1
|
Woeppel KM, Krahe DD, Robbins EM, Vazquez AL, Cui XT. Electrically Controlled Vasodilator Delivery from PEDOT/Silica Nanoparticle Modulates Vessel Diameter in Mouse Brain. Adv Healthc Mater 2024; 13:e2301221. [PMID: 37916912 PMCID: PMC10842908 DOI: 10.1002/adhm.202301221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Vascular damage and reduced tissue perfusion are expected to majorly contribute to the loss of neurons or neural signals around implanted electrodes. However, there are limited methods of controlling the vascular dynamics in tissues surrounding these implants. This work utilizes conducting polymer poly(ethylenedioxythiophene) and sulfonated silica nanoparticle composite (PEDOT/SNP) to load and release a vasodilator, sodium nitroprusside, to controllably dilate the vasculature around carbon fiber electrodes (CFEs) implanted in the mouse cortex. The vasodilator release is triggered via electrical stimulation and the amount of release increases with increasing electrical pulses. The vascular dynamics are monitored in real-time using two-photon microscopy, with changes in vessel diameters quantified before, during, and after the release of the vasodilator into the tissues. This work observes significant increases in vessel diameters when the vasodilator is electrically triggered to release, and differential effects of the drug release on vessels of different sizes. In conclusion, the use of nanoparticle reservoirs in conducting polymer-based drug delivery platforms enables the controlled delivery of vasodilator into the implant environment, effectively altering the local vascular dynamics on demand. With further optimization, this technology could be a powerful tool to improve the neural electrode-tissue interface and study neurovascular coupling.
Collapse
Affiliation(s)
- Kevin M Woeppel
- Department of Bioengineering, University of Pittsburgh, United States
| | - Daniela D Krahe
- Department of Bioengineering, University of Pittsburgh, United States
| | - Elaine M Robbins
- Department of Bioengineering, University of Pittsburgh, United States
| | - Alberto L Vazquez
- Department of Bioengineering, University of Pittsburgh, United States
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States
- Department of Radiology, University of Pittsburgh, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, United States
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States
| |
Collapse
|
2
|
Yogev D, Goldberg T, Arami A, Tejman-Yarden S, Winkler TE, Maoz BM. Current state of the art and future directions for implantable sensors in medical technology: Clinical needs and engineering challenges. APL Bioeng 2023; 7:031506. [PMID: 37781727 PMCID: PMC10539032 DOI: 10.1063/5.0152290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Implantable sensors have revolutionized the way we monitor biophysical and biochemical parameters by enabling real-time closed-loop intervention or therapy. These technologies align with the new era of healthcare known as healthcare 5.0, which encompasses smart disease control and detection, virtual care, intelligent health management, smart monitoring, and decision-making. This review explores the diverse biomedical applications of implantable temperature, mechanical, electrophysiological, optical, and electrochemical sensors. We delve into the engineering principles that serve as the foundation for their development. We also address the challenges faced by researchers and designers in bridging the gap between implantable sensor research and their clinical adoption by emphasizing the importance of careful consideration of clinical requirements and engineering challenges. We highlight the need for future research to explore issues such as long-term performance, biocompatibility, and power sources, as well as the potential for implantable sensors to transform healthcare across multiple disciplines. It is evident that implantable sensors have immense potential in the field of medical technology. However, the gap between research and clinical adoption remains wide, and there are still major obstacles to overcome before they can become a widely adopted part of medical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Ben M. Maoz
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
3
|
Jangwan NS, Ashraf GM, Ram V, Singh V, Alghamdi BS, Abuzenadah AM, Singh MF. Brain augmentation and neuroscience technologies: current applications, challenges, ethics and future prospects. Front Syst Neurosci 2022; 16:1000495. [PMID: 36211589 PMCID: PMC9538357 DOI: 10.3389/fnsys.2022.1000495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Ever since the dawn of antiquity, people have strived to improve their cognitive abilities. From the advent of the wheel to the development of artificial intelligence, technology has had a profound leverage on civilization. Cognitive enhancement or augmentation of brain functions has become a trending topic both in academic and public debates in improving physical and mental abilities. The last years have seen a plethora of suggestions for boosting cognitive functions and biochemical, physical, and behavioral strategies are being explored in the field of cognitive enhancement. Despite expansion of behavioral and biochemical approaches, various physical strategies are known to boost mental abilities in diseased and healthy individuals. Clinical applications of neuroscience technologies offer alternatives to pharmaceutical approaches and devices for diseases that have been fatal, so far. Importantly, the distinctive aspect of these technologies, which shapes their existing and anticipated participation in brain augmentations, is used to compare and contrast them. As a preview of the next two decades of progress in brain augmentation, this article presents a plausible estimation of the many neuroscience technologies, their virtues, demerits, and applications. The review also focuses on the ethical implications and challenges linked to modern neuroscientific technology. There are times when it looks as if ethics discussions are more concerned with the hypothetical than with the factual. We conclude by providing recommendations for potential future studies and development areas, taking into account future advancements in neuroscience innovation for brain enhancement, analyzing historical patterns, considering neuroethics and looking at other related forecasts.
Collapse
Affiliation(s)
- Nitish Singh Jangwan
- Department of Pharmacology, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Veerma Ram
- Department of Pharmacology, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, India
| | - Vinod Singh
- Prabha Harji Lal College of Pharmacy and Paraclinical Sciences, University of Jammu, Jammu, India
| | - Badrah S. Alghamdi
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel Mohammad Abuzenadah
- Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamta F. Singh
- Department of Pharmacology, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, India
| |
Collapse
|
4
|
Rybak G, Strzecha K, Krakós M. A New Digital Platform for Collecting Measurement Data from the Novel Imaging Sensors in Urology. SENSORS 2022; 22:s22041539. [PMID: 35214441 PMCID: PMC8877363 DOI: 10.3390/s22041539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/02/2022]
Abstract
The use of UT and EIT technologies gives the opportunity to develop new, effective, minimally invasive diagnostic methods for urology. The introduction of new diagnostic methods into medicine requires the development of new tools for collecting, processing and analysing the data obtained from them. Such system might be seen as a part of the electronic health record EHR system. The digital medical data management platform must provide the infrastructure that will make medical activity possible and effective in the presented scope. The solution presented in this article was implemented using the newest computer technologies to obtain advantages such as mobility, versatility, flexibility and scalability. The architecture of the developed platform, technological stack proposals, database structure and user interface are presented. In the course of this study, an analysis of known and available standards such as Hl7, RIM, DICOM, and tools for collecting medical data was performed, and the results obtained using them are also presented. The developed digital platform also falls into an innovative path of creating a network of sensors communicating with each other in the digital space, resulting in the implementation of the IoT (Internet of Things) vision. The issues of building software based on the architecture of microservices were discussed emphasizing the role of message brokers. The selected message brokers were also analysed in terms of available features and message transmission time.
Collapse
Affiliation(s)
- Grzegorz Rybak
- Institute of Applied Informatics, Lodz University of Technology, ul. Stefanowskiego 18/22, 90-537 Łódź, Poland;
- Correspondence:
| | - Krzysztof Strzecha
- Institute of Applied Informatics, Lodz University of Technology, ul. Stefanowskiego 18/22, 90-537 Łódź, Poland;
| | - Marek Krakós
- Department of Pediatric Surgery and Urology, Hospital of J. Korczak in Łódź, 71 Piłsdskiego Av., 90-329 Łódź, Poland;
| |
Collapse
|
5
|
Abstract
This paper explores the impact that developments in the field of neuroprosthetics will have on the ethical viability of healthy limb amputation, specifically in cases of Body Integrity Identity Disorder (BIID). Developments in the field have meant that the prospect of such artificial components matching the utility of their biological counterparts is now a possibility. As such, arguments against the provision of therapeutic, healthy limb amputation, which are grounded in the perceived resultant harm of disability, need to be reconsidered. Drawing on philosophical insights, as well as the field of disability studies and BIID research, this paper argues that such neuroprosthetics presents a challenge for the fundamental dichotomy between the disabled and non-disabled, including the latter's perceived superiority. It goes on to suggest that healthy limb amputation, for those with BIID, should not be dismissed simply because of the distastefulness of the procedure, but rather be evaluated based upon its own merits.
Collapse
Affiliation(s)
- Richard B Gibson
- The Centre for Social Ethics and Policy, The University of Manchester Law School, Manchester, UK
| |
Collapse
|
6
|
Locsin RC, Pepito JA, Juntasopeepun P, Constantino RE. Transcending human frailties with technological enhancements and replacements: Transhumanist perspective in nursing and healthcare. Nurs Inq 2020; 28:e12391. [PMID: 33159824 DOI: 10.1111/nin.12391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
As human beings age, they become weak, fragile, and feeble. It is a slowly progressing yet complex syndrome in which old age or some disabilities are not prerequisites; neither does loss of human parts lead to frailty among the physically fit older persons. This paper aims to describe the influences of transhumanist perspectives on human-technology enhancements and replacements in the transcendence of human frailties, including those of older persons, in which technology is projected to deliver solutions toward transcending these frailties. Through technologies including genetic screening and other technological manipulations, intelligent machines and augmented humans improve, maintain, and remedy human-linked susceptibilities. Furthermore, other technologies replace parts fabricated through inorganic-mechanical processes such as 3D-printing. Advancing technologies are reaching the summit of technological sophistication contributing to the transhumanist views of being human in a technological world. Technologies enhance the transcendence of human frailties as essential expressions of the symbiosis between human beings and technology in a transcendental world.
Collapse
Affiliation(s)
- Rozzano C Locsin
- Department of Nursing, Faculty of Nursing, Chiang Mai University, Chiang Mai, Thailand.,Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.,Florida Atlantic University, Christine E. Lynn College of Nursing, Boca Raton, FL, USA
| | - Joseph Andrew Pepito
- College of Allied Medical Sciences, Cebu Doctors' University, Cebu City, Philippines
| | - Phanida Juntasopeepun
- Department of Policy, Planning, and IT Management, Faculty of Nursing, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|