1
|
Kaur N, do Rosario MC, Majethia P, Mascarenhas S, Rao LP, Nair KV, Hunakunti B, Prasannakumar AP, Naik R, Narayanan DL, Nayak SS, Bhat V, Sharma S, Ramesh Bhat Y, Yatheesha BL, Kulkarni R, Patil SJ, Nampoothiri S, Siddiqui S, Girisha KM, Bielas S, Shukla A. Neuroimaging to Genotype: Delineating the Spectrum of Disorders With Deficient Myelination in the Indian Population. Am J Med Genet A 2024:e63914. [PMID: 39470296 DOI: 10.1002/ajmg.a.63914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
Several genetic disorders are associated with either a permanent deficit or a delay in central nervous system myelination. We investigated 24 unrelated families (25 individuals) with deficient myelination after clinical and radiological evaluation. A combinatorial approach of targeting and/or genomic testing was employed. Molecular diagnosis was achieved in 22 out of 24 families (92%). Four families (4/9, 44%) were diagnosed with targeted testing and 18 families (18/23, 78%) were diagnosed using broad genomic testing. Overall, 14 monogenic disorders were identified. Twenty disease-causing variants were identified in 14 genes including PLP1, GJC2, POLR1C, TUBB4A, UFM1, NKX6-2, DEGS1, RNASEH2C, HEXA, ATP7A, SETBP1, GRIN2B, OCLN, and ZBTB18. Among these, nine (45%) variants are novel. Fourteen families (82%, 14/17) were diagnosed using proband-only exome sequencing (ES) complemented with deep phenotyping, thus highlighting the utility of singleton ES as a valuable diagnostic tool for identifying these disorders in resource-limited settings.
Collapse
Affiliation(s)
- Namanpreet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Michelle C do Rosario
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Purvi Majethia
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Selinda Mascarenhas
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Lakshmi Priya Rao
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Karthik Vijay Nair
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Bhagesh Hunakunti
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Adarsh Pooradan Prasannakumar
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rohit Naik
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Shalini S Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vivekananda Bhat
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Suvasini Sharma
- Neurology Division, Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | - Y Ramesh Bhat
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - B L Yatheesha
- Paediatric Neurology, Dheemahi Child Neurology and Development Center, Shimoga, India
| | - Rajesh Kulkarni
- Department of Paediatrics, Postgraduate Institute, Yashwantrao Chavan Memorial Hospital, Pune, India
| | - Siddaramappa J Patil
- Division of Medical Genetics, Narayana Hrudayalaya Hospitals/Mazumdar-Shaw Medical Center, Bangalore, India
| | - Sheela Nampoothiri
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin, India
| | - Shahyan Siddiqui
- Department of Neuro and Vascular Interventional Radiology, Yashoda Hospitals, Hyderabad, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Shih HY, Raas Q, Bonkowsky JL. Progress in leukodystrophies with zebrafish. Dev Growth Differ 2024; 66:21-34. [PMID: 38239149 DOI: 10.1111/dgd.12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
Inherited leukodystrophies are genetic disorders characterized by abnormal white matter in the central nervous system. Although individually rare, there are more than 400 distinct types of leukodystrophies with a cumulative incidence of 1 in 4500 live births. The pathophysiology of most leukodystrophies is poorly understood, there are treatments for only a few, and there is significant morbidity and mortality, suggesting a critical need for improvements in this field. A variety of animal, cell, and induced pluripotent stem cell-derived models have been developed for leukodystrophies, but with significant limitations in all models. Many leukodystrophies lack animal models, and extant models often show no or mixed recapitulation of key phenotypes. Zebrafish (Danio rerio) have become increasingly used as disease models for studying leukodystrophies due to their early onset of disease phenotypes and conservation of molecular and neurobiological mechanisms. Here, we focus on reviewing new zebrafish disease models for leukodystrophy or models with recent progress. This includes discussion of leukodystrophy with vanishing white matter disease, X-linked adrenoleukodystrophy, Zellweger spectrum disorders and peroxisomal disorders, PSAP deficiency, metachromatic leukodystrophy, Krabbe disease, hypomyelinating leukodystrophy-8/4H leukodystrophy, Aicardi-Goutières syndrome, RNASET2-deficient cystic leukoencephalopathy, hereditary diffuse leukoencephalopathy with spheroids-1 (CSF1R-related leukoencephalopathy), and ultra-rare leukodystrophies. Zebrafish models offer important potentials for the leukodystrophy field, including testing of new variants in known genes; establishing causation of newly discovered genes; and early lead compound identification for therapies. There are also unrealized opportunities to use humanized zebrafish models which have been sparsely explored.
Collapse
Affiliation(s)
- Hung-Yu Shih
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Biological Sciences, Utah Tech University, Saint George, Utah, USA
- Center for Precision & Functional Genomics, Utah Tech University, Saint George, Utah, USA
| | - Quentin Raas
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, Université de Paris, INSERM UMR 1163, Paris, France
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Center for Personalized Medicine, Primary Children's Hospital, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Perrier S, Guerrero K, Tran LT, Michell-Robinson MA, Legault G, Brais B, Sylvain M, Dorman J, Demos M, Köhler W, Pastinen T, Thiffault I, Bernard G. Solving inherited white matter disorder etiologies in the neurology clinic: Challenges and lessons learned using next-generation sequencing. Front Neurol 2023; 14:1148377. [PMID: 37077564 PMCID: PMC10108901 DOI: 10.3389/fneur.2023.1148377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/23/2023] [Indexed: 04/05/2023] Open
Abstract
IntroductionRare neurodevelopmental disorders, including inherited white matter disorders or leukodystrophies, often present a diagnostic challenge on a genetic level given the large number of causal genes associated with a range of disease subtypes. This study aims to demonstrate the challenges and lessons learned in the genetic investigations of leukodystrophies through presentation of a series of cases solved using exome or genome sequencing.MethodsEach of the six patients had a leukodystrophy associated with hypomyelination or delayed myelination on MRI, and inconclusive clinical diagnostic genetic testing results. We performed next generation sequencing (case-based exome or genome sequencing) to further investigate the genetic cause of disease.ResultsFollowing different lines of investigation, molecular diagnoses were obtained for each case, with patients harboring pathogenic variants in a range of genes including TMEM106B, GJA1, AGA, POLR3A, and TUBB4A. We describe the lessons learned in reaching the genetic diagnosis, including the importance of (a) utilizing proper multi-gene panels in clinical testing, (b) assessing the reliability of biochemical assays in supporting diagnoses, and (c) understanding the limitations of exome sequencing methods in regard to CNV detection and region coverage in GC-rich areas.DiscussionThis study illustrates the importance of applying a collaborative diagnostic approach by combining detailed phenotyping data and metabolic results from the clinical environment with advanced next generation sequencing analysis techniques from the research environment to increase the diagnostic yield in patients with genetically unresolved leukodystrophies.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Kether Guerrero
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Luan T. Tran
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mackenzie A. Michell-Robinson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Geneviève Legault
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - Bernard Brais
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Michel Sylvain
- Division of Pediatric Neurology, Centre Mère-Enfant Soleil du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - James Dorman
- John H. Stroger Jr. Hospital of Cook County, Chicago, IL, United States
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, United States
| | - Michelle Demos
- Division of Neurology, Department of Pediatrics, University of British Columbia, BC Children's Hospital, Vancouver, BC, Canada
| | - Wolfgang Köhler
- Leukodystrophy Center, University of Leipzig Medical Center, Leipzig, Germany
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, United States
- University of Missouri Kansas City School of Medicine, Kansas City, MO, United States
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, United States
- University of Missouri Kansas City School of Medicine, Kansas City, MO, United States
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, United States
- Isabelle Thiffault
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- *Correspondence: Geneviève Bernard
| |
Collapse
|
4
|
Lanciotti A, Brignone MS, Macioce P, Visentin S, Ambrosini E. Human iPSC-Derived Astrocytes: A Powerful Tool to Study Primary Astrocyte Dysfunction in the Pathogenesis of Rare Leukodystrophies. Int J Mol Sci 2021; 23:ijms23010274. [PMID: 35008700 PMCID: PMC8745131 DOI: 10.3390/ijms23010274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are very versatile cells, endowed with multitasking capacities to ensure brain homeostasis maintenance from brain development to adult life. It has become increasingly evident that astrocytes play a central role in many central nervous system pathologies, not only as regulators of defensive responses against brain insults but also as primary culprits of the disease onset and progression. This is particularly evident in some rare leukodystrophies (LDs) where white matter/myelin deterioration is due to primary astrocyte dysfunctions. Understanding the molecular defects causing these LDs may help clarify astrocyte contribution to myelin formation/maintenance and favor the identification of possible therapeutic targets for LDs and other CNS demyelinating diseases. To date, the pathogenic mechanisms of these LDs are poorly known due to the rarity of the pathological tissue and the failure of the animal models to fully recapitulate the human diseases. Thus, the development of human induced pluripotent stem cells (hiPSC) from patient fibroblasts and their differentiation into astrocytes is a promising approach to overcome these issues. In this review, we discuss the primary role of astrocytes in LD pathogenesis, the experimental models currently available and the advantages, future evolutions, perspectives, and limitations of hiPSC to study pathologies implying astrocyte dysfunctions.
Collapse
Affiliation(s)
- Angela Lanciotti
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Maria Stefania Brignone
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Pompeo Macioce
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Sergio Visentin
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00169 Rome, Italy;
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
- Correspondence: ; Tel.: +39-064-990-2037
| |
Collapse
|
5
|
The Role of White Matter Dysfunction and Leukoencephalopathy/Leukodystrophy Genes in the Aetiology of Frontotemporal Dementias: Implications for Novel Approaches to Therapeutics. Int J Mol Sci 2021; 22:ijms22052541. [PMID: 33802612 PMCID: PMC7961524 DOI: 10.3390/ijms22052541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Frontotemporal dementia (FTD) is a common cause of presenile dementia and is characterized by behavioural and/or language changes and progressive cognitive deficits. Genetics is an important component in the aetiology of FTD, with positive family history of dementia reported for 40% of cases. This review synthesizes current knowledge of the known major FTD genes, including C9orf72 (chromosome 9 open reading frame 72), MAPT (microtubule-associated protein tau) and GRN (granulin), and their impact on neuronal and glial pathology. Further, evidence for white matter dysfunction in the aetiology of FTD and the clinical, neuroimaging and genetic overlap between FTD and leukodystrophy/leukoencephalopathy are discussed. The review highlights the role of common variants and mutations in genes such as CSF1R (colony-stimulating factor 1 receptor), CYP27A1 (cytochrome P450 family 27 subfamily A member 1), TREM2 (triggering receptor expressed on myeloid cells 2) and TMEM106B (transmembrane protein 106B) that play an integral role in microglia and oligodendrocyte function. Finally, pharmacological and non-pharmacological approaches for enhancing remyelination are discussed in terms of future treatments of FTD.
Collapse
|
6
|
Urbik VM, Schmiedel M, Soderholm H, Bonkowsky JL. Author's Response to "Classifying Hypomyelination: A Critical (white) Matter" From Perrier et al.: regarding Expanded Phenotypic Definition Identifies Hundreds of Potential Causative Genes for Leukodystrophies and Leukoencephalopathies. Child Neurol Open 2021; 7:2329048X20983756. [PMID: 33490303 PMCID: PMC7768826 DOI: 10.1177/2329048x20983756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | | | - Haille Soderholm
- Geisel School of Medicine, Dartmouth University, Hanover, NH, USA.,Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Joshua L Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Brain and Spine Center, Primary Children's Hospital, Salt Lake City, UT, USA.,Primary Children's Center for Personalized Medicine, Salt Lake City, UT, USA
| |
Collapse
|
7
|
Perrier S, Matovic S, Bernard G. Classifying Hypomyelination: A Critical (White) Matter. Child Neurol Open 2021; 7:2329048X20983761. [PMID: 33490304 PMCID: PMC7768829 DOI: 10.1177/2329048x20983761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Sara Matovic
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Pediatrics and Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Pediatrics and Department of Human Genetics, McGill University, Montréal, Québec, Canada.,Department of Specialized Medicine, Division of Medical Genetics, Montreal Children's Hospital and McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
8
|
Soderholm HE, Chapin AB, Bayrak-Toydemir P, Bonkowsky JL. Elevated Leukodystrophy Incidence Predicted From Genomics Databases. Pediatr Neurol 2020; 111:66-69. [PMID: 32951664 PMCID: PMC7506144 DOI: 10.1016/j.pediatrneurol.2020.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Leukodystrophies are genetic diseases affecting the white matter and leading to early death. Our objective was to determine leukodystrophy incidence, using genomics sequencing databases allele frequencies of disease-causing variants. METHODS From 49 genes, representing the standardly defined group of leukodystrophies, we identified potential disease-causing variants from publications in the Human Genetic Mutation Database and from predictions in the Genome Aggregation Database. Allele frequencies were estimated from Genome Aggregation Database. Allele frequencies for each gene were summed to generate a super allele frequency and we used the Hardy-Weinberg equation to calculate overall expected live birth incidence associated with the gene in question. RESULTS We identified 4564 pathogenic variants for 25 discrete leukodystrophies. The largest effect was from GALC variants (Krabbe disease), which had a predicted incidence of one in 12,080 live births, 8.3 times higher than published estimates. The second most frequently predicted leukodystrophy was the RNA polymerase III-related disorders, which had an incidence of 1:26,160. Overall, we found a leukodystrophy incidence of 1 in 4733 live births, significantly higher than previous estimates. CONCLUSIONS Our data are consistent with a significant underdiagnosis of leukodystrophy patients. An intriguing additional consideration is that there may be genetic modifiers that lead to weaker, absent, or adult-onset disease phenotypes.
Collapse
Affiliation(s)
- Haille E. Soderholm
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Alexander B. Chapin
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Pinar Bayrak-Toydemir
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Joshua L. Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah,Brain and Spine Center, Primary Children’s Hospital, Salt Lake City, Utah,Primary Children’s Center for Personalized Medicine, Salt Lake City Utah,Address correspondence to: Josh Bonkowsky, Department of Pediatrics, 295 Chipeta Way/Williams Building, Salt Lake City, Utah 84108, , Phone: 801-581-6756, Fax: 801-581-4233
| |
Collapse
|