1
|
Whitfield-Cargile CM, Chung HC, Coleman MC, Cohen ND, Chamoun-Emanuelli AM, Ivanov I, Goldsby JS, Davidson LA, Gaynanova I, Ni Y, Chapkin RS. Integrated analysis of gut metabolome, microbiome, and exfoliome data in an equine model of intestinal injury. MICROBIOME 2024; 12:74. [PMID: 38622632 PMCID: PMC11017594 DOI: 10.1186/s40168-024-01785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND The equine gastrointestinal (GI) microbiome has been described in the context of various diseases. The observed changes, however, have not been linked to host function and therefore it remains unclear how specific changes in the microbiome alter cellular and molecular pathways within the GI tract. Further, non-invasive techniques to examine the host gene expression profile of the GI mucosa have been described in horses but not evaluated in response to interventions. Therefore, the objectives of our study were to (1) profile gene expression and metabolomic changes in an equine model of non-steroidal anti-inflammatory drug (NSAID)-induced intestinal inflammation and (2) apply computational data integration methods to examine host-microbiota interactions. METHODS Twenty horses were randomly assigned to 1 of 2 groups (n = 10): control (placebo paste) or NSAID (phenylbutazone 4.4 mg/kg orally once daily for 9 days). Fecal samples were collected on days 0 and 10 and analyzed with respect to microbiota (16S rDNA gene sequencing), metabolomic (untargeted metabolites), and host exfoliated cell transcriptomic (exfoliome) changes. Data were analyzed and integrated using a variety of computational techniques, and underlying regulatory mechanisms were inferred from features that were commonly identified by all computational approaches. RESULTS Phenylbutazone induced alterations in the microbiota, metabolome, and host transcriptome. Data integration identified correlation of specific bacterial genera with expression of several genes and metabolites that were linked to oxidative stress. Concomitant microbiota and metabolite changes resulted in the initiation of endoplasmic reticulum stress and unfolded protein response within the intestinal mucosa. CONCLUSIONS Results of integrative analysis identified an important role for oxidative stress, and subsequent cell signaling responses, in a large animal model of GI inflammation. The computational approaches for combining non-invasive platforms for unbiased assessment of host GI responses (e.g., exfoliomics) with metabolomic and microbiota changes have broad application for the field of gastroenterology. Video Abstract.
Collapse
Affiliation(s)
- C M Whitfield-Cargile
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - H C Chung
- Department of Statistics, College of Arts & Sciences, Texas A&M University, College Station, TX, USA
- Mathematics & Statistics Department, College of Science, University of North Carolina Charlotte, Charlotte, NC, USA
| | - M C Coleman
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - N D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - A M Chamoun-Emanuelli
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - I Ivanov
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - J S Goldsby
- Program in Integrative Nutrition & Complex Diseases, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - L A Davidson
- Program in Integrative Nutrition & Complex Diseases, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - I Gaynanova
- Department of Statistics, College of Arts & Sciences, Texas A&M University, College Station, TX, USA
| | - Y Ni
- Department of Statistics, College of Arts & Sciences, Texas A&M University, College Station, TX, USA
| | - R S Chapkin
- Program in Integrative Nutrition & Complex Diseases, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Gragnaniello V, Gueraldi D, Puma A, Commone A, Cazzorla C, Loro C, Porcù E, Stornaiuolo M, Miglioranza P, Salviati L, Wanders RJA, Burlina A. Abnormal activation of MAPKs pathways and inhibition of autophagy in a group of patients with Zellweger spectrum disorders and X-linked adrenoleukodystrophy. Orphanet J Rare Dis 2023; 18:358. [PMID: 37974207 PMCID: PMC10652488 DOI: 10.1186/s13023-023-02940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/01/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Zellweger spectrum disorders (ZSD) and X-linked adrenoleukodystrophy (X-ALD) are inherited metabolic diseases characterized by dysfunction of peroxisomes, that are essential for lipid metabolism and redox balance. Oxidative stress has been reported to have a significant role in the pathogenesis of neurodegenerative diseases such as peroxisomal disorders, but little is known on the intracellular activation of Mitogen-activated protein kinases (MAPKs). Strictly related to oxidative stress, a correct autophagic machinery is essential to eliminated oxidized proteins and damaged organelles. The aims of the current study are to investigate a possible implication of MAPK pathways and autophagy impairment as markers and putative therapeutic targets in X-ALD and ZSDs. METHODS Three patients with ZSD (2 M, 1 F; age range 8-17 years) and five patients with X-ALD (5 M; age range 5- 22 years) were enrolled. A control group included 6 healthy volunteers. To evaluate MAPKs pathway, p-p38 and p-JNK were assessed by western blot analysis on peripheral blood mononuclear cells. LC3II/LC3I ratio was evaluated ad marker of autophagy. RESULTS X-ALD and ZSD patients showed elevated p-p38 values on average 2- fold (range 1.21- 2.84) and 3.30-fold (range 1.56- 4.26) higher when compared with controls, respectively. p-JNK expression was on average 12-fold (range 2.20-19.92) and 2.90-fold (range 1.43-4.24) higher in ZSD and X-ALD patients than in controls. All patients had altered autophagic flux as concluded from the reduced LC3II/I ratio. CONCLUSIONS In our study X-ALD and ZSD patients present an overactivation of MAPK pathways and an inhibition of autophagy. Considering the absence of successful therapies and the growing interest towards new therapies with antioxidants and autophagy inducers, the identification and validation of biomarkers to monitor optimal dosing and biological efficacy of the treatments is of prime interest.
Collapse
Affiliation(s)
- Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Daniela Gueraldi
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Andrea Puma
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Anna Commone
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Christian Loro
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Elena Porcù
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Maria Stornaiuolo
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Paolo Miglioranza
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, and Myology Center, University of Padova, Padua, Italy
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy.
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University of Padua, Padua, Italy.
| |
Collapse
|
3
|
Miazek K, Beton K, Śliwińska A, Brożek-Płuska B. The Effect of β-Carotene, Tocopherols and Ascorbic Acid as Anti-Oxidant Molecules on Human and Animal In Vitro/In Vivo Studies: A Review of Research Design and Analytical Techniques Used. Biomolecules 2022; 12:biom12081087. [PMID: 36008981 PMCID: PMC9406122 DOI: 10.3390/biom12081087] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Prolonged elevated oxidative stress (OS) possesses negative effect on cell structure and functioning, and is associated with the development of numerous disorders. Naturally occurred anti-oxidant compounds reduce the oxidative stress in living organisms. In this review, antioxidant properties of β-carotene, tocopherols and ascorbic acid are presented based on in vitro, in vivo and populational studies. Firstly, environmental factors contributing to the OS occurrence and intracellular sources of Reactive Oxygen Species (ROS) generation, as well as ROS-mediated cellular structure degradation, are introduced. Secondly, enzymatic and non-enzymatic mechanism of anti-oxidant defence against OS development, is presented. Furthermore, ROS-preventing mechanisms and effectiveness of β-carotene, tocopherols and ascorbic acid as anti-oxidants are summarized, based on studies where different ROS-generating (oxidizing) agents are used. Oxidative stress biomarkers, as indicators on OS level and prevention by anti-oxidant supplementation, are presented with a focus on the methods (spectrophotometric, fluorometric, chromatographic, immuno-enzymatic) of their detection. Finally, the application of Raman spectroscopy and imaging as a tool for monitoring the effect of anti-oxidant (β-carotene, ascorbic acid) on cell structure and metabolism, is proposed. Literature data gathered suggest that β-carotene, tocopherols and ascorbic acid possess potential to mitigate oxidative stress in various biological systems. Moreover, Raman spectroscopy and imaging can be a valuable technique to study the effect of oxidative stress and anti-oxidant molecules in cell studies.
Collapse
Affiliation(s)
- Krystian Miazek
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
- Correspondence:
| | - Karolina Beton
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Beata Brożek-Płuska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|