1
|
Sahu K, Kurrey R, Pillai AK. Green synthesis of silver nanoparticles from Manilkara zapota leaf extract for the detection of aminoglycoside antibiotics and other applications. RSC Adv 2024; 14:23240-23256. [PMID: 39045403 PMCID: PMC11265568 DOI: 10.1039/d4ra01906g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
Antibiotics of aminoglycoside (AMG) class, such as streptomycin (STR), have been widely used to treat infectious diseases caused by Gram-negative bacteria in livestock and humans. In this study, a selective and sensitive colorimetric probe for the determination of STR was proposed based on eco-friendly green synthesized AgNPs from the leaf extract of Manilkara zapota. The mechanism for the detection of STR is based on the electrostatic interaction of opposite charges between negatively charged silver nanoparticle-Manilkara zapota leaf (AgNP-MZL) and STR, causing an aggregation-induced characteristic shift of the SPR band (from 390 nm to 570 nm wavelength) of AgNP-MZL. The morphology, size distribution and optical properties of AgNP-MZL were characterized using UV/visible absorption spectroscopy, FTIR spectroscopy, XRD, DLS, zeta-potential measurements and TEM. The selective determination of STR was experimentally confirmed by performing controlled testing with other classes of antibiotics. To test the sensitivity level of this method, the ratio of these two A 390/A 570 absorbance wavelengths was selected to provide a linear concentration plot between 5 and 100 ng mL-1 STR. The LOD and LOQ were calculated to be 3.5 ng mL-1 and 26.8 ng mL-1, respectively. Good precision was evaluated with a standard deviation of 0.45 ng mL-1 and a relative standard deviation of 2.0% (intraday) and 2.42% (interday) at 10 ng mL-1 for 3 replicate measurements. Advantages of the green synthesis of AgNP-MZL include its eco-friendly nature and it is easy, efficient, cost effective and selective for the detection of the AMG class of antibiotics, i.e. STR, in agricultural and environmental samples.
Collapse
Affiliation(s)
- Khushboo Sahu
- Govt. V. Y. T. Post Graduate Autonomous College Durg-491 001 Chhattisgarh India +917882 393644
| | - Ramsingh Kurrey
- National Center for Natural Resources, Pt. Ravishankar Shukla University Raipur-492 010 Chhattisgarh India
| | - Ajai Kumar Pillai
- Govt. V. Y. T. Post Graduate Autonomous College Durg-491 001 Chhattisgarh India +917882 393644
| |
Collapse
|
2
|
Sun M, Ge S, Li Z. The Role of Phosphorylation and Acylation in the Regulation of Drug Resistance in Mycobacterium tuberculosis. Biomedicines 2022; 10:biomedicines10102592. [PMID: 36289854 PMCID: PMC9599588 DOI: 10.3390/biomedicines10102592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis is a chronic and lethal infectious disease caused by Mycobacterium tuberculosis. In previous decades, most studies in this area focused on the pathogenesis and drug targets for disease treatments. However, the emergence of drug-resistant strains has increased the difficulty of clinical trials over time. Now, more post-translational modified proteins in Mycobacterium tuberculosis have been discovered. Evidence suggests that these proteins have the ability to influence tuberculosis drug resistance. Hence, this paper systematically summarizes updated research on the impacts of protein acylation and phosphorylation on the acquisition of drug resistance in Mycobacterium tuberculosis through acylation and phosphorylation protein regulating processes. This provides us with a better understanding of the mechanism of antituberculosis drugs and may contribute to a reduction the harm that tuberculosis brings to society, as well as aiding in the discovery of new drug targets and therapeutic regimen adjustments in the future.
Collapse
Affiliation(s)
- Manluan Sun
- School of Medicine, Shanxi Datong University, Datong 037009, China
- Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
- Correspondence:
| | - Sai Ge
- Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
- Center of Academic Journal, Shanxi Datong University, Datong 037009, China
| | - Zhaoyang Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Bisht D, Singh R, Sharma D, Sharma D, Gupta MK. Analysis of Membrane Proteins of Streptomycin-Resistant Mycobacterium
tuberculosis Isolates. CURR PROTEOMICS 2022; 19:388-399. [DOI: 10.2174/1570164619666220428082752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
Background:
Drug-resistant tuberculosis remains a health security threat and resistance
to second-line drugs limits the options for treatment. Consequently, there is an utmost need for identifying
and characterizing new biomarkers/drug targets of prime importance. Membrane proteins
have an anticipated role in biological processes and could qualify as biomarkers/drug targets. Streptomycin
(SM) is recommended as a second-line treatment regimen only when amikacin resistance
has been confirmed. As extensively drug-resistant (XDR) isolates are frequently cross-resistant to
second-line injectable drugs, an untapped potential for the continued use of SM has been suggested.
Objective:
The study aimed to analyze the membrane proteins overexpressed in SM resistant isolates
of Mycobacterium tuberculosis using proteomics approaches.
Methods:
Membrane proteins were extracted employing sonication and ultracentrifugation. Twodimensional
gel electrophoresis (2DGE) of membrane proteins was performed and identification of
proteins was done by liquid chromatography-mass spectrometry (LCMS) and bioinformatics tools.
Results:
On analyzing the two-dimensional (2D) gels, five protein spots were found overexpressed
in the membrane of SM resistant isolates. Docking analysis revealed that SM might bind to the conserved
domain of overexpressed proteins and Group-based prediction system-prokaryotic ubiquitinlike
protein (GPS-PUP) predicted potential pupylation sites within them.
Conclusion:
These proteins might be of diagnostic importance for detecting the cases early and for
exploring effective control strategies against drug-resistant tuberculosis, particularly SM.
Collapse
Affiliation(s)
- Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra (UP)-282004, India
| | - Rananjay Singh
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra (UP)-282004, India
| | - Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra (UP)-282004, India
| | - Divakar Sharma
- Department of Microbiology, Maulana Azad Medical College, Bahadur Shah Zafar Marg, New Delhi-110002, India
| | | |
Collapse
|
4
|
Lin K, Zhao N, Cai Y, Lin Y, Han S, Zheng S. Genome-Scale Mining of Novel Anchor Proteins of Corynebacterium glutamicum. Front Microbiol 2022; 12:677702. [PMID: 35185806 PMCID: PMC8854784 DOI: 10.3389/fmicb.2021.677702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022] Open
Abstract
The display of recombinant proteins on the surfaces of bacteria is a research topic with many possible biotechnology applications—among which, the choice of host cell and anchoring motif is the key for efficient display. Corynebacterium glutamicum is a promising host for surface display due to its natural advantages, while single screening methods and fewer anchor proteins restrict its application. In this study, the subcellular localization (SCL) predictor LocateP and tied-mixture hidden Markov models were used to analyze all five known endogenous anchor proteins of C. glutamicum and test the accuracy of the predictions. Using these two tools, the SCLs of all proteins encoded by the genome of C. glutamicum 13032 were predicted, and 14 potential anchor proteins were screened. Compared with the positive controls NCgl1221 and NCgl1337, three anchoring proteins—NCgl1307, NCgl2775, and NCgl0717—performed better. This study also discussed the applicability of the anchor protein screening method used in this experiment to other bacteria.
Collapse
Affiliation(s)
- Kerui Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Nannan Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Youhua Cai
- Star Lake Bioscience Co. Inc., Zhaoqing Guangdong, Zhaoqing, China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Shuangyan Han,
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Suiping Zheng,
| |
Collapse
|
5
|
Sharma D, Aswal M, Ahmad N, Kumar M, Khan AU. Proteomic Analysis of the Colistin-resistant E. coli Clinical Isolate: Explorations of the Resistome. Protein Pept Lett 2022; 29:184-198. [PMID: 34844531 DOI: 10.2174/0929866528666211129095001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antimicrobial resistance is a worldwide problem after the emergence of colistin resistance since it was the last option left to treat carbapenemase-resistant bacterial infections. The mcr gene and its variants are one of the causes for colistin resistance. Besides mcr genes, some other intrinsic genes are also involved in colistin resistance but still need to be explored. OBJECTIVE The aim of this study was to investigate differential proteins expression of colistin-resistant E. coli clinical isolate and to understand their interactive partners as future drug targets. METHODS In this study, we have employed the whole proteome analysis through LC-MS/MS. The advance proteomics tools were used to find differentially expressed proteins in the colistin-resistant Escherichia coli clinical isolate compared to susceptible isolate. Gene ontology and STRING were used for functional annotation and protein-protein interaction networks, respectively. RESULTS LC-MS/MS analysis showed overexpression of 47 proteins and underexpression of 74 proteins in colistin-resistant E. coli. These proteins belong to DNA replication, transcription and translational process; defense and stress related proteins; proteins of phosphoenol pyruvate phosphotransferase system (PTS) and sugar metabolism. Functional annotation and protein-protein interaction showed translational and cellular metabolic process, sugar metabolism and metabolite interconversion. CONCLUSION We conclude that these protein targets and their pathways might be used to develop novel therapeutics against colistin-resistant infections. These proteins could unveil the mechanism of colistin resistance.
Collapse
Affiliation(s)
- Divakar Sharma
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Manisha Aswal
- Department of Biophysics, University of Delhi South Campus, India
| | - Nayeem Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
- Department of Biophysics, All India Institute Of Medical Science (AIIMS), New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Asad U Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
6
|
The Neglected Contribution of Streptomycin to the Tuberculosis Drug Resistance Problem. Genes (Basel) 2021; 12:genes12122003. [PMID: 34946952 PMCID: PMC8701281 DOI: 10.3390/genes12122003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
The airborne pathogen Mycobacterium tuberculosis is responsible for a present major public health problem worsened by the emergence of drug resistance. M. tuberculosis has acquired and developed streptomycin (STR) resistance mechanisms that have been maintained and transmitted in the population over the last decades. Indeed, STR resistant mutations are frequently identified across the main M. tuberculosis lineages that cause tuberculosis outbreaks worldwide. The spread of STR resistance is likely related to the low impact of the most frequent underlying mutations on the fitness of the bacteria. The withdrawal of STR from the first-line treatment of tuberculosis potentially lowered the importance of studying STR resistance. However, the prevalence of STR resistance remains very high, could be underestimated by current genotypic methods, and was found in outbreaks of multi-drug (MDR) and extensively drug (XDR) strains in different geographic regions. Therefore, the contribution of STR resistance to the problem of tuberculosis drug resistance should not be neglected. Here, we review the impact of STR resistance and detail well-known and novel candidate STR resistance mechanisms, genes, and mutations. In addition, we aim to provide insights into the possible role of STR resistance in the development of multi-drug resistant tuberculosis.
Collapse
|
7
|
Negi SS, Sharma K, Sharma D, Singh P, Agarwala P, Hussain N, Bhargava A, Das P, Agarwal S. Genetic analysis of human papilloma virus 16 E6/E7 variants obtained from cervical cancer cases in Chhattisgarh, a central state of India. Virusdisease 2021; 32:492-503. [PMID: 34631976 PMCID: PMC8473527 DOI: 10.1007/s13337-021-00727-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/11/2021] [Indexed: 11/28/2022] Open
Abstract
Human papilloma virus genotype 16 (HPV-16), a predominant etiological cause of cervical cancer (CC) vary in inflicting oncogenicity according to their geographical distribution and mutational changes. With no published data from central India, the present study aimed to genetically analyze HPV-16 E6/E7 variant obtained from CC women of Chhattisgarh. In twenty one CC patients, PCR amplified E6/E7 genes were decoded by DNA sequencing to study phylogenetic relatedness, mutational changes and their in-silico effect on protein structure. E6 analysis revealed nineteen sequences exhibited intratypic variation. L83V mutation was observed in 76.2% sequences followed by S71C seen in 28.6% sequences. Mutations of E41G, A46G, F47V, R77S, L99V and Q107K were observed in three sequences each. C140 Stop codon mutation has caused early truncation of E6 in three sequences to produce the conformational structural change. In contrast, E7 was relatively more conserved showing D4E (4.7%), G88R (23.8%), I93T (9.5%) and C94S (9.5%) mutations. Other than L83V and S71C, E6 and E7 mutations were reported for the first time from India. E6/E7 nonsynonmous mutations have a spectrum of biological effect in progression of CC. Phylogenetic analysis revealed ten sequence belonged to Asian while eleven to European sublineage to show CC cases in Chhattisgarh are a mix of Asian and European lineage. Asian sequences showing higher frequency of L83V mutations and exclusive presence of S71C and C140 Stop codon mutations may be linked with higher oncogenicity. Various E6/E7 mutational data may prove useful for development of better diagnostic and vaccine for the region of Chhattisgarh.
Collapse
Affiliation(s)
- Sanjay Singh Negi
- Department of Microbiology, AIIMS Raipur, Chhattisgarh, 492099 India
| | - Kuldeep Sharma
- Department of Microbiology, AIIMS Raipur, Chhattisgarh, 492099 India
| | - Divakar Sharma
- Department of Microbiology, Maulana Azad Medical College, New Delhi, 110002 India
| | - Pushpendra Singh
- Department of Microbiology, AIIMS Raipur, Chhattisgarh, 492099 India
| | - Pragya Agarwala
- Department of Microbiology, AIIMS Raipur, Chhattisgarh, 492099 India
| | - Nighat Hussain
- Department of Microbiology, AIIMS Raipur, Chhattisgarh, 492099 India
| | - Anudita Bhargava
- Department of Microbiology, AIIMS Raipur, Chhattisgarh, 492099 India
| | - Padma Das
- Department of Microbiology, AIIMS Raipur, Chhattisgarh, 492099 India
| | - Sarita Agarwal
- Department of Gynecology, AIIMS Raipur, Chhattisgarh, 492099 India
| |
Collapse
|
8
|
Molecular Analysis of Streptomycin Resistance Genes in Clinical Strains of Mycobacterium tuberculosis and Biocomputational Analysis of the MtGidB L101F Variant. Antibiotics (Basel) 2021; 10:antibiotics10070807. [PMID: 34356728 PMCID: PMC8300841 DOI: 10.3390/antibiotics10070807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022] Open
Abstract
Globally, tuberculosis (TB) remains a prevalent threat to public health. In 2019, TB affected 10 million people and caused 1.4 million deaths. The major challenge for controlling this infectious disease is the emergence and spread of drug-resistant Mycobacterium tuberculosis, the causative agent of TB. The antibiotic streptomycin is not a current first-line anti-TB drug. However, WHO recommends its use in patients infected with a streptomycin-sensitive strain. Several mutations in the M. tuberculosisrpsL, rrs and gidB genes have proved association with streptomycin resistance. In this study, we performed a molecular analysis of these genes in clinical isolates to determine the prevalence of known or novel mutations. Here, we describe the genetic analysis outcome. Furthermore, a biocomputational analysis of the MtGidB L101F variant, the product of a novel mutation detected in gidB during molecular analysis, is also reported as a theoretical approach to study the apparent genotype-phenotype association.
Collapse
|
9
|
Label-Free Comparative Proteomics of Differentially Expressed Mycobacterium tuberculosis Protein in Rifampicin-Related Drug-Resistant Strains. Pathogens 2021; 10:pathogens10050607. [PMID: 34063426 PMCID: PMC8157059 DOI: 10.3390/pathogens10050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022] Open
Abstract
Rifampicin (RIF) is one of the most important first-line anti-tuberculosis (TB) drugs, and more than 90% of RIF-resistant (RR) Mycobacterium tuberculosis clinical isolates belong to multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. In order to identify specific candidate target proteins as diagnostic markers or drug targets, differential protein expression between drug-sensitive (DS) and drug-resistant (DR) strains remains to be investigated. In the present study, a label-free, quantitative proteomics technique was performed to compare the proteome of DS, RR, MDR, and XDR clinical strains. We found iniC, Rv2141c, folB, and Rv2561 were up-regulated in both RR and MDR strains, while fadE9, espB, espL, esxK, and Rv3175 were down-regulated in the three DR strains when compared to the DS strain. In addition, lprF, mce2R, mce2B, and Rv2627c were specifically expressed in the three DR strains, and 41 proteins were not detected in the DS strain. Functional category showed that these differentially expressed proteins were mainly involved in the cell wall and cell processes. When compared to the RR strain, Rv2272, smtB, lpqB, icd1, and folK were up-regulated, while esxK, PPE19, Rv1534, rpmI, ureA, tpx, mpt64, frr, Rv3678c, esxB, esxA, and espL were down-regulated in both MDR and XDR strains. Additionally, nrp, PPE3, mntH, Rv1188, Rv1473, nadB, PPE36, and sseA were specifically expressed in both MDR and XDR strains, whereas 292 proteins were not identified when compared to the RR strain. When compared between MDR and XDR strains, 52 proteins were up-regulated, while 45 proteins were down-regulated in the XDR strain. 316 proteins were especially expressed in the XDR strain, while 92 proteins were especially detected in the MDR strain. Protein interaction networks further revealed the mechanism of their involvement in virulence and drug resistance. Therefore, these differentially expressed proteins are of great significance for exploring effective control strategies of DR-TB.
Collapse
|
10
|
Alghamdi S, Rehman SU, Shesha NT, Faidah H, Khurram M, Rehman SU. Promising Lead Compounds in the Development of Potential Clinical Drug Candidate for Drug-Resistant Tuberculosis. Molecules 2020; 25:molecules25235685. [PMID: 33276545 PMCID: PMC7729780 DOI: 10.3390/molecules25235685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
According to WHO report, globally about 10 million active tuberculosis cases, resulting in about 1.6 million deaths, further aggravated by drug-resistant tuberculosis and/or comorbidities with HIV and diabetes are present. Incomplete therapeutic regimen, meager dosing, and the capability of the latent and/or active state tubercular bacilli to abide and do survive against contemporary first-line and second line antitubercular drugs escalate the prevalence of drug-resistant tuberculosis. As a better understanding of tuberculosis, microanatomy has discovered an extended range of new promising antitubercular targets and diagnostic biomarkers. However, there are still no new approved antitubercular drugs of routine therapy for several decades, except for bedaquiline, delamanid, and pretomanid approved tentatively. Despite this, innovative methods are also urgently needed to find potential new antitubercular drug candidates, which potentially decimate both latent state and active state mycobacterium tuberculosis. To explore and identify the most potential antitubercular drug candidate among various reported compounds, we focused to highlight the promising lead derivatives of isoniazid, coumarin, griselimycin, and the antimicrobial peptides. The aim of the present review is to fascinate significant lead compounds in the development of potential clinical drug candidates that might be more precise and effective against drug-resistant tuberculosis, the world research looking for a long time.
Collapse
Affiliation(s)
- Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca 24321, Saudi Arabia;
| | - Shaheed Ur Rehman
- Department of Pharmacy, Abasyn University Peshawar, Khyber Pakhtunkhwa 25000, Pakistan;
- Correspondence: (S.U.R.); (M.K.); Tel.: +923459832402 (S.U.R.)
| | - Nashwa Talaat Shesha
- Regional Laboratory, Directorate of Health Affairs Makkah, Mecca 24321, Saudi Arabia;
| | - Hani Faidah
- Microbiology Department, Faculty of Medicine, Umm Al-Qura University, Mecca 24321, Saudi Arabia;
| | - Muhammad Khurram
- Department of Pharmacy, Abasyn University Peshawar, Khyber Pakhtunkhwa 25000, Pakistan;
- Correspondence: (S.U.R.); (M.K.); Tel.: +923459832402 (S.U.R.)
| | - Sabi Ur Rehman
- Department of Pharmacy, Abasyn University Peshawar, Khyber Pakhtunkhwa 25000, Pakistan;
| |
Collapse
|
11
|
Arora G, Bothra A, Prosser G, Arora K, Sajid A. Role of post-translational modifications in the acquisition of drug resistance in Mycobacterium tuberculosis. FEBS J 2020; 288:3375-3393. [PMID: 33021056 DOI: 10.1111/febs.15582] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022]
Abstract
Tuberculosis (TB) is one of the primary causes of deaths due to infectious diseases. The current TB regimen is long and complex, failing of which leads to relapse and/or the emergence of drug resistance. There is a critical need to understand the mechanisms of resistance development. With increasing drug pressure, Mycobacterium tuberculosis (Mtb) activates various pathways to counter drug-related toxicity. Signaling modules steer the evolution of Mtb to a variant that can survive, persist, adapt, and emerge as a form that is resistant to one or more drugs. Recent studies reveal that about 1/3rd of the annotated Mtb proteome is modified post-translationally, with a large number of these proteins being essential for mycobacterial survival. Post-translational modifications (PTMs) such as phosphorylation, acetylation, and pupylation play a salient role in mycobacterial virulence, pathogenesis, and metabolism. The role of many other PTMs is still emerging. Understanding the signaling pathways and PTMs may assist clinical strategies and drug development for Mtb. In this review, we explore the contribution of PTMs to mycobacterial physiology, describe the related cellular processes, and discuss how these processes are linked to drug resistance. A significant number of drug targets, InhA, RpoB, EmbR, and KatG, are modified at multiple residues via PTMs. A better understanding of drug-resistance regulons and associated PTMs will aid in developing effective drugs against TB.
Collapse
Affiliation(s)
- Gunjan Arora
- Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Ankur Bothra
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gareth Prosser
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Kriti Arora
- Proteus Digital Health, Inc., Redwood City, CA, USA
| | - Andaleeb Sajid
- Yale School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
12
|
Wan L, Liu H, Li M, Jiang Y, Zhao X, Liu Z, Wan K, Li G, Guan CX. Genomic Analysis Identifies Mutations Concerning Drug-Resistance and Beijing Genotype in Multidrug-Resistant Mycobacterium tuberculosis Isolated From China. Front Microbiol 2020; 11:1444. [PMID: 32760357 PMCID: PMC7373740 DOI: 10.3389/fmicb.2020.01444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/04/2020] [Indexed: 12/02/2022] Open
Abstract
Development of modern genomics provides us an effective method to understand the molecular mechanism of drug resistance and diagnose drug-resistant Mycobacterium tuberculosis. In this study, mutations in 18 genes or intergenic regions acquired by whole-genome sequencing (WGS) of 183 clinical M. tuberculosis strains, including 137 multidrug-resistant and 46 pan-susceptible isolates from China, were identified and used to analyze their associations with resistance of isoniazid, rifampin, ethambutol, and streptomycin. Using the proportional method as the gold standard method, the accuracy values of WGS to predict resistance were calculated. The association between synonymous or lineage definition mutations with different genotypes were also analyzed. The results show that, compared to the phenotypic proportional method, the sensitivity and specificity of WGS for resistance detection were 94.2 and 100.0% for rifampicin (based on mutations in rpoB), 90.5 and 97.8% for isoniazid (katG), 83.0 and 97.8% for streptomycin (rpsL combined with rrs 530 loop and 912 loop), and 90.9 and 65.1% for ethambutol (embB), respectively. WGS data also showed that mutations in the inhA promoter increased only 2.2% sensitivity for INH based on mutations in katG. Synonymous mutation rpoB A1075A was confirmed to be associated with the Beijing genotype. This study confirmed that mutations in rpoB, katG, rrs 530 loop and 912 loop, and rpsL were excellent biomarkers for predicting rifampicin, isoniazid, and streptomycin resistance, respectively, and provided clues in clarifying the drug-resistance mechanism of M. tuberculosis isolates from China.
Collapse
Affiliation(s)
- Li Wan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China.,State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Machao Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuqin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiguang Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
13
|
Sharma D, Garg A, Kumar M, Rashid F, Khan AU. Down-Regulation of Flagellar, Fimbriae, and Pili Proteins in Carbapenem-Resistant Klebsiella pneumoniae (NDM-4) Clinical Isolates: A Novel Linkage to Drug Resistance. Front Microbiol 2019; 10:2865. [PMID: 31921045 PMCID: PMC6928051 DOI: 10.3389/fmicb.2019.02865] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
The emergence and spread of carbapenem-resistant Klebsiella pneumoniae infections have worsened the current situation worldwide, in which totally drug-resistant strains (bad bugs) are becoming increasingly prominent. Bacterial biofilms enable bacteria to tolerate higher doses of antibiotics and other stresses, which may lead to the drug resistance. In the present study, we performed proteomics on the carbapenem-resistant NDM-4-producing K. pneumoniae clinical isolate under meropenem stress. Liquid chromatography coupled with mass spectrometry (LC-MS/MS) analysis revealed that 69 proteins were down-regulated (≤0.42-fold change) under meropenem exposure. Within the identified down-regulated proteome (69 proteins), we found a group of 13 proteins involved in flagellar, fimbriae, and pili formation and their related functions. Further, systems biology approaches were employed to reveal their networking pathways. We suggest that these down-regulated proteins and their interactive partners cumulatively contribute to the emergence of a biofilm-like state and the survival of bacteria under drug pressure, which could reveal novel mechanisms or pathways involved in drug resistance. These down-regulated proteins and their pathways might be used as targets for the development of novel therapeutics against antimicrobial-resistant (AMR) infections.
Collapse
Affiliation(s)
- Divakar Sharma
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Anjali Garg
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi, New Delhi, India
| | | | - Asad U. Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
14
|
Sharma D, Lata M, Faheem M, Khan AU, Joshi B, Venkatesan K, Shukla S, Bisht D. Role of M.tuberculosis protein Rv2005c in the aminoglycosides resistance. Microb Pathog 2019; 132:150-155. [PMID: 31059757 DOI: 10.1016/j.micpath.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
Abstract
Tuberculosis is an airborne infectious disease caused by Mycobacterium tuberculosis which threatens the globe. Aminoglycosides {Amikacin (AK) & Kanamycin (KM)} are WHO recommended second-line anti-TB drugs used against the treatment of drug-resistant tuberculosis. Aminoglycosides target the steps of protein translation machinery of M.tuberculosis. Several mechanisms have been put forward to elucidate the phenomena of aminoglycosides resistance but our knowledge is still insufficient. The aim of the study was to understand the involvement of Mycobacterium tuberculosis universal stress protein (Rv2005c) in aminoglycosides resistance and virulence. To establish the relationship of universal stress protein Rv2005c with AK & KM resistance, Rv2005c was cloned, expressed in E.coli BL21 using pQE2 expression vector and antimicrobial drug susceptibility testing (DST) was carried out. STRING-10 was also used to predict the interacting protein partners of Rv2005c. DST showed that the minimum inhibitory concentration of induced recombinant cells (Rv2005c) were five and four folds shifted with AK and KM E-strips, respectively. STRING-10 showed the interacting protein partners of Rv2005c. Overexpression of Rv2005c leads to shifting in MIC which might be signifying its involvement in the survival/resistance of Mycobacteria by inhibiting/modulating the effects of AK and KM released from the E-strips. Interactome also suggests that Rv2005c and its interacting protein partners are cumulatively involved in M.tuberculosis resistance, stresses, and latency.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India; Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, 202002, India.
| | - Manju Lata
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Mohammad Faheem
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, 202002, India
| | - Asad Ullah Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, 202002, India
| | - Beenu Joshi
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Krishnamurthy Venkatesan
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Sangeeta Shukla
- School of Studies (SOS) Zoology, Jiwaji University, Gwalior, 474011, India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India.
| |
Collapse
|
15
|
Sharma D, Garg A, Kumar M, Khan AU. Proteome profiling of carbapenem-resistant K. pneumoniae clinical isolate (NDM-4): Exploring the mechanism of resistance and potential drug targets. J Proteomics 2019; 200:102-110. [PMID: 30953729 DOI: 10.1016/j.jprot.2019.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
The emergence of carbapenem resistance has become a major problem worldwide. This has made treatment of K. pneumoniae infections a difficult task. In this study, we have explored the whole proteome of the carbapenem-resistant Klebsiella pneumonia clinical isolate (NDM-4) under the meropenem stress. Proteomics (LC-MS/MS) and bioinformatics approaches were employed to uncover the novel mystery of the resistance over the existing mechanisms. Gene ontology, KEGG and STRING were used for functional annotation, pathway enrichment and protein-protein interaction (PPI) network respectively. LC-MS/MS analysis revealed that 52 proteins were overexpressed (≥10 log folds) under meropenem stress. These proteins belong to four major groups namely protein translational machinery complex, DNA/RNA modifying enzymes or proteins, proteins involved in carbapenems cleavage, modifications & transport and energy metabolism & intermediary metabolism-related proteins. Among the total 52 proteins 38 {matched to Klebsiella pneumonia subsp. pneumoniae (strain ATCC 700721/MGH 78578)} were used for functional annotation, pathways enrichment and protein-protein interaction. These were significantly enriched in the "intracellular" (14 of 38), "cytoplasm" (12 of 38) and "ribosome" (10 of 38). We suggest that these 52 over expressed proteins and their interactive proteins cumulatively contributed in survival of bacteria and meropenem resistance through various mechanisms or enriched pathways. These proteins targets and their pathways might be used for development of novel therapeutics against the resistance; therefore, the situation of the emergence of "bad-bugs" could be controlled.
Collapse
Affiliation(s)
- Divakar Sharma
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Anjali Garg
- Department of Biophysics, University of Delhi South Campus, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, India
| | - Asad U Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
16
|
Bisht D, Sharma D, Sharma D, Singh R, Gupta VK. Recent insights into Mycobacterium tuberculosis through proteomics and implications for the clinic. Expert Rev Proteomics 2019; 16:443-456. [PMID: 31032653 DOI: 10.1080/14789450.2019.1608185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/12/2019] [Indexed: 01/25/2023]
Abstract
This review aimed at providing an update on the application of proteomics-based approaches to gain recent insights of Mycobacterium tuberculosis (M.tb) and its relevance to clinic. Proteomics and bioinformatics approaches helped in the identification and characterization of novel proteins. Studying M.tb, causative agent of tuberculosis (TB), at the proteomic level can contribute to the identification of proteins which can be considered as potential targets for developed drugs and can help us in better understanding the pathogen physiology. Areas covered: In this review we have presented a comprehensive literature pertaining to role of proteomics in understanding M.tb. We have also focused on how the development and advancement in technology in the field of proteomics has augmented the research and played a pivotal role in answering many unexplored questions. Lastly, the application of proteomics to clinic has also been discussed. Expert commentary: We envisage that proteomics has gained remarkable momentum over the years. Proteomics can play an important role in the discovery of biomarkers for TB and other diseases. Also, it can aid in development of effective vaccines and simple, rapid and cost-effective test for the diagnosis of TB which is crucial for the management and control of the disease.
Collapse
Affiliation(s)
- Deepa Bisht
- a Department of Biochemistry , National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR) , Agra , India
| | - Devesh Sharma
- a Department of Biochemistry , National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR) , Agra , India
| | - Divakar Sharma
- b Medical Microbiology and Molecular Biology Laboratory , Interdisciplinary Biotechnology Unit, Aligarh Muslim University , Aligarh , India
| | - Rananjay Singh
- a Department of Biochemistry , National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR) , Agra , India
| | - Vivek Kumar Gupta
- a Department of Biochemistry , National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR) , Agra , India
| |
Collapse
|
17
|
Kumar K, Sagar BKC, Giribhattanavar P, Patil SA. Ultrastructural analysis of cell wall of drug resistant and sensitive Mycobacterium tuberculosis isolated from cerebrospinal fluid by transmission electron microscope. Microsc Res Tech 2018; 82:122-127. [PMID: 30575195 DOI: 10.1002/jemt.23144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 01/15/2023]
Abstract
Drug-resistant tuberculosis is being increasingly recognized and is one among the leading cause of death worldwide. Remarkable impermeability of cell wall to antituberculous drugs protects the mycobacteria from drug action. The present study analyzed the cell wall thickness among first-line drug resistant and sensitive Mycobacterium tuberculosis (Mtb) isolated from cerebrospinal fluid by transmission electron microscopy (TEM). The average thickness of the cell wall of sensitive isolates was 13.60 ± 0.98 nm. The maximum difference (26.48%) in the cell wall thickness was seen among multi-drug resistant (18.50 ± 1.71 nm) isolates and the least difference (4.14%) was shown by streptomycin-resistant (14.18 ± 1.38 nm) isolates. The ultrastructural study showed evident differences in the cell wall thickness among sensitive and resistant isolates. Preliminary TEM examination of cells indicates that morphological changes occur in the cell wall which might be attributed to the drug resistance. The thickened wall of Mtb appears to help the bacilli to overcome the action of antituberculous drugs.
Collapse
Affiliation(s)
- Kavitha Kumar
- Department of Neuromicrobiology, National Institute of Mental Health and Neuroscience, Bengaluru, Karnataka, India
| | - B K Chandrasekhar Sagar
- Department of Neuropathology, National Institute of Mental Health and Neuroscience, Bengaluru, Karnataka, India
| | - Prashant Giribhattanavar
- Department of Neuromicrobiology, National Institute of Mental Health and Neuroscience, Bengaluru, Karnataka, India
| | - Shripad A Patil
- Department of Neuromicrobiology, National Institute of Mental Health and Neuroscience, Bengaluru, Karnataka, India
| |
Collapse
|
18
|
Sharma D, Khan AU. Role of cell division protein divIVA in Enterococcus faecalis pathogenesis, biofilm and drug resistance: A future perspective by in silico approaches. Microb Pathog 2018; 125:361-365. [PMID: 30290265 DOI: 10.1016/j.micpath.2018.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
Abstract
Antibiotics resistance is the major problem in clinical settings which leads to the emergence of drug resistant bacteria. Biofilm formation is one of the grounds for the emergence of antibiotics resistant strains of Enterococcus faecalis. Our group previously reported in a comparative proteomic study of biofilm and planktonic state of E. faecalis that cell division protein divIVA was two folds overexpressed in biofilm state as compared to planktonic one and suggested its involvement in biofilm formation and antibiotics resistance. In this in silico study molecular docking showed that DNA bind to the conserved amino acid residues of divIVA domain and suggested that divIVA possibly secretes DNA into extra polymeric substance (EPS) which is the part of biofilm. We also performed the STRING analysis of cell division protein divIVA and predicted their interactive partners {cell division proteins/divisome complex (ftsZ, ftsA, divIV, ftsL, & gpsB), hypothetical proteins (sepF, EF_0261, EF_1000, EF_0998, EF_1006 & EF_1040), isoleucyl-tRNA synthetase (ileS), septation ring formation regulator (ezrA), S4 domain-containing protein (EF_1001), rod shape-determining protein (mreC), UDP-N-acetylmuramoyl-L-alanyl-d-glutamate synthetase (murD), UDP-diphospho-muramoyl-pentapeptide beta-N- acetylglucosaminyltransferase (murG), Lipoprotein signal peptidase (lspA), adenylate kinase (adk) and DNA-binding response regulator (vicR)}. We suggest that cumulatively divIVA and its interactive partners might be directly or indirectly involved in E. faecalis cell division, growth, biofilm formation, virulence and resistance.
Collapse
Affiliation(s)
- Divakar Sharma
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
19
|
Sharma D, Singh R, Deo N, Bisht D. Interactome analysis of Rv0148 to predict potential targets and their pathways linked to aminoglycosides drug resistance: An insilico approach. Microb Pathog 2018; 121:179-183. [PMID: 29800702 DOI: 10.1016/j.micpath.2018.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/12/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022]
Abstract
Failure of multi drug resistant tuberculosis (MDR-TB) treatment has increased the risk of aminoglycosides resistance, disease transmission, morbidity and mortality. Aminoglycosides are commonly used in multi drug resistant tuberculosis (MDR-TB) treatment. They inhibit protein synthesis by interacting with translationary steps. Apart from gene mutations various mechanisms of aminoglycosides resistance have been reported but still our knowledge regarding aminoglycosides resistance is fragmentary. Proteomics and bioinformatics approaches are the most accepted approaches to explore the unrevealed mechanisms of aminoglycosides resistance. Our previous studies suggested that over expression of Rv0148 in aminoglycosides resistant M. tuberculosis clinical isolates potentially leads to aminoglycosides resistance. In this study we have analyzed the protein-protein interactions of putative short-chain type dehydrogenase/reductase (Rv0148) and predicted the proteins target linked to the aminoglycosides drug resistance. Interactome predicted that fatty acid synthase (fas), dehydrogenase (htdY), dehydrogenase (MT3642), quinine oxidoreductase (MT0157), phenyloxazoline synthase (mbtB), hypothetical protein (Rv0130), 3-oxoacyl-ACP synthase (kasA), 3-oxoacyl-ACP synthase (kasB) aldehyde dehydrogenase (MT0155) and hypothetical protein (Rv1867) were the interactive partners of Rv0148. We have suggested that Rv0148, its predictive interactive protein partners and their pathways (via lipid metabolism as well as intermediary metabolism and respiration) cumulatively unlock the mystery of aminoglycosides resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India; Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, 202002, India.
| | - Rananjay Singh
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Nirmala Deo
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| |
Collapse
|
20
|
Sharma D, Bisht D, Khan AU. Potential Alternative Strategy against Drug Resistant Tuberculosis: A Proteomics Prospect. Proteomes 2018; 6:26. [PMID: 29843395 PMCID: PMC6027512 DOI: 10.3390/proteomes6020026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis is one of the deadliest human pathogen of the tuberculosis diseases. Drug resistance leads to emergence of multidrug-resistant and extremely drug resistant strains of M. tuberculosis. Apart from principal targets of resistance, many explanations have been proposed for drug resistance but some resistance mechanisms are still unknown. Recently approved line probe assay (LPA) diagnostics for detecting the resistance to first and second line drugs are unable to diagnose the drug resistance in M. tuberculosis isolates which do not have the mutations in particular genes responsible for resistance. Proteomics and bioinformatic tools emerged as direct approaches for identification and characterization of novel proteins which are directly and indirectly involved in drug resistance that could be used as potential targets in future. In future, these novel targets might reveal new mechanism of resistance and can be used in diagnostics or as drug targets.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
21
|
Sharma D, Dhuriya YK, Deo N, Bisht D. Repurposing and Revival of the Drugs: A New Approach to Combat the Drug Resistant Tuberculosis. Front Microbiol 2017; 8:2452. [PMID: 29321768 PMCID: PMC5732208 DOI: 10.3389/fmicb.2017.02452] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/27/2017] [Indexed: 01/15/2023] Open
Abstract
Emergence of drug resistant tuberculosis like multi drug resistant tuberculosis (MDR-TB), extensively drug-resistant tuberculosis (XDR-TB) and totally drug resistant tuberculosis (TDR-TB) has created a new challenge to fight against these bad bugs of Mycobacterium tuberculosis. Repurposing and revival of the drugs are the new trends/options to combat these worsen situations of tuberculosis in the antibiotics resistance era or in the situation of global emergency. Bactericidal and synergistic effect of repurposed/revived drugs along with the latest drugs bedaquiline and delamanid used in the treatment of MDR-TB, XDR-TB, and TDR-TB might be the choice for future promising combinatorial chemotherapy against these bad bugs.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Yogesh K. Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Nirmala Deo
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| |
Collapse
|
22
|
Cornett DS, Scholle MD. Advances in MALDI Mass Spectrometry within Drug Discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2017; 22:1179-1181. [PMID: 29153034 DOI: 10.1177/2472555217735067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
23
|
Capolupo A, Cassiano C, Casapullo A, Andreotti G, Cubellis MV, Riccio A, Riccio R, Monti MC. Identification of Trombospondin-1 as a Novel Amelogenin Interactor by Functional Proteomics. Front Chem 2017; 5:74. [PMID: 29057222 PMCID: PMC5635807 DOI: 10.3389/fchem.2017.00074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/25/2017] [Indexed: 11/15/2022] Open
Abstract
Amelogenins are a set of low molecular-weight enamel proteins belonging to a group of extracellular matrix (ECM) proteins with a key role in tooth enamel development and in other regeneration processes, such as wound healing and angiogenesis. Since only few data are actually available to unravel amelogenin mechanism of action in chronic skin healing restoration, we moved to the full characterization of the human amelogenin isoform 2 interactome in the secretome and lysate of Human Umbilical Vein Endothelial cells (HUVEC), using a functional proteomic approach. Trombospondin-1 has been identified as a novel and interesting partner of human amelogenin isoform 2 and their direct binding has been validated thought biophysical orthogonal approaches.
Collapse
Affiliation(s)
- Angela Capolupo
- Department of Pharmacy, University of Salerno, Salerno, Italy.,PhD Program in Drug Discovery and Development, University of Salerno, Salerno, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | | | - Giuseppina Andreotti
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Delle Ricerche (CNR), Napoli, Italy
| | - Maria V Cubellis
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Raffaele Riccio
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Maria C Monti
- Department of Pharmacy, University of Salerno, Salerno, Italy
| |
Collapse
|
24
|
Sharma D, Bisht D. Role of Bacterioferritin & Ferritin in M. tuberculosis Pathogenesis and Drug Resistance: A Future Perspective by Interactomic Approach. Front Cell Infect Microbiol 2017; 7:240. [PMID: 28642844 PMCID: PMC5462900 DOI: 10.3389/fcimb.2017.00240] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/24/2017] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis, one of the most successful and deadliest human pathogen. Aminoglycosides resistance leads to emergence of extremely drug resistant strains of M. tuberculosis. Iron is crucial for the biological functions of the cells. Iron assimilation, storage and their utilization is not only involved in pathogenesis but also in emergence of drug resistance strains. We previously reported that iron storing proteins (bacterioferritin and ferritin) were found to be overexpressed in aminoglycosides resistant isolates. In this study we performed the STRING analysis of bacterioferritin & ferritin proteins and predicted their interactive partners [ferrochelatase (hemH), Rv1877 (hypothetical protein/probable conserved integral membrane protein), uroporphyrinogen decarboxylase (hemE) trigger factor (tig), transcriptional regulatory protein (MT3948), hypothetical protein (MT1928), glnA3 (glutamine synthetase), molecular chaperone GroEL (groEL1 & hsp65), and hypothetical protein (MT3947)]. We suggested that interactive partners of bacterioferritin and ferritin are directly or indirectly involved in M. tuberculosis growth, homeostasis, iron assimilation, virulence, resistance, and stresses.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial DiseasesAgra, India
| | | |
Collapse
|
25
|
Sharma D, Bisht D. M. tuberculosis Hypothetical Proteins and Proteins of Unknown Function: Hope for Exploring Novel Resistance Mechanisms as well as Future Target of Drug Resistance. Front Microbiol 2017; 8:465. [PMID: 28377758 PMCID: PMC5359272 DOI: 10.3389/fmicb.2017.00465] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/07/2017] [Indexed: 01/22/2023] Open
Abstract
Drug resistance in tuberculosis predominantly, mono-resistance, multi drug resistance, extensively drug resistance and totally drug resistance have emerged as a major problem in the chemotherapy of tuberculosis. Failures of first and second line anti-tuberculosis drugs treatment leads to emergence of resistant Mycobacterium tuberculosis. Few genes are reported as the principal targets of the resistance and apart from the primary targets many explanations have been proposed for drug resistance but still some resistance mechanisms are unknown. As proteins involved in most of the biological processes, these are potentially explored the unknown mechanism of drug resistance and attractive targets for diagnostics/future therapeutics against drug resistance. In last decade a panel of studies on expression proteomics of drug resistant M. tuberculosis isolates reported the differential expression of uncharacterized proteins and suggested these might be involved in resistance. Here we emphasize that detailed bioinformatics analysis (like molecular docking, pupylation, and proteins-proteins interaction) of these uncharacterized and hypothetical proteins might predict their interactive partners (other proteins) which are involved in various pathways of M. tuberculosis system biology and might give a clue for novel mechanism of drug resistance or future drug targets. In future these uncharacterized targets might be open the new resistance mechanism and used as potential drug targets against drug resistant tuberculosis.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases,Agra, India
| | | |
Collapse
|