warszawa, Poland
| |
Collapse
|
2
|
Napiórkowska A, Szpicer A, Górska-Horczyczak E, Kurek MA. Microencapsulation of Essential Oils Using Faba Bean Protein and Chia Seed Polysaccharides via Complex Coacervation Method. Molecules 2024; 29:2019. [PMID: 38731509 PMCID: PMC11085623 DOI: 10.3390/molecules29092019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The aim of this study was to develop microcapsules containing juniper or black pepper essential oils, using a combination of faba bean protein and chia seed polysaccharides (in ratios of 1:1, 1:2, 2:1). By synergizing these two polymers, our goal was to enhance the efficiency of essential oil microencapsulation, opening up various applications in the food industry. Additionally, we aimed to investigate the influence of different polymer mixing ratios on the properties of the resulting microcapsules and the course of the complex coacervation process. To dissolve the essential oils and limit their evaporation, soybean and rapeseed oils were used. The powders resulting from the freeze-drying of coacervates underwent testing to assess microencapsulation efficiency (65.64-87.85%), density, flowability, water content, solubility, and hygroscopicity. Additionally, FT-IR and DSC analyses were conducted. FT-IR analysis confirmed the interactions between the components of the microcapsules, and these interactions were reflected in their high thermal resistance, especially at a protein-to-polysaccharide ratio of 2:1 (177.2 °C). The water content in the obtained powders was low (3.72-7.65%), but it contributed to their hygroscopicity (40.40-76.98%).
Collapse
Affiliation(s)
- Alicja Napiórkowska
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.S.)
| | | | | | - Marcin Andrzej Kurek
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.S.)
| |
Collapse
|
3
|
Jayathirtha M, Dupree EJ, Manzoor Z, Larose B, Sechrist Z, Neagu AN, Petre BA, Darie CC. Mass Spectrometric (MS) Analysis of Proteins and Peptides. Curr Protein Pept Sci 2020; 22:92-120. [PMID: 32713333 DOI: 10.2174/1389203721666200726223336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
The human genome is sequenced and comprised of ~30,000 genes, making humans just a little bit more complicated than worms or flies. However, complexity of humans is given by proteins that these genes code for because one gene can produce many proteins mostly through alternative splicing and tissue-dependent expression of particular proteins. In addition, post-translational modifications (PTMs) in proteins greatly increase the number of gene products or protein isoforms. Furthermore, stable and transient interactions between proteins, protein isoforms/proteoforms and PTM-ed proteins (protein-protein interactions, PPI) add yet another level of complexity in humans and other organisms. In the past, all of these proteins were analyzed one at the time. Currently, they are analyzed by a less tedious method: mass spectrometry (MS) for two reasons: 1) because of the complexity of proteins, protein PTMs and PPIs and 2) because MS is the only method that can keep up with such a complex array of features. Here, we discuss the applications of mass spectrometry in protein analysis.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Emmalyn J Dupree
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zaen Manzoor
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Brianna Larose
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zach Sechrist
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania
| | - Brindusa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, Al. I. Cuza University of Iasi, Iasi, Romania, Center for Fundamental Research and Experimental Development in Translation Medicine - TRANSCEND, Regional Institute of Oncology, Iasi, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| |
Collapse
|
4
|
Channaveerappa D, Ngounou Wetie AG, Darie CC. Bottlenecks in Proteomics: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:753-769. [PMID: 31347083 DOI: 10.1007/978-3-030-15950-4_45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Mass spectrometry (MS) is the core for advanced methods in proteomic experiments. When effectively used, proteomics may provide extensive information about proteins and their post-translational modifications, as well as their interaction partners. However, there are also many problems that one can encounter during a proteomic experiment, including, but not limited to sample preparation, sample fractionation, sample analysis, data analysis & interpretation and biological significance. Here we discuss some of the problems that researchers should be aware of when performing a proteomic experiment.
Collapse
Affiliation(s)
- Devika Channaveerappa
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Armand G Ngounou Wetie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Costel C Darie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA.
| |
Collapse
|
5
|
Andrei V, Copolovici D, Munteanu FD, Ngounou Wetie AG, Mihai I, Darie CC, Vasilescu A. Detection of Biomedically Relevant Stilbenes from Wines by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:665-684. [PMID: 31347078 DOI: 10.1007/978-3-030-15950-4_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Stilbenes represent a class of compounds with a common 1,2-diphenylethylene backbone that have shown extraordinary potential in the biomedical field. As the most well-known example, resveratrol proved to have anti-aging effects and significant potential in the fight against cardiovascular diseases and some types of cancer. Mass spectrometry is an analytical method of critical importance in all studies related to stilbenes that are important in the biomedical field. From the discovery of new natural compounds and mapping the grape metabolome up to advanced investigations of stilbenes' potential for the protection of human health in clinical studies, mass spectrometry has provided critical analytical information. In this review we focus on various approaches related to mass spectrometry for the detection of stilbenes-such as coupling with chromatographic separation methods and direct infusion-with presentation of some illustrative applications. Clearly, the potential of mass spectrometry for assisting in the discovery of new stilbenes of biomedical importance, elucidating their mechanisms of action and quantifying minute quantities in complex matrices is far from being exhausted.
Collapse
Affiliation(s)
| | - Dana Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, Arad, Romania
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, Arad, Romania
| | - Armand G Ngounou Wetie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Iuliana Mihai
- International Centre of Biodynamics, Bucharest, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | | |
Collapse
|
6
|
Aslebagh R, Wormwood KL, Channaveerappa D, Wetie AGN, Woods AG, Darie CC. Identification of Posttranslational Modifications (PTMs) of Proteins by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:199-224. [DOI: 10.1007/978-3-030-15950-4_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Sokolowska I, Ngounou Wetie AG, Woods AG, Jayathirtha M, Darie CC. Role of Mass Spectrometry in Investigating a Novel Protein: The Example of Tumor Differentiation Factor (TDF). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:417-433. [PMID: 31347062 DOI: 10.1007/978-3-030-15950-4_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Better understanding of central nervous system (CNS) molecules can include the identification of new molecules and their receptor systems. Discovery of novel proteins and elucidation of receptor targets can be accomplished using mass spectrometry (MS). We describe a case study of such a molecule, which our lab has studied using MS in combination with other protein identification techniques, such as immunohistochemistry and Western Blotting. This molecule is known as tumor differentiation factor (TDF), a recently-found protein secreted by the pituitary into the blood. TDF mRNA has been detected in brain; not heart, placenta, lung, liver, skeletal muscle, or pancreas. Currently TDF has an unclear function, and prior to our studies, its localization was only minimally understood, with no understanding of receptor targets. We investigated the distribution of TDF in the rat brain using immunohistochemistry (IHC) and immunofluorescence (IF). TDF protein was detected in pituitary and most other brain regions, in specific neurons but not astrocytes. We found TDF immunoreactivity in cultured neuroblastoma, not astrocytoma. These data suggest that TDF is localized to neurons, not to astrocytes. Our group also conducted studies to identify the TDF receptor (TDF-R). Using LC-MS/MS and Western blotting, we identified the members of the Heat Shock 70-kDa family of proteins (HSP70) as potential TDF-R candidates in both MCF7 and BT-549 human breast cancer cells (HBCC) and PC3, DU145, and LNCaP human prostate cancer cells (HPCC), but not in HeLa cells, NG108 neuroblastoma, or HDF-a and BLK CL.4 cells fibroblasts or fibroblast-like cells. These studies have combined directed protein identification techniques with mass spectrometry to increase our understanding of a novel protein that may have distinct actions as a hormone in the body and as a growth factor in the brain.
Collapse
Affiliation(s)
- Izabela Sokolowska
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA.
| | - Armand G Ngounou Wetie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Alisa G Woods
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
8
|
Mass Spectrometry- and Computational Structural Biology-Based Investigation of Proteins and Peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:265-287. [PMID: 31347053 DOI: 10.1007/978-3-030-15950-4_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent developments of mass spectrometry (MS) allow us to identify, estimate, and characterize proteins and protein complexes. At the same time, structural biology helps to determine the protein structure and its structure-function relationship. Together, they aid to understand the protein structure, property, function, protein-complex assembly, protein-protein interaction, and dynamics. The present chapter is organized with illustrative results to demonstrate how experimental mass spectrometry can be combined with computational structural biology for detailed studies of protein's structures. We have used tumor differentiation factor protein/peptide as ligand and Hsp70/Hsp90 as receptor protein as examples to study ligand-protein interaction. To investigate possible protein conformation, we will describe two proteins-lysozyme and myoglobin. As an application of MS-based assignment of disulfide bridges, the case of the spider venom polypeptide Phα1β will also be discussed.
Collapse
|
9
|
Woods AG, Sokolowska I, Ngounou Wetie AG, Channaveerappa D, Dupree EJ, Jayathirtha M, Aslebagh R, Wormwood KL, Darie CC. Mass Spectrometry for Proteomics-Based Investigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:1-26. [DOI: 10.1007/978-3-030-15950-4_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Matsuura S, Katsumi H, Suzuki H, Hirai N, Takashima R, Morishita M, Sakane T, Yamamoto A. l-Cysteine and l-Serine Modified Dendrimer with Multiple Reduced Thiols as a Kidney-Targeting Reactive Oxygen Species Scavenger to Prevent Renal Ischemia/Reperfusion Injury. Pharmaceutics 2018; 10:pharmaceutics10040251. [PMID: 30513734 PMCID: PMC6321508 DOI: 10.3390/pharmaceutics10040251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
l-cysteine (Cys)- and l-serine (Ser)-modified, third-generation polyamidoamine (PAMAM) dendrimer with multiple reduced thiols (Ser-PAMAM-Cys) was synthesized as a kidney-targeting reactive oxygen species (ROS) scavenger to help prevent renal ischemia/reperfusion injury. Ser-PAMAM-Cys effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and ROS (hydrogen peroxide and hydroxyl radical) in phosphate-buffered saline (PBS). In addition, ~64% of 111In-labeled Ser-PAMAM-Cys accumulated in mouse kidney 3 h after intravenous administration. An in vivo imaging system (IVIS) study indicated that near-infrared fluorescence dye (NIR)-labeled Ser-PAMAM-Cys specifically accumulated in the kidney. In a mouse renal ischemia/reperfusion injury model, increases in the kidney damage markers creatinine (Cre) and blood urea nitrogen (BUN) were significantly inhibited by intravenous Ser-PAMAM-Cys administration. In contrast, Cys injection had no statistically significant effect of preventing Cre or BUN elevation relative to the control. Ser-PAMAM-Cys also effectively downregulated the inflammatory factors NGAL, IL-18, ICAM-1, and VCAM-1 in the renal ischemia/reperfusion injury model. These results indicate that Ser-PAMAM-Cys is a promising kidney-targeting ROS scavenger which could prevent ischemia/reperfusion-induced renal failure.
Collapse
Affiliation(s)
- Satoru Matsuura
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Hiroe Suzuki
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Natsuko Hirai
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Rie Takashima
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Masaki Morishita
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Toshiyasu Sakane
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan.
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
11
|
Wormwood KL, Ngounou Wetie AG, Gomez MV, Ju Y, Kowalski P, Mihasan M, Darie CC. Structural Characterization and Disulfide Assignment of Spider Peptide Phα1β by Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:827-841. [PMID: 29663255 DOI: 10.1007/s13361-018-1904-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Native Phα1β is a peptide purified from the venom of the armed spider Phoneutria nigriventer that has been shown to have an extensive analgesic effect with fewer side effects than ω-conotoxin MVIIA. Recombinant Phα1β mimics the effects of the native Phα1β. Because of this, it has been suggested that Phα1β may have potential to be used as a therapeutic for controlling persistent pathological pain. The amino acid sequence of Phα1β is known; however, the exact structure and disulfide arrangement has yet to be determined. Determination of the disulfide linkages and exact structure could greatly assist in pharmacological analysis and determination of why this peptide is such an effective analgesic. Here, we used biochemical and mass spectrometry approaches to determine the disulfide linkages present in the recombinant Phα1β peptide. Using a combination of MALDI-MS, direct infusion ESI-MS, and nanoLC-MS/MS analysis of the undigested recombinant Phα1β peptide and digested with AspN, trypsin, or AspN/trypsin, we were able to identify and confirm all six disulfide linkages present in the peptide as Cys1-2, Cys3-4, Cys5-6, Cys7-8, Cys9-10, and Cys11-12. These results were also partially confirmed in the native Phα1β peptide. These experiments provide essential structural information about Phα1β and may assist in providing insight into the peptide's analgesic effect with very low side effects. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Kelly L Wormwood
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Ave., Box 5810, Potsdam, NY, 13699, USA
| | - Armand Gatien Ngounou Wetie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Ave., Box 5810, Potsdam, NY, 13699, USA
| | - Marcus Vinicius Gomez
- Institute of Education and Research Santa Casa Belo Horizonte-Laboratory of Toxins, Rua Domingos Vieira 590, Belo Horizonte, Minas Gerais, 30150-240, Brazil
| | - Yue Ju
- Bruker Daltonics, 40 Manning Road Manning Park, Billerica, MA, 01821, USA
| | - Paul Kowalski
- Bruker Daltonics, 40 Manning Road Manning Park, Billerica, MA, 01821, USA
| | - Marius Mihasan
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Ave., Box 5810, Potsdam, NY, 13699, USA
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Bvd. no 11, 700506, Iasi, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Ave., Box 5810, Potsdam, NY, 13699, USA.
| |
Collapse
|
12
|
Katsumi H, Nishikawa M, Hirosaki R, Okuda T, Kawakami S, Yamashita F, Hashida M, Sakane T, Yamamoto A. Development of PEGylated Cysteine-Modified Lysine Dendrimers with Multiple Reduced Thiols To Prevent Hepatic Ischemia/Reperfusion Injury. Mol Pharm 2016; 13:2867-73. [PMID: 27336683 DOI: 10.1021/acs.molpharmaceut.6b00557] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To inhibit hepatic ischemia/reperfusion injury, we developed polyethylene glycol (PEG) conjugated (PEGylated) cysteine-modified lysine dendrimers with multiple reduced thiols, which function as scavengers of reactive oxygen species (ROS). Second, third, and fourth generation (K2, K3, and K4) highly branched amino acid spherical lysine dendrimers were synthesized, and cysteine (C) was conjugated to the outer layer of these lysine dendrimers to obtain K2C, K3C, and K4C dendrimers. Subsequently, PEG was reacted with the C residues of the dendrimers to obtain PEGylated dendrimers with multiple reduced thiols (K2C-PEG, K3C-PEG, and K4C-PEG). Radiolabeled K4C-PEG ((111)In-K4C-PEG) exhibited prolonged retention in the plasma, whereas (111)In-K2C-PEG and (111)In-K3C-PEG rapidly disappeared from the plasma. K4C-PEG significantly prevented the elevation of plasma alanine aminotransferase (ALT) activity, an index of hepatocyte injury, in a mouse model of hepatic ischemia/reperfusion injury. In contrast, K2C-PEG, K3C-PEG, l-cysteine, and glutathione, the latter two of which are classical reduced thiols, hardly affected the plasma ALT activity. These findings indicate that K4C-PEG with prolonged circulation time is a promising compound to inhibit hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University , Yamashina-ku, Kyoto 607-8414, Japan
| | - Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University , Sakyo-ku, Kyoto 606-8501, Japan
| | - Rikiya Hirosaki
- Department of Biopharmaceutics, Kyoto Pharmaceutical University , Yamashina-ku, Kyoto 607-8414, Japan
| | - Tatsuya Okuda
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University , Sakyo-ku, Kyoto 606-8501, Japan.,Department of Chemistry, Dokkyo Medical University , Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Shigeru Kawakami
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University , Sakyo-ku, Kyoto 606-8501, Japan.,Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University , Sakamoto, Nagasaki 852-8523, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University , Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University , Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshiyasu Sakane
- Department of Biopharmaceutics, Kyoto Pharmaceutical University , Yamashina-ku, Kyoto 607-8414, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University , Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
13
|
Baral R, Ngounou Wetie AG, Darie CC, Wallace KN. Mass spectrometry for proteomics-based investigation using the zebrafish vertebrate model system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:331-40. [PMID: 24952190 DOI: 10.1007/978-3-319-06068-2_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The zebrafish (Danio rerio) is frequently being used to investigate the genetics of human diseases as well as resulting pathologies. Ease of both forward and reverse genetic manipulation along with conservation of vertebrate organ systems and disease causing genes has made this system a popular model. Many techniques have been developed to manipulate the genome of zebrafish producing mutants in a vast array of genes. While genetic manipulation of zebrafish has progressed, proteomics have been under-utilized. This review highlights studies that have already been performed using proteomic techniques and as well as our initial proteomic work comparing changes to the proteome between the ascl1a-/- and WT intestine.
Collapse
Affiliation(s)
- Reshica Baral
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | | | | | | |
Collapse
|
14
|
Katsumi H, Nishikawa M, Nishiyama K, Hirosaki R, Nagamine N, Okamoto H, Mizuguchi H, Kusamori K, Yasui H, Yamashita F, Hashida M, Sakane T, Yamamoto A. Development of PEGylated serum albumin with multiple reduced thiols as a long-circulating scavenger of reactive oxygen species for the treatment of fulminant hepatic failure in mice. Free Radic Biol Med 2014; 69:318-23. [PMID: 24509159 DOI: 10.1016/j.freeradbiomed.2014.01.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS) are involved in the pathophysiology of fulminant hepatic failure. Therefore, we developed polyethylene glycol-conjugated bovine serum albumin with multiple reduced thiols (PEG-BSA-SH) for the treatment of fulminant hepatic failure. As a long-circulating ROS scavenger, PEG-BSA-SH effectively scavenged highly reactive oxygen species and hydrogen peroxide in buffer solution. PEG-BSA-SH showed a long circulation time in the plasma after intravenous injection into mice. Fulminant hepatic failure was induced by intraperitoneal injection of lipopolysaccharide and D-galactosamine (LPS/D-GalN) into mice. The LPS/D-GalN-induced elevation of plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels was significantly inhibited by a bolus intravenous injection of PEG-BSA-SH. Furthermore, the changes in hepatic lipid peroxide and hepatic blood flow were effectively suppressed by PEG-BSA-SH. In contrast, L-cysteine, glutathione, and dithiothreitol, three traditional reduced thiols, had no statistically significant effects on the serum levels of ALT or AST. These findings indicate that PEG-BSA-SH is a promising ROS scavenger and useful in the treatment of fulminant hepatic failure.
Collapse
Affiliation(s)
- Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazushi Nishiyama
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Rikiya Hirosaki
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Narumi Nagamine
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Haruka Okamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hironori Mizuguchi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kosuke Kusamori
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshiyasu Sakane
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
15
|
Andrei V, Wetie AGN, Mihai I, Darie CC, Vasilescu A. Detection of Biomedically Relevant Stilbenes from Wines by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:361-82. [DOI: 10.1007/978-3-319-06068-2_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
|
17
|
Woods AG, Sokolowska I, Deinhardt K, Darie CC. Investigating a Novel Protein Using Mass Spectrometry: The Example of Tumor Differentiation Factor (TDF). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:509-23. [DOI: 10.1007/978-3-319-06068-2_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Woods AG, Sokolowska I, Ngounou Wetie AG, Wormwood K, Aslebagh R, Patel S, Darie CC. Mass spectrometry for proteomics-based investigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:1-32. [PMID: 24952176 DOI: 10.1007/978-3-319-06068-2_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Within the past years, we have witnessed a great improvement in mass spectrometry (MS) and proteomics approaches in terms of instrumentation, protein fractionation, and bioinformatics. With the current technology, protein identification alone is no longer sufficient. Both scientists and clinicians want not only to identify proteins but also to identify the protein's posttranslational modifications (PTMs), protein isoforms, protein truncation, protein-protein interaction (PPI), and protein quantitation. Here, we describe the principle of MS and proteomics and strategies to identify proteins, protein's PTMs, protein isoforms, protein truncation, PPIs, and protein quantitation. We also discuss the strengths and weaknesses within this field. Finally, in our concluding remarks we assess the role of mass spectrometry and proteomics in scientific and clinical settings in the near future. This chapter provides an introduction and overview for subsequent chapters that will discuss specific MS proteomic methodologies and their application to specific medical conditions. Other chapters will also touch upon areas that expand beyond proteomics, such as lipidomics and metabolomics.
Collapse
Affiliation(s)
- Alisa G Woods
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Patel S, Ngounou Wetie AG, Darie CC, Clarkson BD. Cancer secretomes and their place in supplementing other hallmarks of cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:409-42. [PMID: 24952195 DOI: 10.1007/978-3-319-06068-2_20] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The secretome includes all macromolecules secreted by cells, in particular conditions at defined times, allowing cell-cell communication. Cancer cell secretomes that are altered compared to normal cells have shown significant potential for elucidating cancer biology. Proteins of secretomes are secreted by various secretory pathways and can be studied using different methods. Cancer secretomes seem to play an important role in known hallmarks of cancers such as excessive proliferation, reduced apoptosis, immune invasion, angioneogenesis, alteration in energy metabolism, and development of resistance against anti-cancer therapy [1, 2]. If a significant role of an altered secretome can be identified in cancer cells, using advanced mass spectrometry-based techniques, this may allow researchers to screen and characterize the secretome proteins involved in cancer progression and open up new opportunities to develop new therapies. We aim to elaborate upon recent advances in cancer cell secretome analysis using different proteomics techniques. In this review, we highlight the role of the altered secretome in contributing to already recognized and emerging hallmarks of cancer and we discuss new challenges in the field of secretome analysis.
Collapse
Affiliation(s)
- Sapan Patel
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, 415 East 68th Street, New York, NY, 10065, USA
| | | | | | | |
Collapse
|
20
|
Biomarkers in major depressive disorder: the role of mass spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:545-60. [PMID: 24952202 DOI: 10.1007/978-3-319-06068-2_27] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Major depressive disorder (MDD) is common. Despite numerous available treatments, many individuals fail to improve clinically. MDD continues to be diagnosed exclusively via behavioral rather than biological methods. Biomarkers-which include measurements of genes, proteins, and patterns of brain activity-may provide an important objective tool for the diagnosis of MDD or in the rational selection of treatments. Proteomic analysis and validation of its results as biomarkers is less explored than other areas of biomarker research in MDD. Mass spectrometry (MS) is a comprehensive, unbiased means of proteomic analysis, which can be complemented by directed protein measurements, such as Western Blotting. Prior studies have focused on MS analysis of several human biomaterials in MDD, including human post-mortem brain, cerebrospinal fluid (CSF), blood components, and urine. Further studies utilizing MS and proteomic analysis in MDD may help solidify and establish biomarkers for use in diagnosis, identification of new treatment targets, and understanding of the disorder. The ultimate goal is the validation of a biomarker or a biomarker signature that facilitates a convenient and inexpensive predictive test for depression treatment response and helps clinicians in the rational selection of next-step treatments.
Collapse
|
21
|
Roy U, Woods AG, Sokolowska I, Darie CC. Utility of computational structural biology in mass spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:107-28. [PMID: 24952181 DOI: 10.1007/978-3-319-06068-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent developments of mass spectrometry (MS) allow us to identify, estimate, and characterize proteins and protein complexes. At the same time, structural biology helps to determine the protein structure and its structure-function relationship. Together, they aid to understand the protein structure, property, function, protein-complex assembly, protein-protein interaction and dynamics. The present chapter is organized with illustrative results to demonstrate how experimental mass spectrometry can be combined with computational structural biology for detailed studies of protein's structures. We have used tumor differentiation factor protein/peptide as ligand and Hsp70/Hsp90 as receptor protein as examples to study ligand-protein interaction. To investigate possible protein conformation we will describe two proteins, lysozyme and myoglobin.
Collapse
Affiliation(s)
- Urmi Roy
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Structural Biology & Molecular Modeling Unit, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | | | | | | |
Collapse
|
22
|
Mass spectrometry for the study of autism and neurodevelopmental disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:525-44. [PMID: 24952201 DOI: 10.1007/978-3-319-06068-2_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mass spectrometry (MS) has been increasingly used to study central nervous system disorders, including autism spectrum disorders (ASDs). The first studies of ASD using MS focused on the identification of external toxins, but current research is more directed at understanding endogenous protein changes that occur in ASD (ASD proteomics). This chapter focuses on how MS has been used to study ASDs, with particular focus on proteomic analysis. Other neurodevelopmental disorders have been investigated using this technique, including genetic syndromes associated with autism such as fragile X syndrome and Smith-Lemli-Opitz syndrome.
Collapse
|
23
|
Ikawa Y, Touden S, Katsumata S, Furuta H. Colorimetric/fluorogenic detection of thiols by N-fused porphyrin in water. Bioorg Med Chem 2013; 21:6501-5. [DOI: 10.1016/j.bmc.2013.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/17/2013] [Accepted: 08/20/2013] [Indexed: 01/01/2023]
|
24
|
Mass spectrometry investigation of glycosylation on the NXS/T sites in recombinant glycoproteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1474-83. [DOI: 10.1016/j.bbapap.2013.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/15/2013] [Accepted: 04/22/2013] [Indexed: 01/17/2023]
|
25
|
Ngounou Wetie AG, Sokolowska I, Wormwood K, Beglinger K, Michel TM, Thome J, Darie CC, Woods AG. Mass spectrometry for the detection of potential psychiatric biomarkers. J Mol Psychiatry 2013; 1:8. [PMID: 25408901 PMCID: PMC4223884 DOI: 10.1186/2049-9256-1-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/12/2013] [Indexed: 12/20/2022] Open
Abstract
The search for molecules that can act as potential biomarkers is increasing in the scientific community, including in the field of psychiatry. The field of proteomics is evolving and its indispensability for identifying biomarkers is clear. Among proteomic tools, mass spectrometry is the core technique for qualitative and quantitative identification of protein markers. While significant progress has been made in the understanding of biomarkers for neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis and Parkinson's disease, psychiatric disorders have not been as extensively investigated. Recent and successful applications of mass spectrometry-based proteomics in fields such as cardiovascular disease, cancer, infectious diseases and neurodegenerative disorders suggest a similar path for psychiatric disorders. In this brief review, we describe mass spectrometry and its use in psychiatric biomarker research and highlight some of the possible challenges of undertaking this type of work. Further, specific examples of candidate biomarkers are highlighted. A short comparison of proteomic with genomic methods for biomarker discovery research is presented. In summary, mass spectrometry-based techniques may greatly facilitate ongoing efforts to understand molecular mechanisms of psychiatric disorders.
Collapse
Affiliation(s)
- Armand G Ngounou Wetie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Izabela Sokolowska
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Kelly Wormwood
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Katherine Beglinger
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Tanja Maria Michel
- Department of Psychiatry, University of Rostock, Rostock, Gehlsheimer Straße 20, D-18147 Germany
| | - Johannes Thome
- Department of Psychiatry, University of Rostock, Rostock, Gehlsheimer Straße 20, D-18147 Germany ; College of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP UK
| | - Costel C Darie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Alisa G Woods
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA ; Neuropsychology Clinic and Psychoeducation Services, SUNY Plattsburgh, 101 Broad St, Plattsburgh, 12901 NY USA
| |
Collapse
|
26
|
Woods AG, Ngounou Wetie AG, Sokolowska I, Russell S, Ryan JP, Michel TM, Thome J, Darie CC. Mass spectrometry as a tool for studying autism spectrum disorder. J Mol Psychiatry 2013; 1:6. [PMID: 25408899 PMCID: PMC4223881 DOI: 10.1186/2049-9256-1-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/13/2012] [Indexed: 12/04/2022] Open
Abstract
Autism spectrum disorders (ASDs) are increasing in incidence but have an incompletely understood etiology. Tools for uncovering clues to the cause of ASDs and means for diagnoses are valuable to the field. Mass Spectrometry (MS) has been a useful method for evaluating differences between individuals with ASDs versus matched controls. Different biological substances can be evaluated using MS, including urine, blood, saliva, and hair. This technique has been used to evaluate relatively unsupported hypotheses based on introduction of exogenous factors, such as opiate and heavy metal excretion theories of ASDs. MS has also been used to support disturbances in serotonin-related molecules, which have been more consistently observed in ASDs. Serotonergic system markers, markers for oxidative stress, cholesterol system disturbances, peptide hypo-phosphorylation and methylation have been measured using MS in ASDs, although further analyses with larger numbers of subjects are needed (as well as consideration of behavioral data). Refinements in MS and data analysis are ongoing, allowing for the possibility that future studies examining body fluids and specimens from ASD subjects could continue to yield novel insights. This review summarizes MS investigations that have been conducted to study ASD to date and provides insight into future promising applications for this technique, with focus on proteomic studies.
Collapse
Affiliation(s)
- Alisa G Woods
- Biochemistry and Proteomics Group Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Armand G Ngounou Wetie
- Biochemistry and Proteomics Group Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Izabela Sokolowska
- Biochemistry and Proteomics Group Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Stefanie Russell
- Department of Psychology, State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, NY 12901 USA
| | - Jeanne P Ryan
- Department of Psychology, State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, NY 12901 USA
| | - Tanja Maria Michel
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Johannes Thome
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany ; College of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP UK
| | - Costel C Darie
- Biochemistry and Proteomics Group Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| |
Collapse
|
27
|
Ngounou Wetie AG, Sokolowska I, Woods AG, Roy U, Loo JA, Darie CC. Investigation of stable and transient protein-protein interactions: Past, present, and future. Proteomics 2013. [PMID: 23193082 DOI: 10.1002/pmic.201200328] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This article presents an overview of the literature and a review of recent advances in the analysis of stable and transient protein-protein interactions (PPIs) with a focus on their function within cells, organs, and organisms. The significance of PTMs within the PPIs is also discussed. We focus on methods to study PPIs and methods of detecting PPIs, with particular emphasis on electrophoresis-based and MS-based investigation of PPIs, including specific examples. The validation of PPIs is emphasized and the limitations of the current methods for studying stable and transient PPIs are discussed. Perspectives regarding PPIs, with focus on bioinformatics and transient PPIs are also provided.
Collapse
Affiliation(s)
- Armand G Ngounou Wetie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Deciphering the biological and clinical significance of the proteins is investigated by mass spectrometry in a relatively new field, named proteomics. Mass spectrometry is, however, also used in chemistry for many years. In this Research Front we try to show the potential use of mass spectrometry in chemical, environmental and biomedical research and also to illustrate the applications of mass spectrometry in proteomics.
Collapse
|
29
|
Sokolowska I, Wetie AGN, Woods AG, Darie CC. Applications of Mass Spectrometry in Proteomics. Aust J Chem 2013. [DOI: 10.1071/ch13137] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Characterisation of proteins and whole proteomes can provide a foundation to our understanding of physiological and pathological states and biological diseases or disorders. Constant development of more reliable and accurate mass spectrometry (MS) instruments and techniques has allowed for better identification and quantification of the thousands of proteins involved in basic physiological processes. Therefore, MS-based proteomics has been widely applied to the analysis of biological samples and has greatly contributed to our understanding of protein functions, interactions, and dynamics, advancing our knowledge of cellular processes as well as the physiology and pathology of the human body. This review will discuss current proteomic approaches for protein identification and characterisation, including post-translational modification (PTM) analysis and quantitative proteomics as well as investigation of protein–protein interactions (PPIs).
Collapse
|
30
|
Wetie AGN, Sokolowska I, Woods AG, Darie CC. Identification of Post-Translational Modifications by Mass Spectrometry. Aust J Chem 2013. [DOI: 10.1071/ch13144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are the effector molecules of many cellular and biological processes and are thus very dynamic and flexible. Regulation of protein activity, structure, stability, and turnover is in part controlled by their post-translational modifications (PTMs). Common PTMs of proteins include phosphorylation, glycosylation, methylation, ubiquitination, acetylation, and oxidation. Understanding the biology of protein PTMs can help elucidate the mechanisms of many pathological conditions and provide opportunities for prevention, diagnostics, and treatment of these disorders. Prior to the era of proteomics, it was standard to use chemistry methods for the identification of protein modifications. With advancements in proteomic technologies, mass spectrometry has become the method of choice for the analysis of protein PTMs. In this brief review, we will highlight the biochemistry of PTMs with an emphasis on mass spectrometry.
Collapse
|