1
|
Li Y, Liu Y, Chang M, Mu R, Zhu J. Effect of RNAi-Mediated Survivin and Hypoxia-Inducible Factor 1α Gene Silencing on Proliferation, Invasion, Migration and Apoptosis of Gastric Cancer BGC-823 Cells. Mol Biotechnol 2024; 66:1872-1882. [PMID: 37440157 DOI: 10.1007/s12033-023-00786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Abstract
In order to investigate the effects of RNAi-mediated survivin and hypoxia-inducible factor 1α (HIF-1α) gene silencing on the proliferation and apoptosis of gastric cancer BGC-823 cells, small interfering RNAs (siRNAs) targeting survivin and HIF-1α mRNAs, respectively, as well as scrambled siRNAs (SCRs) were designed and synthesized, namely siRNA-survivin group, siRNA-HIF-1α group, and SCR group. The hypoxia-sensitive gastric cancer BGC-823 cells were identified and transfected in vitro with Hifectin II under hypoxic conditions, and the expression of survivin and HIF-1α was assessed by RT-PCR and Western blotting assays, respectively. The ability of apoptosis, proliferation, invasion, and migration was measured, and the results showed that HIF-1α expression was significantly increased in BGC-823 cells under hypoxic conditions, and survival-targeted siRNA transfection decreased the expression of survivin under hypoxic conditions, while co-transfection of survivin-targeted siRNA and HIF-1α-targeted siRNA down-regulated both survivin and HIF-1α expression. Compared with the blank control group, the co-transfected siRNA group exhibited distinct characteristics, with decreased invasion and migration ability, increased apoptosis, and significantly decreased cell proliferation under hypoxic conditions. It was confirmed that the downregulation of survivin and HIF-1α in BGC-823 cells may induce anticancer effects by enhancing apoptosis and decreasing proliferation, migration, and invasion ability. The novelty lies in the application of RNAi technology to silence the expression of both survivin and HIF-1α genes in gastric cancer BGC-823 cells by single and combined interference in an established gastric cancer cell model and observed the mechanism of its effect on the proliferation and apoptosis of gastric cancer cells. Concerning the success of this highly active antiretroviral therapy of gene disruption therapies, which is the first of its kind in the world, we wonder whether we can find other better gene targets for more kinds of tumor therapy.
Collapse
Affiliation(s)
- Yupeng Li
- Basic Medical College, Beihua University, Jilin, Jilin, China
| | - Yongchao Liu
- Basic Medical College, Beihua University, Jilin, Jilin, China
- Medical Laboratory Technology College, Beihua University, Jilin, Jilin, China
| | - Mingzhu Chang
- Basic Medical College, Beihua University, Jilin, Jilin, China
| | - Runhong Mu
- Basic Medical College, Beihua University, Jilin, Jilin, China.
| | - Jianyu Zhu
- Basic Medical College, Beihua University, Jilin, Jilin, China.
| |
Collapse
|
2
|
Harrington BS, Kamdar R, Ning F, Korrapati S, Caminear MW, Hernandez LF, Butcher D, Edmondson EF, Traficante N, Hendley J, Gough M, Rogers R, Lourie R, Shetty J, Tran B, Elloumi F, Abdelmaksoud A, Nag ML, Mazan-Mamczarz K, House CD, Hooper JD, Annunziata CM. UGDH promotes tumor-initiating cells and a fibroinflammatory tumor microenvironment in ovarian cancer. J Exp Clin Cancer Res 2023; 42:270. [PMID: 37858159 PMCID: PMC10585874 DOI: 10.1186/s13046-023-02820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/02/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is a global health burden, with the poorest five-year survival rate of the gynecological malignancies due to diagnosis at advanced stage and high recurrence rate. Recurrence in EOC is driven by the survival of chemoresistant, stem-like tumor-initiating cells (TICs) that are supported by a complex extracellular matrix and immunosuppressive microenvironment. To target TICs to prevent recurrence, we identified genes critical for TIC viability from a whole genome siRNA screen. A top hit was the cancer-associated, proteoglycan subunit synthesis enzyme UDP-glucose dehydrogenase (UGDH). METHODS Immunohistochemistry was used to characterize UGDH expression in histological and molecular subtypes of EOC. EOC cell lines were subtyped according to the molecular subtypes and the functional effects of modulating UGDH expression in vitro and in vivo in C1/Mesenchymal and C4/Differentiated subtype cell lines was examined. RESULTS High UGDH expression was observed in high-grade serous ovarian cancers and a distinctive survival prognostic for UGDH expression was revealed when serous cancers were stratified by molecular subtype. High UGDH was associated with a poor prognosis in the C1/Mesenchymal subtype and low UGDH was associated with poor prognosis in the C4/Differentiated subtype. Knockdown of UGDH in the C1/mesenchymal molecular subtype reduced spheroid formation and viability and reduced the CD133 + /ALDH high TIC population. Conversely, overexpression of UGDH in the C4/Differentiated subtype reduced the TIC population. In co-culture models, UGDH expression in spheroids affected the gene expression of mesothelial cells causing changes to matrix remodeling proteins, and fibroblast collagen production. Inflammatory cytokine expression of spheroids was altered by UGDH expression. The effect of UGDH knockdown or overexpression in the C1/ Mesenchymal and C4/Differentiated subtypes respectively was tested on mouse intrabursal xenografts and showed dynamic changes to the tumor stroma. Knockdown of UGDH improved survival and reduced tumor burden in C1/Mesenchymal compared to controls. CONCLUSIONS These data show that modulation of UGDH expression in ovarian cancer reveals distinct roles for UGDH in the C1/Mesenchymal and C4/Differentiated molecular subtypes of EOC, influencing the tumor microenvironmental composition. UGDH is a strong potential therapeutic target in TICs, for the treatment of EOC, particularly in patients with the mesenchymal molecular subtype.
Collapse
Affiliation(s)
- Brittney S Harrington
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rahul Kamdar
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Franklin Ning
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Soumya Korrapati
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael W Caminear
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lidia F Hernandez
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Donna Butcher
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, NCI, Frederick, MD, 21702, USA
| | - Elijah F Edmondson
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, NCI, Frederick, MD, 21702, USA
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Madeline Gough
- Mater Brisbane Hospital, Mater Health Services, South Brisbane, QLD, 4101, Australia
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Rebecca Rogers
- Mater Brisbane Hospital, Mater Health Services, South Brisbane, QLD, 4101, Australia
| | - Rohan Lourie
- Mater Brisbane Hospital, Mater Health Services, South Brisbane, QLD, 4101, Australia
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Jyoti Shetty
- CCR Sequencing Facility, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Bao Tran
- CCR Sequencing Facility, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Fathi Elloumi
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Abdalla Abdelmaksoud
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Madhu Lal Nag
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Krystyna Mazan-Mamczarz
- Functional Genomics Lab, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carrie D House
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Present address: Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - John D Hooper
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Christina M Annunziata
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Zanotelli VRT, Leutenegger M, Lun X, Georgi F, de Souza N, Bodenmiller B. A quantitative analysis of the interplay of environment, neighborhood, and cell state in 3D spheroids. Mol Syst Biol 2020; 16:e9798. [PMID: 33369114 PMCID: PMC7765047 DOI: 10.15252/msb.20209798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cells react to their microenvironment by integrating external stimuli into phenotypic decisions via an intracellular signaling network. To analyze the interplay of environment, local neighborhood, and internal cell state effects on phenotypic variability, we developed an experimental approach that enables multiplexed mass cytometric imaging analysis of up to 240 pooled spheroid microtissues. We quantified the contributions of environment, neighborhood, and intracellular state to marker variability in single cells of the spheroids. A linear model explained on average more than half of the variability of 34 markers across four cell lines and six growth conditions. The contributions of cell-intrinsic and environmental factors to marker variability are hierarchically interdependent, a finding that we propose has general implications for systems-level studies of single-cell phenotypic variability. By the overexpression of 51 signaling protein constructs in subsets of cells, we also identified proteins that have cell-intrinsic and cell-extrinsic effects. Our study deconvolves factors influencing cellular phenotype in a 3D tissue and provides a scalable experimental system, analytical principles, and rich multiplexed imaging datasets for future studies.
Collapse
Affiliation(s)
- Vito RT Zanotelli
- Department of Quantitative BiomedicineUniversity of ZurichZürichSwitzerland
- Life Science Zürich Graduate SchoolETH Zürich and University of ZürichZürichSwitzerland
| | | | - Xiao‐Kang Lun
- Life Science Zürich Graduate SchoolETH Zürich and University of ZürichZürichSwitzerland
- Department of Molecular Life SciencesUniversity of ZurichZürichSwitzerland
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMAUSA
| | - Fanny Georgi
- Life Science Zürich Graduate SchoolETH Zürich and University of ZürichZürichSwitzerland
- Department of Molecular Life SciencesUniversity of ZurichZürichSwitzerland
| | - Natalie de Souza
- Department of Quantitative BiomedicineUniversity of ZurichZürichSwitzerland
- Institute of Molecular Systems BiologyETH ZurichZürichSwitzerland
| | - Bernd Bodenmiller
- Department of Quantitative BiomedicineUniversity of ZurichZürichSwitzerland
| |
Collapse
|
6
|
Vis MAM, Ito K, Hofmann S. Impact of Culture Medium on Cellular Interactions in in vitro Co-culture Systems. Front Bioeng Biotechnol 2020; 8:911. [PMID: 32850750 PMCID: PMC7417654 DOI: 10.3389/fbioe.2020.00911] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022] Open
Abstract
Co-culturing of cells in in vitro tissue models is widely used to study how they interact with each other. These models serve to represent a variety of processes in the human body such as development, homeostasis, regeneration, and disease. The success of a co-culture is dependent on a large number of factors which makes it a complex and ambiguous task. This review article addresses co-culturing challenges regarding the cell culture medium used in these models, in particular concerning medium composition, volume, and exchange. The effect of medium exchange on cells is often an overlooked topic but particularly important when cell communication via soluble factors and extracellular vesicles, the so-called cell secretome (CS) is being studied. Culture medium is regularly exchanged to supply new nutrients and to eliminate waste products produced by the cells. By removing medium, important CSs are also removed. After every medium change, the cells must thus restore their auto- and paracrine communication through these CSs. This review article will also discuss the possibility to integrate biosensors into co-cultures, in particular to provide real-time information regarding media composition. Overall, the manner in which culture medium is currently used will be re-evaluated. Provided examples will be on the subject of bone tissue engineering.
Collapse
Affiliation(s)
- Michelle A M Vis
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|