1
|
Cho BPH, Auckland K, Gräf S, Markus HS. Rare Sequence Variation Underlying Suspected Familial Cerebral Small-Vessel Disease. J Am Heart Assoc 2024; 13:e035771. [PMID: 39082428 DOI: 10.1161/jaha.123.035771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Cerebral small-vessel disease (cSVD) is the leading monogenic cause of stroke. Despite genetic screening in routine diagnosis, many cases remain without a known causative variant. Using a cohort with suspected familial cSVD and whole-genome sequencing, we screened for variants in genes associated with monogenic cSVD and searched for novel variants associated with the disease. METHODS AND RESULTS Rare variants were identified in whole-genome sequencing data from the NBR (National Institute for Health Research BioResource Rare Disease) study. Pathogenic variants in known monogenic cSVD genes were identified. Gene-based burden tests and family analysis were performed to identify novel variants associated with familial cSVD. A total of 257 suspected cSVD cases (mean ± SD age, 56.2 ± 16.1 years), and 13 086 controls with other nonstroke diseases (5874 [44.9%] men) were studied. A total of 8.9% of the cases carried a variant in known cSVD genes. Excluding these known causes, 23.6% of unrelated subjects with cSVD carried predicted deleterious variants in the Genomics England gene panel, but no association was found with cSVD in burden tests. We identified potential associations with cSVD in noncoding genes, including RP4-568F9.3 (adjusted P = 7.1 × 10-25), RP3-466I7.1 (adjusted P = 8.9 × 10-16), and ZNF209P (adjusted P = 1.0 × 10-15), and matrisomal genes (adjusted P = 5.1 × 10-6), including FAM20C, INHA, LAMC1, and VWA5B2. CONCLUSIONS Predicted deleterious variants in known cSVD genes were present in 23.6% of unrelated cases with cSVD, but none of the genes were associated with the disease. Rare variants in noncoding and matrisomal genes could potentially contribute to cSVD development. These genes could play a role in tissue development and brain endothelial cell function. However, further studies are needed to confirm their pathophysiological roles.
Collapse
Affiliation(s)
- Bernard P H Cho
- Stroke Research Group Department of Clinical Neurosciences University of Cambridge Cambridge UK
| | - Kate Auckland
- Department of Medicine University of Cambridge Victor Phillip Dahdaleh Heart and Lung Research Institute Cambridge UK
| | - Stefan Gräf
- Department of Medicine University of Cambridge Victor Phillip Dahdaleh Heart and Lung Research Institute Cambridge UK
| | - Hugh S Markus
- Stroke Research Group Department of Clinical Neurosciences University of Cambridge Cambridge UK
| |
Collapse
|
2
|
Aloui C, Neumann L, Bergametti F, Sartori E, Herbreteau M, Maillard A, Coste T, Morel H, Hervé D, Chabriat H, Timsit S, Viakhireva I, Denoyer Y, Allibert R, Demurger F, Gollion C, Vermersch P, Marchelli F, Blugeon C, Lemoine S, Tourtier-Bellosta C, Brouazin A, Leutenegger AL, Pipiras E, Tournier-Lasserve E. An AluYa5 Insertion in the 3'UTR of COL4A1 and Cerebral Small Vessel Disease. JAMA Netw Open 2024; 7:e247034. [PMID: 38630472 PMCID: PMC11024774 DOI: 10.1001/jamanetworkopen.2024.7034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 04/19/2024] Open
Abstract
Importance Cerebral small vessel diseases (CSVDs) account for one-fifth of stroke cases. Numerous familial cases remain unresolved after routine screening of known CSVD genes. Objective To identify novel genes and mechanisms associated with familial CSVD. Design, Setting, and Participants This 2-stage study involved linkage analysis and a case-control study; linkage analysis and whole exome and genome sequencing were used to identify candidate gene variants in 2 large families with CSVD (9 patients with CSVD). Then, a case-control analysis was conducted on 246 unrelated probands, including probands from these 2 families and 244 additional probands. All probands (clinical onset Main Outcomes and Measures A pathogenic AluYa5 insertion was identified within the COL4A1 3'UTR in the 2 large families with CSVD. Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), Western blot, and long-read RNA sequencing were used to investigate outcomes associated with the insertion using patient fibroblasts. Clinical and magnetic resonance imaging features of probands with variants and available relatives were assessed. Results Among 246 probands (141 females [57.3%]; median [IQR] age at referral, 56 [49-64] years), 7 patients of French ancestry carried the insertion. This insertion was absent in 467 healthy French individuals in a control group (odds ratio, ∞; 95% CI, 2.78 to ∞; P = 5 × 10-4) and 10 847 individuals from the gnomAD structural variant database (odds ratio, ∞; 95% CI, 64.77 to ∞; P = 2.42 × 10-12). In these 7 patients' families, 19 family members with CSVD carried the insertion. RT-qPCR and Western blot showed an upregulation of COL4A1 mRNA (10.6-fold increase; 95% CI, 1.4-fold to 17.1-fold increase) and protein levels (2.8-fold increase; 95% CI, 2.1-fold to 3.5-fold increase) in patient vs control group fibroblasts. Long-read RNA sequencing data showed that the insertion was associated with perturbation in the use of canonical COL4A1 polyadenylation signals (approximately 87% of isoforms transcribed from the wild type allele vs 5% of isoforms transcribed from the allele with the insertion used the 2 distal canonical polyadenylation signals). The main clinical feature of individuals with CSVD was the recurrence of pontine ischemic lesions starting at an early age (17 of 19 patients [89.5%]). Conclusions and relevance This study found a novel mechanism associated with COL4A1 upregulation and a highly penetrant adult-onset CSVD. These findings suggest that quantitative alterations of the cerebrovascular matrisome are associated with CSVD pathogenesis, with diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Chaker Aloui
- NeuroDiderot, Université Paris Cité, Institut National de la Santé Et de la Recherche Médicale, Unité Mixte de Recherche 1141, Paris, France
| | - Lisa Neumann
- NeuroDiderot, Université Paris Cité, Institut National de la Santé Et de la Recherche Médicale, Unité Mixte de Recherche 1141, Paris, France
| | - Françoise Bergametti
- NeuroDiderot, Université Paris Cité, Institut National de la Santé Et de la Recherche Médicale, Unité Mixte de Recherche 1141, Paris, France
| | - Eric Sartori
- Service de Neurologie, Centre Hospitalier Bretagne Sud, Lorient, France
| | - Marc Herbreteau
- Service de Neurologie, Centre Hospitalier Bretagne Sud, Lorient, France
| | - Arnaud Maillard
- Assistance Publique-Hôpitaux de Paris, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
| | - Thibault Coste
- NeuroDiderot, Université Paris Cité, Institut National de la Santé Et de la Recherche Médicale, Unité Mixte de Recherche 1141, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
| | - Hélène Morel
- NeuroDiderot, Université Paris Cité, Institut National de la Santé Et de la Recherche Médicale, Unité Mixte de Recherche 1141, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
| | - Dominique Hervé
- NeuroDiderot, Université Paris Cité, Institut National de la Santé Et de la Recherche Médicale, Unité Mixte de Recherche 1141, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de Neurologie, Hôpital Lariboisière, Paris, France
| | - Hugues Chabriat
- NeuroDiderot, Université Paris Cité, Institut National de la Santé Et de la Recherche Médicale, Unité Mixte de Recherche 1141, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de Neurologie, Hôpital Lariboisière, Paris, France
| | - Serge Timsit
- Service de Neurologie Vasculaire, Centre Hospitalier Régional Universitaire de Brest, Brest, France
| | - Irina Viakhireva
- Service de Neurologie Vasculaire, Centre Hospitalier Régional Universitaire de Brest, Brest, France
| | - Yves Denoyer
- Service de Neurologie, Centre Hospitalier Bretagne Sud, Lorient, France
- Université de Rennes, Laboratoire Traitement du Signal et de l'Image, Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche 1099, Rennes, France
| | - Rémi Allibert
- Service de Neurologie, Unité Neurovasculaire, Centre Hospitalier Universitaire de Saint Etienne, Saint Etienne, France
| | - Florence Demurger
- Service de Neurologie, Unité Neurovasculaire, Centre Hospitalier Bretagne Atlantique, Vannes, France
| | - Cedric Gollion
- Service de Neurologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Patrick Vermersch
- Univ. Lille, Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche 1172 LilNCog, Centre Hospitalier Universitaire Lille, Fédérations Hospitalo-Universitaire Precise, Lille, France
| | - Florence Marchelli
- Assistance Publique-Hôpitaux de Paris, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
| | - Corinne Blugeon
- GenomiqueENS, Institut de Biologie de l’Ecole Normale Supérieur, Département de biologie, École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé Et de la Recherche Médicale, Université Paris Sciences et Lettres, Paris, France
| | - Sophie Lemoine
- GenomiqueENS, Institut de Biologie de l’Ecole Normale Supérieur, Département de biologie, École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé Et de la Recherche Médicale, Université Paris Sciences et Lettres, Paris, France
| | | | - Alexis Brouazin
- Service de neurologie, Centre Hospitalier de Cornouaille, Quimper, France
| | - Anne-Louise Leutenegger
- NeuroDiderot, Université Paris Cité, Institut National de la Santé Et de la Recherche Médicale, Unité Mixte de Recherche 1141, Paris, France
| | - Eva Pipiras
- NeuroDiderot, Université Paris Cité, Institut National de la Santé Et de la Recherche Médicale, Unité Mixte de Recherche 1141, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Jean Verdier et Armand Trousseau, Université Sorbonne Paris Nord, Bobigny, France
| | - Elisabeth Tournier-Lasserve
- NeuroDiderot, Université Paris Cité, Institut National de la Santé Et de la Recherche Médicale, Unité Mixte de Recherche 1141, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
3
|
Guey S, Chabriat H. Monogenic causes of cerebral small vessel disease and stroke. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:273-287. [PMID: 39322384 DOI: 10.1016/b978-0-323-99209-1.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Cerebral small vessel disease (cSVDs) account for 25% of stroke and are a frequent cause of cognitive or motor disability in adults. In a small number of patients, cSVDs result from monogenic diseases, the most frequent being cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). An early disease onset, a suggestive family history, and a low vascular risk profile contrasting with a high load of cSVD imaging markers represent red flags that must trigger molecular screening. To date, a dozen of genes is involved in Mendelian cSVDs, most of them are responsible for autosomal dominant conditions of variable penetrance. Some of these mendelian cSVDs (CADASIL, HTRA1-related cSVD, pontine autosomal dominant microangiopathy and leukoencephalopathy (PADMAL), cathepsin-A related arteriopathy with strokes and leukoencephalopathy (CARASAL), and cSVD related to LAMB1 mutations) are causing ischemic stroke. Others (COL4A1/COL4A2-related angiopathy and hereditary cerebral amyloid angiopathy) preferentially lead to intracerebral hemorrhages. The clinical features of different Mendelian cSVDs can overlap. Therefore, the current approach is based on simultaneous screening of all genes involved in these conditions through a panel-targeted sequencing gene or exome sequencing. Nevertheless, a pathogenic variant is identified in less than 15% of patients with a suspected genetic cerebrovascular disease, suggesting that many additional genes remain to be identified.
Collapse
Affiliation(s)
- Stéphanie Guey
- Translational Centre for Neurovascular Disorders, Hôpital Lariboisière AP-HP, Paris, France; Paris-Cité University, Inserm U1141 NeuroDiderot, Paris, France.
| | - Hugues Chabriat
- Translational Centre for Neurovascular Disorders, Hôpital Lariboisière AP-HP, Paris, France; Paris-Cité University, Inserm U1141 NeuroDiderot, Paris, France
| |
Collapse
|
4
|
Aloui C, Hervé D, Marenne G, Savenier F, Le Guennec K, Bergametti F, Verdura E, Ludwig TE, Lebenberg J, Jabeur W, Morel H, Coste T, Demarquay G, Bachoumas P, Cogez J, Mathey G, Bernard E, Chabriat H, Génin E, Tournier-Lasserve E. End-Truncated LAMB1 Causes a Hippocampal Memory Defect and a Leukoencephalopathy. Ann Neurol 2021; 90:962-975. [PMID: 34606115 DOI: 10.1002/ana.26242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The majority of patients with a familial cerebral small vessel disease (CSVD) referred for molecular screening do not show pathogenic variants in known genes. In this study, we aimed to identify novel CSVD causal genes. METHODS We performed a gene-based collapsing test of rare protein-truncating variants identified in exome data of 258 unrelated CSVD patients of an ethnically matched control cohort and of 2 publicly available large-scale databases, gnomAD and TOPMed. Western blotting was used to investigate the functional consequences of variants. Clinical and magnetic resonance imaging features of mutated patients were characterized. RESULTS We showed that LAMB1 truncating variants escaping nonsense-mediated messenger RNA decay are strongly overrepresented in CSVD patients, reaching genome-wide significance (p < 5 × 10-8 ). Using 2 antibodies recognizing the N- and C-terminal parts of LAMB1, we showed that truncated forms of LAMB1 are expressed in the endogenous fibroblasts of patients and trapped in the cytosol. These variants are associated with a novel phenotype characterized by the association of a hippocampal type episodic memory defect and a diffuse vascular leukoencephalopathy. INTERPRETATION These findings are important for diagnosis and clinical care, to avoid unnecessary and sometimes invasive investigations, and also from a mechanistic point of view to understand the role of extracellular matrix proteins in neuronal homeostasis. ANN NEUROL 2021;90:962-975.
Collapse
Affiliation(s)
- Chaker Aloui
- Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
| | - Dominique Hervé
- Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France.,AP-HP, Groupe Hospitalier Saint-Louis Lariboisière-Fernand-Widal, Service de Neurologie, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Œil (CERVCO), Paris, France
| | - Gaelle Marenne
- Université de Brest, Inserm, EFS, CHU Brest, UMR 1078, GGB, Brest, France
| | - Florian Savenier
- Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
| | - Kilan Le Guennec
- Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
| | | | - Edgard Verdura
- Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
| | - Thomas E Ludwig
- Université de Brest, Inserm, EFS, CHU Brest, UMR 1078, GGB, Brest, France
| | | | - Waliyde Jabeur
- Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
| | - Hélène Morel
- Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France.,AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
| | - Thibault Coste
- Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France.,AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
| | - Geneviève Demarquay
- Hôpital Neurologique, Hospices Civils de Lyon, Lyon Neuroscience Research Center (CRNL), Brain Dynamics and Cognition Team (Dycog), INSERM U1028, CNRS UMR5292, Lyon, France
| | | | - Julien Cogez
- CHU Caen, Department of Neurology, CHU de Caen Côte de Nacre, Caen, France
| | | | - Emilien Bernard
- Department of Neurology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France.,Institut NeuroMyoGène, INSERM-CNRS-UMR, Université Claude Bernard, Lyon, France
| | | | - Hugues Chabriat
- Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France.,AP-HP, Groupe Hospitalier Saint-Louis Lariboisière-Fernand-Widal, Service de Neurologie, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Œil (CERVCO), Paris, France
| | - Emmanuelle Génin
- Université de Brest, Inserm, EFS, CHU Brest, UMR 1078, GGB, Brest, France
| | - Elisabeth Tournier-Lasserve
- Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France.,AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
| |
Collapse
|