1
|
Urban N, Hörner M, Weber W, Dincer C. OptoAssay-Light-controlled dynamic bioassay using optogenetic switches. SCIENCE ADVANCES 2024; 10:eadp0911. [PMID: 39321291 PMCID: PMC11423887 DOI: 10.1126/sciadv.adp0911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Circumventing the limitations of current bioassays, we introduce a light-controlled assay, OptoAssay, toward wash- and pump-free point-of-care diagnostics. Extending the capabilities of standard bioassays with light-dependent and reversible interaction of optogenetic switches, OptoAssays enable a bidirectional movement of assay components, only by changing the wavelength of light. Demonstrating exceptional versatility, the OptoAssay showcases its efficacy on various substrates, delivering a dynamic bioassay format. The applicability of the OptoAssay is successfully demonstrated by the calibration of a competitive model assay, resulting in a superior limit of detection of 8 pg ml-1, which is beyond those of conventional ELISA tests. In the future, combined with smartphones, OptoAssays could obviate the need for external flow control systems such as pumps or valves and signal readout devices, enabling on-site analysis in resource-limited settings.
Collapse
Affiliation(s)
- Nadine Urban
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110 Freiburg, Germany
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110 Freiburg, Germany
- University of Freiburg, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, 79104 Freiburg, Germany
| | - Maximillian Hörner
- University of Freiburg, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, 79104 Freiburg, Germany
| | - Wilfried Weber
- University of Freiburg, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, 79104 Freiburg, Germany
- INM–Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Saarland University, Department of Materials Science and Engineering, Campus D2 2, 66123 Saarbrücken, Germany
| | - Can Dincer
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110 Freiburg, Germany
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110 Freiburg, Germany
| |
Collapse
|
2
|
Sotnikov DV, Barshevskaya LV, Zherdev AV, Dzantiev BB. Enhanced Lateral Flow Immunoassay with Double Competition and Two Kinds of Nanoparticles Conjugates for Control of Insecticide Imidacloprid in Honey. BIOSENSORS 2023; 13:bios13050525. [PMID: 37232886 DOI: 10.3390/bios13050525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Finding optimal conditions for competitive lateral flow immunoassay is a controversial task. The content of specific antibodies labeled by nanoparticles should be simultaneously high to reach intense signals and low to register an influence on the signals for minimal concentrations of the target analyte. We propose to use two kinds of complexes of gold nanoparticles in the assay, with antigen-protein conjugates and with specific antibodies. The first complex interacts both with immobilized antibodies in the test zone and with antibodies on the surface of the second complex. In this assay, the coloration is enhanced by the binding of two-colored preparations in the test zone, whereas the antigen in the sample inhibits both the binding of the first conjugate with the immobilized antibodies and with the second conjugate. This approach is realized for the detection of insecticide imidacloprid (IMD), an important toxic contaminant connected with the recent global death of bees. The proposed technique expands the working range of the assay, that is, in accordance with its theoretical analysis. The reliable change of coloration intensity is achieved for a 2.3-times-lower concentration of the analyte. The limit of IMD detection is 0.13 ng/mL for tested solutions and 1.2 µg/kg for initial honey samples. The combination of two conjugates doubles the coloration in the absence of the analyte. The developed lateral flow immunoassay is applicable for five-fold-diluted honey samples without extraction, does not require additional stages (all reagents are pre-applied to the test strip), and is implemented in 10 min.
Collapse
Affiliation(s)
- Dmitriy V Sotnikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Lyubov V Barshevskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
3
|
Double Competitive Immunodetection of Small Analyte: Realization for Highly Sensitive Lateral Flow Immunoassay of Chloramphenicol. BIOSENSORS 2022; 12:bios12050343. [PMID: 35624644 PMCID: PMC9138499 DOI: 10.3390/bios12050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022]
Abstract
A new scheme of reagents interaction for lateral flow immunoassay (LFIA) is proposed, which combines the features of competitive and sandwich assay and provides highly sensitive detection of low-molecular-weight analytes. Namely, the antigen in the sample interferes with the formation of the antibody (on the membrane)–hapten-protein–antibody (on the nanoparticle-marker) complex, competing with hapten-protein conjugate in both reactions. The proposed scheme was modelled using COPASI software, with a prediction of limit of detection (LOD) decrease by one order of magnitude compared to the standard competitive LFIA. This feature was experimentally confirmed for the detection of chloramphenicol (CAP) in honey. When tested in spiked honey, the visual LOD was 50 ng/mL for the common scheme and 5 ng/mL for the proposed scheme. Instrumental LOD was 300 pg/mL (1.2 µg/kg in conversion per sample weight of honey) in the standard scheme and 20 pg/mL (80 ng/kg in conversion per sample weight of honey) in the proposed scheme.
Collapse
|
4
|
A Graphene-Based Enzymatic Biosensor Using a Common-Gate Field-Effect Transistor for L-Lactic Acid Detection in Blood Plasma Samples. SENSORS 2021; 21:s21051852. [PMID: 33800892 PMCID: PMC7961927 DOI: 10.3390/s21051852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
Lactate is an important organic molecule that is produced in excess during anaerobic metabolism when oxygen is absent in the human organism. The concentration of this substance in the body can be related to several medical conditions, such as hemorrhage, respiratory failure, and ischemia. Herein, we describe a graphene-based lactate biosensor to detect the concentrations of L-lactic acid in different fluids (buffer solution and plasma). The active surface (graphene) of the device was functionalized with lactate dehydrogenase enzyme using different substances (Nafion, chitosan, and glutaraldehyde) to guarantee stability and increase selectivity. The devices presented linear responses for the concentration ranges tested in the different fluids. An interference study was performed using ascorbic acid, uric acid, and glucose, and there was a minimum variation in the Dirac point voltage during detection of lactate in any of the samples. The stability of the devices was verified at up to 50 days while kept in a dry box at room temperature, and device operation was stable until 12 days. This study demonstrated graphene performance to monitor L-lactic acid production in human samples, indicating that this material can be implemented in more simple and low-cost devices, such as flexible sensors, for point-of-care applications.
Collapse
|
5
|
Diallo K, Feteh VF, Ibe L, Antonio M, Caugant DA, du Plessis M, Deghmane AE, Feavers IM, Fernandez K, Fox LM, Rodrigues CMC, Ronveaux O, Taha MK, Wang X, Brueggemann AB, Maiden MCJ, Harrison OB. Molecular diagnostic assays for the detection of common bacterial meningitis pathogens: A narrative review. EBioMedicine 2021; 65:103274. [PMID: 33721818 PMCID: PMC7957090 DOI: 10.1016/j.ebiom.2021.103274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/29/2022] Open
Abstract
Bacterial meningitis is a major global cause of morbidity and mortality. Rapid identification of the aetiological agent of meningitis is essential for clinical and public health management and disease prevention given the wide range of pathogens that cause the clinical syndrome and the availability of vaccines that protect against some, but not all, of these. Since microbiological culture is complex, slow, and often impacted by prior antimicrobial treatment of the patient, molecular diagnostic assays have been developed for bacterial detection. Distinguishing between meningitis caused by Neisseria meningitidis (meningococcus), Streptococcus pneumoniae (pneumococcus), Haemophilus influenzae, and Streptococcus agalactiae and identifying their polysaccharide capsules is especially important. Here, we review methods used in the identification of these bacteria, providing an up-to-date account of available assays, allowing clinicians and diagnostic laboratories to make informed decisions about which assays to use.
Collapse
Affiliation(s)
- Kanny Diallo
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom; Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Cote d'Ivoire
| | - Vitalis F Feteh
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom; Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Lilian Ibe
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom; Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Martin Antonio
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, Gambia; Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Dominique A Caugant
- WHO Collaborating Center for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo N-0213, Norway
| | - Mignon du Plessis
- A division of the National Health Laboratory Service (NHLS), National Institute for Communicable Diseases (NICD), Johannesburg, South Africa
| | | | - Ian M Feavers
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom
| | | | - LeAnne M Fox
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Division of Bacterial Diseases, Meningitis and Vaccine Preventable Diseases Branch, United States
| | - Charlene M C Rodrigues
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom; Department of Paediatric Infectious Diseases, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | | | | | - Xin Wang
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Division of Bacterial Diseases, Meningitis and Vaccine Preventable Diseases Branch, United States
| | - Angela B Brueggemann
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom
| | - Odile B Harrison
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom.
| |
Collapse
|
6
|
Paper-Based Diagnostic Device History and Challenges. Bioanalysis 2021. [DOI: 10.1007/978-981-15-8723-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Lee D, Kim I, Lee SW, Lee G, Yoon DS. RETRACTED CHAPTER: Technical Features and Challenges of the Paper-Based Colorimetric Assay. Bioanalysis 2021. [DOI: 10.1007/978-981-15-8723-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Zhao J, Fang S, Liu Y, Zeng L, He Z. A lateral flow biosensor based on gold nanoparticles detects four hemorrhagic fever viruses. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5613-5620. [PMID: 33184619 DOI: 10.1039/d0ay01137a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The pathogen of viral hemorrhagic fever (VHF), which is harmful to human health, is a hemorrhagic fever virus. Clinicians have long needed convenient and sensitive point-of-care rapid diagnostic tests (RDTs) for hemorrhagic fever viruses. Commonly used methods for pathogen detection rely on conventional culture-based tests, antibody-based assays and polymerase chain reaction (PCR)-based techniques. However, these methods are costly, laborious and time-consuming. Herein, we present a simple and sensitive biosensor for the rapid detection of hemorrhagic fever viruses. For this assay, we develop lateral flow biosensors (LFBs) based on magnetic beads and nicking enzyme-assisted isothermal strand-displacement amplification (SDA) for the detection of hemorrhagic fever viruses. The detection limit of this assay is 10 fM.
Collapse
Affiliation(s)
- Jin Zhao
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Department of Immunology, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China. and Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Shuting Fang
- School of Food Science and Engineering, Foshan University, Foshan 528231, China.
| | - Yujie Liu
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Department of Immunology, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China.
| | - Lingwen Zeng
- School of Food Science and Engineering, Foshan University, Foshan 528231, China. and Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guang-zhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhixu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Department of Immunology, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
9
|
Campbell VR, Carson MS, Lao A, Maran K, Yang EJ, Kamei DT. Point-of-Need Diagnostics for Foodborne Pathogen Screening. SLAS Technol 2020; 26:55-79. [PMID: 33012245 DOI: 10.1177/2472630320962003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Foodborne illness is a major public health issue that results in millions of global infections annually. The burden of such illness sits mostly with developing countries, as access to advanced laboratory equipment and skilled lab technicians, as well as consistent power sources, is limited and expensive. Current gold standards in foodborne pathogen screening involve labor-intensive sample enrichment steps, pathogen isolation and purification, and costly readout machinery. Overall, time to detection can take multiple days, excluding the time it takes to ship samples to off-site laboratories. Efforts have been made to simplify the workflow of such tests by integrating multiple steps of foodborne pathogen screening procedures into a singular device, as well as implementing more point-of-need readout methods. In this review, we explore recent advancements in developing point-of-need devices for foodborne pathogen screening. We discuss the detection of surface markers, nucleic acids, and metabolic products using both paper-based and microfluidic devices, focusing primarily on developments that have been made between 2015 and mid-2020.
Collapse
Affiliation(s)
- Veronica R Campbell
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Mariam S Carson
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Amelia Lao
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Kajal Maran
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Eric J Yang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Daniel T Kamei
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Novel field amplification for sensitive colorimetric detection of microalbuminuria on a paper-based analytical device. Anal Chim Acta 2019; 1080:146-152. [DOI: 10.1016/j.aca.2019.06.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023]
|
11
|
Bradbury DW, Azimi M, Diaz AJ, Pan AA, Falktoft CH, Wu BM, Kamei DT. Automation of Biomarker Preconcentration, Capture, and Nanozyme Signal Enhancement on Paper-Based Devices. Anal Chem 2019; 91:12046-12054. [PMID: 31433941 DOI: 10.1021/acs.analchem.9b03105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases remain one of the leading causes of deaths in developing countries because of a lack of basic sanitation, healthcare clinics, and centralized laboratories. Paper-based rapid diagnostic tests, such as the lateral-flow immunoassay (LFA), provide a promising alternative to the traditional laboratory-based tests; however, they typically suffer from having a poor sensitivity. Biomarker preconcentration and signal enhancement are two common methods to improve the sensitivity of paper-based assays. While effective, these methods often require multiple liquid handling steps which are not ideal for use by untrained personnel in a point-of-care setting. Our lab previously discovered the phenomenon of an aqueous two-phase system (ATPS) separating on paper, which allowed for the seamless integration of concentration and detection of biomarkers on the LFA. In this work, we have extended the functionality of an ATPS separating on paper to automate the sequential delivery of signal enhancement reagents in addition to concentrating biomarkers. The timing of reagent delivery was controlled by changing the initial composition of the ATPS. We applied this technology to automate biomarker concentration and nanozyme signal enhancement on the LFA, resulting in a 30-fold improvement in detection limit over the conventional LFA when detecting Escherichia coli, all while maintaining a single application step.
Collapse
Affiliation(s)
- Daniel W Bradbury
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Milad Azimi
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Alexia J Diaz
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - April A Pan
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Cecilie H Falktoft
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Benjamin M Wu
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States.,Division of Advanced Prosthodontics & Weintraub Center for Reconstructive Biotechnology School of Dentistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Daniel T Kamei
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
12
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
13
|
Hui CY, Liu M, Li Y, Brennan JD. A Paper Sensor Printed with Multifunctional Bio/Nano Materials. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712903] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christy Y. Hui
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4O3 Canada
| | - Meng Liu
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4O3 Canada
- Department of Biochemistry and Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
- School of Environmental Science and Technology; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education); Dalian University of Technology; Dalian 116024 China
| | - Yingfu Li
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4O3 Canada
- Department of Biochemistry and Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| | - John D. Brennan
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4O3 Canada
| |
Collapse
|
14
|
Hui CY, Liu M, Li Y, Brennan JD. A Paper Sensor Printed with Multifunctional Bio/Nano Materials. Angew Chem Int Ed Engl 2018; 57:4549-4553. [PMID: 29504183 DOI: 10.1002/anie.201712903] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/12/2018] [Indexed: 01/08/2023]
Abstract
We report a paper-based aptasensor platform that uses two reaction zones and a connecting bridge along with printed multifunctional bio/nano materials to achieve molecular recognition and signal amplification. Upon addition of analyte to the first zone, a fluorescently labelled DNA or RNA aptamer is desorbed from printed graphene oxide, rapidly producing an initial fluorescence signal. The released aptamer then flows to the second zone where it reacts with printed reagents to initiate rolling circle amplification, generating DNA amplicons containing a peroxidase-mimicking DNAzyme, which produces a colorimetric readout that can be read in an equipment-free manner or with a smartphone. The sensor was demonstrated using an RNA aptamer for adenosine triphosphate (a bacterial marker) and a DNA aptamer for glutamate dehydrogenase (Clostridium difficile marker) with excellent sensitivity and specificity. These targets could be detected in spiked serum or feacal samples, demonstrating the potential for testing clinical samples.
Collapse
Affiliation(s)
- Christy Y Hui
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4O3, Canada
| | - Meng Liu
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4O3, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada.,School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4O3, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4O3, Canada
| |
Collapse
|
15
|
Theillet G, Rubens A, Foucault F, Dalbon P, Rozand C, Leparc-Goffart I, Bedin F. Laser-cut paper-based device for the detection of dengue non-structural NS1 protein and specific IgM in human samples. Arch Virol 2018. [PMID: 29525973 DOI: 10.1007/s00705-018-3776-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The incidence of flavivirus infections has increased dramatically in recent decades in tropical and sub-tropical areas worldwide, affecting hundreds of millions of people each year. Dengue viruses are typically transmitted by mosquitoes and can cause a wide range of symptoms from flu-like fever to organ impairment and death. Although conventional diagnostic tests can provide early diagnosis of acute dengue infections, access to these tests is often limited in developing countries. Consequently, there is an urgent need to develop affordable, simple, rapid, and robust diagnostic tools that can be used at 'Point of Care' settings. Early diagnosis is crucial to improve patient management and reduce the risk of complications. In the present study, a novel laser-cut device made of glass-fiber paper was designed and tested for the detection of the dengue Non Structural 1 (NS1) viral protein and specific IgM in blood and plasma. The device, called PAD, was able to detect around 25 ng/mL of NS1 protein in various sample types in 8 minutes, following a few simple steps. The PAD was also able to detect specific IgM in human plasmas in less than 10 minutes. The PAD appears to have all the potential to assist health workers in early diagnosis of dengue fever or other tropical fevers caused by flaviviruses.
Collapse
Affiliation(s)
- G Theillet
- BioMerieux, Innovations New Immuno-Concepts, Chemin de l'Orme, 69280, Marcy-l'Etoile, France.,ERRIT, HIA Laveran, 34 boulevard Laveran, 13013, Marseille, France
| | - A Rubens
- BioMerieux, Innovations New Immuno-Concepts, Chemin de l'Orme, 69280, Marcy-l'Etoile, France
| | - F Foucault
- BioMerieux, Innovations New Immuno-Concepts, Chemin de l'Orme, 69280, Marcy-l'Etoile, France
| | - P Dalbon
- BioMerieux, Innovations New Immuno-Concepts, Chemin de l'Orme, 69280, Marcy-l'Etoile, France
| | - C Rozand
- BioMerieux, Innovations New Immuno-Concepts, Chemin de l'Orme, 69280, Marcy-l'Etoile, France
| | - I Leparc-Goffart
- ERRIT, HIA Laveran, 34 boulevard Laveran, 13013, Marseille, France
| | - F Bedin
- BioMerieux, Innovations New Immuno-Concepts, Chemin de l'Orme, 69280, Marcy-l'Etoile, France.
| |
Collapse
|
16
|
Jauset-Rubio M, El-Shahawi MS, Bashammakh AS, Alyoubi AO, O′Sullivan CK. Advances in aptamers-based lateral flow assays. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Gong MM, Sinton D. Turning the Page: Advancing Paper-Based Microfluidics for Broad Diagnostic Application. Chem Rev 2017. [PMID: 28627178 DOI: 10.1021/acs.chemrev.7b00024] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infectious diseases are a major global health issue. Diagnosis is a critical first step in effectively managing their spread. Paper-based microfluidic diagnostics first emerged in 2007 as a low-cost alternative to conventional laboratory testing, with the goal of improving accessibility to medical diagnostics in developing countries. In this review, we examine the advances in paper-based microfluidic diagnostics for medical diagnosis in the context of global health from 2007 to 2016. The theory of fluid transport in paper is first presented. The next section examines the strategies that have been employed to control fluid and analyte transport in paper-based assays. Tasks such as mixing, timing, and sequential fluid delivery have been achieved in paper and have enabled analytical capabilities comparable to those of conventional laboratory methods. The following section examines paper-based sample processing and analysis. The most impactful advancement here has been the translation of nucleic acid analysis to a paper-based format. Smartphone-based analysis is another exciting development with potential for wide dissemination. The last core section of the review highlights emerging health applications, such as male fertility testing and wearable diagnostics. We conclude the review with the future outlook, remaining challenges, and emerging opportunities.
Collapse
Affiliation(s)
- Max M Gong
- Department of Mechanical and Industrial Engineering, University of Toronto , 5 King's College Road, Toronto, Ontario, Canada M5S 3G8.,Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison , 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto , 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
| |
Collapse
|
18
|
Gong Y, Hu J, Choi JR, You M, Zheng Y, Xu B, Wen T, Xu F. Improved LFIAs for highly sensitive detection of BNP at point-of-care. Int J Nanomedicine 2017; 12:4455-4466. [PMID: 28670119 PMCID: PMC5479264 DOI: 10.2147/ijn.s135735] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Heart failure (HF) has become a major cause of morbidity and mortality with a significant global economic burden. Although well-established clinical tests could provide early diagnosis, access to these tests is limited in developing countries, where a relatively higher incidence of HF is present. This has prompted an urgent need for developing a cost-effective, rapid and robust diagnostic tool for point-of-care (POC) detection of HF. Lateral flow immunoassay (LFIA) has found widespread applications in POC diagnostics. However, the low sensitivity of LFIA limits its ability to detect important HF biomarkers (e.g., brain natriuretic peptide [BNP]) that are normally present in low concentration in blood. To address this issue, we developed an improved LFIA by optimizing the gold nanoparticle (GNP)–antibody conjugate conditions (e.g., the conjugate pH and the amount of added antibody), the diameter of GNP and the concentration of antibody embedded on the test line and modifying the structure of test strip. Through these improvements, the proposed test strip enabled the detection of BNP down to 0.1 ng/mL within 10–15 min, presenting ~15-fold sensitivity enhancement over conventional lateral flow assay. We also successfully applied our LFIA in the analysis of BNP in human serum samples, highlighting its potential use for clinical assessment of HF. The developed LFIA for BNP could rapidly rule out HF with the naked eye, offering tremendous potential for POC test and personalized medicine.
Collapse
Affiliation(s)
- Yan Gong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University.,Xi'an Diandi Biotech Company
| | - Jie Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University
| | - Jane Ru Choi
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University
| | - Yamin Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University
| | - Bo Xu
- School of Finance and Economics, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | | | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University
| |
Collapse
|
19
|
|
20
|
Zinggeler M, Fosso PL, Hao Y, Brandstetter T, Rühe J. Preparation of Linear Cryogel Arrays as a Microfluidic Platform for Immunochromatographic Assays. Anal Chem 2017; 89:5697-5701. [PMID: 28530809 DOI: 10.1021/acs.analchem.7b01182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We describe a new microfluidic platform to perform immunochromatographic assays. The platform consists of a linear assembly of small, porous cryogel monoliths functionalized with various biomolecules. The cryogels are anchored in an optically transparent capillary, which serves as the microfluidic carrier. This assembly enables fluid flow by capillary action and simple optical detection. Using an in situ preparation method, individual compartments are generated from small plugs of polymer solutions that are transformed into small individually functionalized cryogel monoliths through a photoinduced cross-linking reaction. In the same reaction step, the monoliths are firmly anchored to the surface of the capillary. As proof-of-concept, a prototype platform is successfully used for the detection of the inflammatory marker interleukin 6 via a sandwich immunoassay. We observe excellent assay performance metrics that include high sensitivity, good linearity, and low variation. We also demonstrate fluid transport solely by passive means, which is a critical attribute for point-of-care diagnostics.
Collapse
Affiliation(s)
- Marc Zinggeler
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering, University of Freiburg , Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Patrick L Fosso
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering, University of Freiburg , Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Yan Hao
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering, University of Freiburg , Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Thomas Brandstetter
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering, University of Freiburg , Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Jürgen Rühe
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering, University of Freiburg , Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
21
|
Morbioli GG, Mazzu-Nascimento T, Stockton AM, Carrilho E. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review. Anal Chim Acta 2017; 970:1-22. [PMID: 28433054 DOI: 10.1016/j.aca.2017.03.037] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/14/2017] [Accepted: 03/17/2017] [Indexed: 12/29/2022]
Abstract
Paper-based devices are a leading alternative among the main analytical tools for point-of-care testing, due to their portability, low-cost, and ease-of-use. Colorimetric readouts are the most common method of detection in these microfluidic devices, enabling qualitative, semi-quantitative and fully quantitative analysis of multiple analytes. There is a multitude of ways to obtain a colorimetric output in such devices, including nanoparticles, dyes, redox and pH indicators, and each has unique drawbacks and benefits. There are also multiple variables that impact the analysis of colorimetric reactions in microfluidic paper-based systems, including color homogeneity, image capture methods, and the data handling itself. Here, we present a critical review of recent developments and challenges of colorimetric detection on microfluidic paper-based analytical devices (μPADs), and present thoughts and insights towards future perspectives in the area to improve the use of colorimetric readouts in conjunction with μPADs.
Collapse
Affiliation(s)
- Giorgio Gianini Morbioli
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, 13566-590 São Carlos, SP, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13083-970 Campinas, SP, Brazil; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Thiago Mazzu-Nascimento
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, 13566-590 São Carlos, SP, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13083-970 Campinas, SP, Brazil
| | - Amanda M Stockton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, 13566-590 São Carlos, SP, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
22
|
Inan H, Poyraz M, Inci F, Lifson MA, Baday M, Cunningham BT, Demirci U. Photonic crystals: emerging biosensors and their promise for point-of-care applications. Chem Soc Rev 2017; 46:366-388. [PMID: 27841420 PMCID: PMC5529146 DOI: 10.1039/c6cs00206d] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biosensors are extensively employed for diagnosing a broad array of diseases and disorders in clinical settings worldwide. The implementation of biosensors at the point-of-care (POC), such as at primary clinics or the bedside, faces impediments because they may require highly trained personnel, have long assay times, large sizes, and high instrumental cost. Thus, there exists a need to develop inexpensive, reliable, user-friendly, and compact biosensing systems at the POC. Biosensors incorporated with photonic crystal (PC) structures hold promise to address many of the aforementioned challenges facing the development of new POC diagnostics. Currently, PC-based biosensors have been employed for detecting a variety of biotargets, such as cells, pathogens, proteins, antibodies, and nucleic acids, with high efficiency and selectivity. In this review, we provide a broad overview of PCs by explaining their structures, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-based biosensors incorporated with emerging technologies, including telemedicine, flexible and wearable sensing, smart materials and metamaterials. Finally, we discuss current challenges associated with existing biosensors, and provide an outlook for PC-based biosensors and their promise at the POC.
Collapse
Affiliation(s)
- Hakan Inan
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Muhammet Poyraz
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA. and Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Fatih Inci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Mark A Lifson
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Murat Baday
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Brian T Cunningham
- Department of Electrical and Computer Engineering, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Utkan Demirci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA. and Department of Electrical Engineering (by courtesy), Stanford University, Stanford, CA, USA
| |
Collapse
|
23
|
Nayak S, Blumenfeld NR, Laksanasopin T, Sia SK. Point-of-Care Diagnostics: Recent Developments in a Connected Age. Anal Chem 2017; 89:102-123. [PMID: 27958710 PMCID: PMC5793870 DOI: 10.1021/acs.analchem.6b04630] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samiksha Nayak
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Nicole R. Blumenfeld
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Tassaneewan Laksanasopin
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
24
|
García-Carmona L, Martín A, Sierra T, González MC, Escarpa A. Electrochemical detectors based on carbon and metallic nanostructures in capillary and microchip electrophoresis. Electrophoresis 2016; 38:80-94. [DOI: 10.1002/elps.201600232] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Laura García-Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Aida Martín
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Tania Sierra
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - María Cristina González
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| |
Collapse
|
25
|
Ricks KM, Adams NM, Scherr TF, Haselton FR, Wright DW. Direct transfer of HRPII-magnetic bead complexes to malaria rapid diagnostic tests significantly improves test sensitivity. Malar J 2016; 15:399. [PMID: 27495329 PMCID: PMC4975893 DOI: 10.1186/s12936-016-1448-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/20/2016] [Indexed: 12/24/2022] Open
Abstract
Background The characteristic ease of use, rapid time to result, and low cost of malaria rapid diagnostic tests (RDTs) promote their widespread use at the point-of-care for malaria detection and surveillance. However, in many settings, the success of malaria elimination campaigns depends on point-of-care diagnostics with greater sensitivity than currently available RDTs. To address this need, a sample preparation method was developed to deliver more biomarkers onto a malaria RDT by concentrating the biomarker from blood sample volumes that are too large to be directly applied to a lateral flow strip. Methods In this design, Ni–NTA-functionalized magnetic beads captured the Plasmodium falciparum biomarker HRPII from a P. falciparum D6 culture spiked blood sample. This transfer of magnetic beads to the RDT was facilitated by an inexpensive 3D-printed apparatus that aligned the sample tube with the sample deposition pad and a magnet beneath the RDT. Biomarkers were released from the bead surface onto the lateral flow strip using imidazole-spiked running buffer. Kinetics of HRPII binding to the Ni–NTA beads as a function of blood sample volume were explored prior to determining the effect of the proposed method on the limit of detection of Paracheck RDTs. Results More than 80 % of HRPII biomarkers were extracted from blood sample volumes ranging from 25 to 250 µL. The time required to reach 80 % binding ranged from 5 to 60 min, depending on sample volume. Using 250 μL of blood and a 30-min biomarker binding time, the limit of detection of the Paracheck Pf RDT brand was improved by 21-fold, resulting in a limit of detection below 1 parasite/μL. Conclusions This approach has the sensitivity and simplicity required to assist in malaria elimination campaigns in settings with limited access to clinical and laboratory resources. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1448-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keersten M Ricks
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Nicholas M Adams
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Thomas F Scherr
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Frederick R Haselton
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - David W Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
26
|
Affiliation(s)
- Xianting Ding
- School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Med-X Research Institute, Shanghai, China
| |
Collapse
|
27
|
Zhao Y, Wang H, Zhang P, Sun C, Wang X, Wang X, Yang R, Wang C, Zhou L. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay. Sci Rep 2016; 6:21342. [PMID: 26884128 PMCID: PMC4756364 DOI: 10.1038/srep21342] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/21/2016] [Indexed: 12/20/2022] Open
Abstract
The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 10(4) CFU mL(-1) or 10(5) CFU mL(-1) for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R(2)) of 0.916-0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥ 80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water.
Collapse
Affiliation(s)
- Yong Zhao
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P. R. China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No. BZ0329), Beijing 100071, P. R. China
| | - Haoran Wang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P. R. China
- School of Food and Nutrition, Massey University, Palmerston North 4442, New Zealand
| | - Pingping Zhang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P. R. China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No. BZ0329), Beijing 100071, P. R. China
| | - Chongyun Sun
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P. R. China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No. BZ0329), Beijing 100071, P. R. China
- Department of Clinical Laboratory, Chinese People’s Liberation Army General Hospital, Beijing 100853, P. R. China
| | - Xiaochen Wang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P. R. China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No. BZ0329), Beijing 100071, P. R. China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xinrui Wang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P. R. China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No. BZ0329), Beijing 100071, P. R. China
- Institute for Plague Prevention and Control of Hebei Province, Zhangjiakou 075000, P. R. China
| | - Ruifu Yang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P. R. China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No. BZ0329), Beijing 100071, P. R. China
| | - Chengbin Wang
- Department of Clinical Laboratory, Chinese People’s Liberation Army General Hospital, Beijing 100853, P. R. China
| | - Lei Zhou
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P. R. China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No. BZ0329), Beijing 100071, P. R. China
| |
Collapse
|
28
|
Zhang LX, Jiang L, Willett DR, Kenneth Marcus R. Parallel, open-channel lateral flow (immuno) assay substrate based on capillary-channeled polymer films. Analyst 2016; 141:807-14. [DOI: 10.1039/c5an01953b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presented here is a novel implementation of polypropylene capillary-channeled polymer (C-CP) films, functionalized for bioaffinity separations and implemented as a platform for lateral flow (immuno) assays.
Collapse
Affiliation(s)
| | - Liuwei Jiang
- Department of Chemistry
- Clemson University
- Clemson
- USA
| | | | | |
Collapse
|
29
|
Cimaglia F, Liandris E, Gazouli M, Sechi L, Chiesa M, De Lorenzis E, Andreadou M, Taka S, Mataragka A, Ikonomopoulos J. Detection of mycobacterial DNA by a specific and simple lateral flow assay incorporating cadmium selenide quantum dots. Mol Cell Probes 2015; 29:534-536. [PMID: 26070989 DOI: 10.1016/j.mcp.2015.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
|