1
|
Fidilio A, Grasso M, Caruso G, Musso N, Begni V, Privitera A, Torrisi SA, Campolongo P, Schiavone S, Tascedda F, Leggio GM, Drago F, Riva MA, Caraci F. Prenatal stress induces a depressive-like phenotype in adolescent rats: The key role of TGF-β1 pathway. Front Pharmacol 2022; 13:1075746. [DOI: 10.3389/fphar.2022.1075746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Stressful experiences early in life, especially in the prenatal period, can increase the risk to develop depression during adolescence. However, there may be important qualitative and quantitative differences in outcome of prenatal stress (PNS), where some individuals exposed to PNS are vulnerable and develop a depressive-like phenotype, while others appear to be resilient. PNS exposure, a well-established rat model of early life stress, is known to increase vulnerability to depression and a recent study demonstrated a strong interaction between transforming growth factor-β1 (TGF-β1) gene and PNS in the pathogenesis of depression. Moreover, it is well-known that the exposure to early life stress experiences induces brain oxidative damage by increasing nitric oxide levels and decreasing antioxidant factors. In the present work, we examined the role of TGF-β1 pathway in an animal model of adolescent depression induced by PNS obtained by exposing pregnant females to a stressful condition during the last week of gestation. We performed behavioral tests to identify vulnerable or resilient subjects in the obtained litters (postnatal day, PND > 35) and we carried out molecular analyses on hippocampus, a brain area with a key role in the pathogenesis of depression. We found that female, but not male, PNS adolescent rats exhibited a depressive-like behavior in forced swim test (FST), whereas both male and female PNS rats showed a deficit of recognition memory as assessed by novel object recognition test (NOR). Interestingly, we found an increased expression of type 2 TGF-β1 receptor (TGFβ-R2) in the hippocampus of both male and female resilient PNS rats, with higher plasma TGF-β1 levels in male, but not in female, PNS rats. Furthermore, PNS induced the activation of oxidative stress pathways by increasing inducible nitric oxide synthase (iNOS), NADPH oxidase 1 (NOX1) and NOX2 levels in the hippocampus of both male and female PNS adolescent rats. Our data suggest that high levels of TGF-β1 and its receptor TGFβ-R2 can significantly increase the resiliency of adolescent rats to PNS, suggesting that TGF-β1 pathway might represent a novel pharmacological target to prevent adolescent depression in rats.
Collapse
|
2
|
Álvarez SA, Rocha-Guzmán NE, González-Laredo RF, Gallegos-Infante JA, Moreno-Jiménez MR, Bravo-Muñoz M. Ancestral Food Sources Rich in Polyphenols, Their Metabolism, and the Potential Influence of Gut Microbiota in the Management of Depression and Anxiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:944-956. [PMID: 35041424 DOI: 10.1021/acs.jafc.1c06151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The relationship between a population's diet and the risk of suffering from mental disorders has gained importance in recent years, becoming exacerbated due to the COVID-19 lockdown. This review concentrates relevant literature from Scopus, PubMed, and Google Scholar analyzed with the aim of rescuing knowledge that promotes mental health. In this context, it is important to highlight those flowers, seeds, herbaceous plants, fungi, leaves, and tree barks, among other ancestral matrices, that have been historically part of the eating habits of human beings and have also been a consequence of the adaptation of collectors, consuming the ethnoflora present in different ecosystems. Likewise, it is important to note that this knowledge has been progressively lost in the new generations. Therefore, this review concentrates an important number of matrices used particularly for food and medicinal purposes, recognized for their anxiolytic and antidepressant effects, establishing the importance of metabolism and biotransformation mainly of bioactive compounds such as polyphenols by the action of the gut microbiota.
Collapse
Affiliation(s)
- Saúl Alberto Álvarez
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Durango, México
| | - Nuria Elizabeth Rocha-Guzmán
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Durango, México
| | - Rubén Francisco González-Laredo
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Durango, México
| | - José Alberto Gallegos-Infante
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Durango, México
| | - Martha Rocío Moreno-Jiménez
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Durango, México
| | - Marely Bravo-Muñoz
- Instituo Nacional de Neurociencias y Salud Mental, INNSAM, 21831 Chiapas, México
| |
Collapse
|
3
|
Seralini GE, Jungers G. Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors (ENDs). Toxicol Rep 2021; 8:1538-1557. [PMID: 34430217 PMCID: PMC8365328 DOI: 10.1016/j.toxrep.2021.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Endocrine disruption (ED) and endocrine disruptors (EDs) emerged as scientific concepts in 1995, after numerous chemical pollutants were found to be responsible for reproductive dysfunction. The World Health Organization established in the United Nations Environment Programme a list of materials, plasticizers, pesticides, and various pollutants synthesized from petrochemistry that impact not only reproduction, but also hormonal functions, directly or indirectly. Cells communicate via either chemical or electrical signals transmitted within the endocrine or nervous systems. To investigate whether hormone disruptors may also interfere directly or indirectly with the development or functioning of the nervous system through either a neuroendocrine or a more general mechanism, we examined the scientific literature to ascertain the effects of EDs on the nervous system, specifically in the categories of neurotoxicity, cognition, and behaviour. To date, we demonstrated that all of the 177 EDs identified internationally by WHO are known to have an impact on the nervous system. Furthermore, the precise mechanisms underlying this neurodisruption have also been established. It was previously believed that EDs primarily function via the thyroid. However, this study presents substantial evidence that approximately 80 % of EDs operate via other mechanisms. It thus outlines a novel concept: EDs are also neurodisruptors (NDs) and can be collectively termed endocrine and nervous disruptors (ENDs). Most of ENDs are derived from petroleum residues, and their various mechanisms of action are similar to those of "spam" in electronic communications technologies. Therefore, ENDs can be considered as an instance of spam in a biological context.
Collapse
Affiliation(s)
- Gilles-Eric Seralini
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| | - Gerald Jungers
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| |
Collapse
|
4
|
Niu L, Chen Q, Hua C, Geng Y, Cai L, Tao S, Ni Y, Zhao R. Effects of chronic dexamethasone administration on hyperglycemia and insulin release in goats. J Anim Sci Biotechnol 2018; 9:26. [PMID: 29568520 PMCID: PMC5855938 DOI: 10.1186/s40104-018-0242-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/01/2018] [Indexed: 11/10/2022] Open
Abstract
Background Dexamethasone (Dex), a synthetic glucocorticoid, is among the most commonly used drugs worldwide in animals and humans as an anti-inflammatory and immunosuppressive agent. GC has profound effects on plasma glucose level and other metabolic conditions. However, the effect of prolonged use of Dex on glucose metabolism in ruminants is still unclear. Results Ten goats were randomly assigned to two groups: the control goats were injected with saline, and the Dex-treated goats were intramuscularly injected daily for 21 d with 0.2 mg/kg Dex. The results showed that plasma glucose and insulin concentrations were significantly increased after Dex administration (P < 0.05). Additionally, the content of hepatic glycogen was also markedly increased in Dex-treated goats (P < 0.01), while the content of glycogen in dorsal longissimus was unchanged by Dex (P > 0.05). The expression of several key genes, involved in blood glucose regulation, was detected by real-time PCR in the small intestine, skeletal muscle and liver. The expression of glucose transporter type 2 (GLUT2), sodium-glucose transporter 1 (SGLT1) and sodium-potassium ATPase (Na-K/ATPase) in the small intestine were generally increased by Dex, and GLUT2 mRNA expression was significantly up-regulated (P < 0.05). In liver, the expression of genes involved in gluconeogenesis including glucose-6-phosphatase catalytic subunit (G6PC), cytosolic form of phosphoenolpyruvate carboxykinase (PCK1) and pyruvate carboxylase (PC), were significantly down-regulated by Dex. However, the protein expression levels of PCK1 & PCK2 were significantly increased by Dex, suggesting a post-transcriptional regulation. In dorsal longissimus, the mRNA expression of genes associated with gluconeogenesis and the insulin signaling pathway were generally up-regulated by Dex, but the mRNA expression of two markers of muscle atrophy, namely F-box protein 32 (FBXO32/Atrogin1) and muscle RING-finger protein 1 (MuRF1), was not altered by Dex. Conclusions Taken together, these results indicate that chronic administration of a low dosage of Dex induces hyperglycemia mainly through gluconeogenesis activation in the goat liver.
Collapse
Affiliation(s)
- Liqiong Niu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Qu Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Canfeng Hua
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Yali Geng
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Shiyu Tao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| |
Collapse
|
5
|
Wyller VB, Nguyen CB, Ludviksen JA, Mollnes TE. Transforming growth factor beta (TGF-β) in adolescent chronic fatigue syndrome. J Transl Med 2017; 15:245. [PMID: 29202780 PMCID: PMC5716371 DOI: 10.1186/s12967-017-1350-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/25/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic fatigue syndrome (CFS) is a prevalent and disabling condition among adolescent. The disease mechanisms are unknown. Previous studies have suggested elevated plasma levels of several cytokines, but a recent meta-analysis of 38 articles found that of 77 different cytokines measured in plasma, transforming growth factor beta (TGF-β) was the only one that was elevated in patients compared to controls in a sufficient number of articles. In the present study we therefore compared the plasma levels of the three TGF-β isoforms in adolescent CFS patients and healthy controls. In addition, the study explored associations between TGF-β levels, neuroendocrine markers, clinical markers and differentially expressed genes within the CFS group. METHODS CFS patients aged 12-18 years (n = 120) were recruited nation-wide to a single referral center as part of the NorCAPITAL project (ClinicalTrials ID: NCT01040429). A broad case definition of CFS was applied, requiring 3 months of unexplained, disabling chronic/relapsing fatigue of new onset, whereas no accompanying symptoms were necessary. Healthy controls (n = 68) were recruited from local schools. The three isoforms of TGF-β (TGF-β1, TGF-β2, TGF-β3) were assayed using multiplex technology. Neuroendocrine markers encompassed plasma and urine levels of catecholamines and cortisol, as well as heart rate variability indices. Clinical markers consisted of questionnaire scores for symptoms of post-exertional malaise, inflammation, fatigue, depression and trait anxiety, as well as activity recordings. Whole blood gene expression was assessed by RNA sequencing in a subgroup of patients (n = 29) and controls (n = 18). RESULTS Plasma levels of all three isoforms of TGF-β were equal in the CFS patients and the healthy controls. Subgrouping according to the Fukuda and Canada 2003 criteria of CFS did not reveal differential results. Within the CFS group, all isoforms of TGF-β were associated with plasma cortisol, urine norepinephrine and urine epinephrine, and this association pattern was related to fatigue score. Also, TGF-β3 was related to expression of the B cell annotated genes TNFRSF13C and CXCR5. CONCLUSIONS Plasma levels of all TGF-β isoforms were not altered in adolescent CFS. However, the TGF-β isoforms were associated with neuroendocrine markers, an association related to fatigue score. Furthermore, TGF-β3 might partly mediate an association between plasma cortisol and B cell gene expression. Trial registration Clinical Trials NCT01040429.
Collapse
Affiliation(s)
- Vegard Bruun Wyller
- Department of Pediatrics and Adolescent Health, Akershus University Hospital, 1478 Lørenskog, Norway
- Division of Medicine and Laboratory Sciences, University of Oslo, Oslo, Norway
| | - Chinh Bkrong Nguyen
- Department of Pediatrics and Adolescent Health, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Judith Anita Ludviksen
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen IRC, University of Oslo, Oslo, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
6
|
Emerging role of amyloid beta in stress response: Implication for depression and diabetes. Eur J Pharmacol 2017; 817:22-29. [PMID: 28844871 DOI: 10.1016/j.ejphar.2017.08.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/11/2022]
|
7
|
Adult glucocorticoid receptor mRNA expression volatility in response to an acute stressor and juvenile CSF corticotropin-releasing factor: A pilot neurodevelopmental study. Neurosci Lett 2017; 647:20-25. [PMID: 28330718 DOI: 10.1016/j.neulet.2017.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Early life stress (ELS) has been shown to play a role in establishing persistent maladaptive HPA axis modifications that may contribute to the pathogenesis of mood and anxiety disorders. Central glucocorticoid receptor (GR) messenger RNA (mRNA) expression may facilitate (mal)adaptive responsivity to ELS. The role of adult monocytic GR mRNA expression, a putative CNS proxy, during acute stress exposure was explored as well as the ELS marker, juvenile cerebrospinal fluid (CSF) corticotropin-releasing factor. METHODS Six adult macaques (three of which were exposed to variable foraging demand, a form of ELS) underwent acute restraint. Baseline GR expression and plasma cortisol concentrations were separately measured followed by subsequent measurements following stress completion (t=0min, 4h, 5 days and 7 days). Juvenile CSF CRF concentrations were available in five subjects to determine their developmental association with GR expression in response to stress. RESULTS As expected acute restraint stress produced a significant increase in plasma cortisol concentrations most robustly observed at 4h post-stress time point. There was a significant juvenile CSF CRF concentration x time interaction in predicting adult GR mRNA expression in response to stress (partial η2=0.80). During acute stress juvenile CRF concentrations negatively predicted GR expression and during recovery, "flipped" to positively predict expression. Juvenile CSF CRF concentrations positively correlated with the volatility of adult GR mRNA expression. CONCLUSIONS During acute stress, relatively high CSF CRF concentrations are associated with relatively rapid reductions in GR expression. Return to an ambient post-stress state was characterized by a direct relationship, consistent with increased HPA axis restraint in high CRF subjects. An ELS-associated allostatic adaptation suggests relative elevations of juvenile CSF CRF concentration set the stage for a relative hyper-volatility of adult GR mRNA expression in response to acute stress with potential long-term implications for HPA axis regulation.
Collapse
|