1
|
Modrau B, Winder A, Hjort N, Nygård Johansen M, Andersen G, Fiehler J, Vorum H, Forkert ND. Perfusion Changes in Acute Stroke Treated with Theophylline as an Add-on to Thrombolysis : A Randomized Clinical Trial Subgroup Analysis. Clin Neuroradiol 2021; 32:345-352. [PMID: 34259904 PMCID: PMC9187573 DOI: 10.1007/s00062-021-01029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/28/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Theophylline has been suggested to have a neuroprotective effect in ischemic stroke; however, results from animal stroke models and clinical trials in humans are controversial. The aim of this study was to assess the effect of theophylline on the cerebral perfusion with multiparametric magnetic resonance imaging (MRI). METHODS The relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), and relative mean transit time (rMTT) in the infarct core, penumbra, and unaffected tissue were measured using multi-parametric MRI at baseline and 3‑h follow-up in patients treated with theophylline or placebo as an add-on to thrombolytic therapy. RESULTS No significant differences in mean rCBF, rCBV, and rMTT was found in the penumbra and unaffected tissue between the theophylline group and the control group between baseline and 3‑h follow-up. In the infarct core, mean rCBV increased on average by 0.05 in the theophylline group and decreased by 0.14 in the control group (p < 0.04). Mean rCBF and mean rMTT in the infarct core were similar between the two treatment groups. CONCLUSION The results indicate that theophylline does not change the perfusion in potentially salvageable penumbral tissue but only affects the rCBV in the infarct core. In contrast to the penumbra, the infarct core is unlikely to be salvageable, which might explain why theophylline failed in clinical trials.
Collapse
Affiliation(s)
- Boris Modrau
- Department of Neurology, Aalborg University Hospital, Postbox 561, 9100, Aalborg, Denmark.
| | - Anthony Winder
- Departments of Radiology & Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Niels Hjort
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Grethe Andersen
- Department of Neurology and Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Nils D Forkert
- Departments of Radiology & Clinical Neurosciences, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Modrau B, Winder A, Hjort N, Johansen MN, Andersen G, Fiehler J, Vorum H, Forkert ND. Machine Learning-Based Prediction of Brain Tissue Infarction in Patients With Acute Ischemic Stroke Treated With Theophylline as an Add-On to Thrombolytic Therapy: A Randomized Clinical Trial Subgroup Analysis. Front Neurol 2021; 12:613029. [PMID: 34093387 PMCID: PMC8175622 DOI: 10.3389/fneur.2021.613029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/19/2021] [Indexed: 12/03/2022] Open
Abstract
Background and Purpose: The theophylline in acute ischemic stroke trial investigated the neuroprotective effect of theophylline as an add-on to thrombolytic therapy in patients with acute ischemic stroke. The aim of this pre-planned subgroup analysis was to use predictive modeling to virtually test for differences in the follow-up lesion volumes. Materials and Methods: A subgroup of 52 patients from the theophylline in acute ischemic stroke trial with multi-parametric MRI data acquired at baseline and at 24-h follow-up were analyzed. A machine learning model using voxel-by-voxel information from diffusion- and perfusion-weighted MRI and clinical parameters was used to predict the infarct volume for each individual patient and both treatment arms. After training of the two predictive models, two virtual lesion outcomes were available for each patient, one lesion predicted for theophylline treatment and one lesion predicted for placebo treatment. Results: The mean predicted volume of follow-up lesions was 11.4 ml (standard deviation 18.7) for patients virtually treated with theophylline and 11.2 ml (standard deviation 17.3) for patients virtually treated with placebo (p = 0.86). Conclusions: The predicted follow-up brain lesions for each patient were not significantly different for patients virtually treated with theophylline or placebo, as an add-on to thrombolytic therapy. Thus, this study confirmed the lack of neuroprotective effect of theophylline shown in the main clinical trial and is contrary to the results from preclinical stroke models.
Collapse
Affiliation(s)
- Boris Modrau
- Department of Neurology, Aalborg University Hospital, Aalborg, Denmark
| | - Anthony Winder
- Departments of Radiology & Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Niels Hjort
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Grethe Andersen
- Department of Neurology and Clinical Medicine, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Nils D Forkert
- Departments of Radiology & Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Modrau B, Andersen G, Mikkelsen IK, Nielsen A, Hansen MB, Johansen MB, Eskildsen HW, Povlsen JP, Yavarian Y, Mouridsen K, Østergaard L, Bach FW, Hjort N. Theophylline as an Add-On to Thrombolytic Therapy in Acute Ischemic Stroke: A Randomized Placebo-Controlled Trial. Stroke 2020; 51:1983-1990. [PMID: 32568651 DOI: 10.1161/strokeaha.119.027446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Delayed recanalization increases the risk of infarct growth and poor clinical outcome in acute ischemic stroke. The vasoactive agent theophylline has shown neuroprotective effects in animal stroke models but inconclusive results in case series and randomized clinical trials. The primary objective of this study was to evaluate whether theophylline, as an add-on to thrombolytic therapy, is safe and effective in acute ischemic stroke patients. METHODS The TEA-Stroke trial (The Theophylline in Acute Ischemic Stroke) was an investigator-initiated 2-center, proof-of-concept, phase II clinical study with a randomized, double-blinded, placebo-controlled design. The main inclusion criteria were magnetic resonance imaging-verified acute ischemic stroke, moderate to severe neurological deficit (National Institutes of Health Stroke Scale score of ≥4), and treatment with thrombolysis within 4.5 hours of onset. Participants were randomly assigned in the ratio 1:1 to either 220 mg of intravenous theophylline or placebo. The co-primary outcomes were early clinical improvement on the National Institutes of Health Stroke Scale score and infarct growth on magnetic resonance imaging at 24-hour follow-up. RESULTS Theophylline as an add-on to thrombolytic therapy improved the National Institutes of Health Stroke Scale score at 24 hours by mean 4.7 points (SD, 5.6) compared with an improvement of 1.3 points (SD, 7.5) in the control group (P=0.044). Mean infarct growth was 141.6% (SD, 126.5) and 104.1% (SD, 62.5) in the theophylline and control groups, respectively (P=0.146). Functional independence at 90 days was 61% in the theophylline group and 58% in the control group (P=0.802). CONCLUSIONS This proof-of-concept trial investigated theophylline administration as an add-on to thrombolytic therapy in acute ischemic stroke. The co-primary end points early clinical improvement and infarct growth at 24-hour follow-up were not significantly different after post hoc correction for multiplicity (Bonferroni technique). The small study size precludes a conclusion as to whether theophylline has a neuroprotective effect but provides a promising clinical signal that may support a future clinical trial. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: EudraCT number 2013-001989-42.
Collapse
Affiliation(s)
- Boris Modrau
- Departments of Neurology (B.M., F.W.B.), Aalborg University Hospital, Denmark
| | - Grethe Andersen
- Departments of Neurology (G.A., N.H.), Aarhus University Hospital, Denmark
| | - Irene Klærke Mikkelsen
- Centre of Functionally Integrative Neuroscience, Aarhus University, Denmark (I.K.M., A.N., M.B.H., K.M., L.Ø.)
| | - Anne Nielsen
- Centre of Functionally Integrative Neuroscience, Aarhus University, Denmark (I.K.M., A.N., M.B.H., K.M., L.Ø.)
| | - Mikkel Bo Hansen
- Centre of Functionally Integrative Neuroscience, Aarhus University, Denmark (I.K.M., A.N., M.B.H., K.M., L.Ø.)
| | | | | | | | - Yousef Yavarian
- Neuroradiology (H.W.E., J.P.P., Y.Y.), Aalborg University Hospital, Denmark
| | - Kim Mouridsen
- Centre of Functionally Integrative Neuroscience, Aarhus University, Denmark (I.K.M., A.N., M.B.H., K.M., L.Ø.)
| | - Leif Østergaard
- Neuroradiology (L.Ø.), Aarhus University Hospital, Denmark.,Centre of Functionally Integrative Neuroscience, Aarhus University, Denmark (I.K.M., A.N., M.B.H., K.M., L.Ø.)
| | | | - Niels Hjort
- Departments of Neurology (G.A., N.H.), Aarhus University Hospital, Denmark
| |
Collapse
|
4
|
Yasmeen S, Akram BH, Hainsworth AH, Kruuse C. Cyclic nucleotide phosphodiesterases (PDEs) and endothelial function in ischaemic stroke. A review. Cell Signal 2019; 61:108-119. [PMID: 31132399 DOI: 10.1016/j.cellsig.2019.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Endothelial dysfunction is a hallmark of cerebrovascular disease, including ischemic stroke. Modulating endothelial signalling by cyclic nucleotides, cAMP and cGMP, is a potential therapeutic target in stroke. Inhibitors of the cyclic nucleotide degrading phosphodiesterase (PDE) enzymes may restore cerebral endothelial function. Current knowledge on PDE distribution and function in cerebral endothelial cells is sparse. This review explores data on PDE distribution and effects of PDEi in cerebral endothelial cells and identifies which PDEs are potential treatment targets in stroke. METHOD We performed a systematic search of electronic databases (Medline and Embase). Our search terms were cerebral ischaemia, cerebral endothelial cells, cyclic nucleotide, phosphodiesterase and phosphodiesterase inhibitors. RESULTS We found 23 publications which described effects of selective inhibitors of only three PDE families on endothelial function in ischemic stroke. PDE3 inhibitors (PDE3i) (11 publications) and PDE4 inhibitors (PDE4i) (3 publications) showed anti-inflammatory, anti-apoptotic or pro-angiogenic effects. PDE3i also reduced leucocyte infiltration and MMP-9 expression. Both PDE3i and PDE4i increased expression of tight junction proteins and protected the blood-brain barrier. PDE5 inhibitors (PDE5i) (6 publications) reduced inflammation and apoptosis. In preclinical models, PDE5i enhanced cGMP/NO signalling associated with microvascular angiogenesis, increased cerebral blood flow and improved functional recovery. Non-specific PDEi (3 publications) had mainly anti-inflammatory effects. CONCLUSION This review demonstrates that non-selective and selective PDEi of PDE3, PDE4 and PDE5 modulated endothelial function in cerebral ischemic stroke by regulating processes involved in vascular repair and neuroprotection and thus reduced cell death and inflammation. Of note, they promoted angiogenesis, microcirculation and improved functional recovery; all are important in stroke prevention and recovery, and effects should be further evaluated in humans.
Collapse
Affiliation(s)
- Saiqa Yasmeen
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bilal Hussain Akram
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Atticus H Hainsworth
- Clinical Neuroscience, Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Christina Kruuse
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|