1
|
Dias J, Cadiñanos-Garai A, Roddie C. Release Assays and Potency Assays for CAR T-Cell Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:117-137. [PMID: 37258787 DOI: 10.1007/978-3-031-30040-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chimeric antigen receptor (CAR) T-cells are considered "living drugs" and offer a compelling alternative to conventional anticancer therapies. Briefly, T-cells are redirected, using gene engineering technology, toward a specific cancer cell surface target antigen via a synthetic chimeric antigen receptor (CAR) protein. CARs have a modular design comprising four main structures: an antigen-binding domain, a hinge region, a transmembrane domain, and one or more intracellular signaling domains for T-cell activation. A major challenge in the CAR T-cell manufacturing field is balancing product quality with scalability and cost-effectiveness, especially when transitioning from an academic clinical trial into a marketed product, to be implemented across many collection, manufacturing, and treatment sites. Achieving product consistency while circumnavigating the intrinsic variability associated with autologous products is an additional barrier. To overcome these limitations, a robust understanding of the product and its biological actions is crucial to establish a target product profile with a defined list of critical quality attributes to be assessed for each batch prior to product certification. Additional challenges arise as the field progresses, such as new safety considerations associated with the use of allogenic T-cells and genome editing tools. In this chapter, we will discuss the release and potency assays required for CAR T-cell manufacturing, covering their relevance, current challenges, and future perspectives.
Collapse
Affiliation(s)
- Juliana Dias
- UCL Cancer Institute, University College London, London, UK.
- Royal Free Hospital London, NHS Foundation Trust, London, UK.
| | - Amaia Cadiñanos-Garai
- USC/CHLA Cell Therapy Program, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, USA
| | - Claire Roddie
- UCL Cancer Institute, University College London, London, UK
- Department of Haematology, UCL Hospital, London, UK
| |
Collapse
|
2
|
Cheng J, Mao X, Chen C, Long X, Chen L, Zhou J, Zhu L. Monitoring anti-CD19 chimeric antigen receptor T cell population by flow cytometry and its consistency with digital droplet polymerase chain reaction. Cytometry A 2023; 103:16-26. [PMID: 35875964 PMCID: PMC10087589 DOI: 10.1002/cyto.a.24676] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/31/2022] [Accepted: 07/21/2022] [Indexed: 01/21/2023]
Abstract
Anti-CD19 chimeric antigen receptor (CAR19) T cell therapy has produced impressive clinical efficacy in patients with relapsed or refractory B-cell malignancies. As a living drug, monitoring the pharmacokinetics of CAR T cells in vivo is an important part of clinical work, which provides valuable information for assessing therapeutic response and related side effects. However, no guidelines are available regarding the detection and quantification of CAR T cells. Flow cytometry is a convenient and commonly used method in monitoring CAR T cell kinetics, but its performance remains to be validated. By using a commercial anti-idiotype antibody that detects unique epitopes on the most popular CAR19 construct, we evaluated important performance parameters, including specificity, lower limit of detection, lower limit of quantification, and precision of flow cytometry in the detection and quantification of CAR19 T cells. Consistency between the results generated by flow cytometry and droplet digital PCR was then investigated in 188 pairs of clinical data and in cell line experiments. Rabbit anti-mouse FMC63 monoclonal antibody possesses high specificity in the detection of CAR19 positive cells by FCM with a cut-off value of 0.05%. The results produced by flow cytometry and ddPCR were well correlated in the clinical samples and in cell lines, but the correlation deteriorated as the abundance of CAR19 positive cells decreased. This was especially evident with less than 0.5% of lymphocytes in clinical data, possibly due to reduced precision (indicated by intra- and inter-assay coefficients of variability) of both droplet digital PCR and flow cytometry. We demonstrated that flow cytometry using anti-idiotype antibody is a reliable and robust approach in the detection and quantification of CAR19 T cells in vivo and has good consistency with droplet digital PCR in monitoring CAR19 T cell kinetics.
Collapse
Affiliation(s)
- Jiali Cheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caixia Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolu Long
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Funk CR, Wang S, Chen KZ, Waller A, Sharma A, Edgar CL, Gupta VA, Chandrakasan S, Zoine JT, Fedanov A, Raikar SS, Koff JL, Flowers CR, Coma S, Pachter JA, Ravindranathan S, Spencer HT, Shanmugam M, Waller EK. PI3Kδ/γ inhibition promotes human CART cell epigenetic and metabolic reprogramming to enhance antitumor cytotoxicity. Blood 2022; 139:523-537. [PMID: 35084470 PMCID: PMC8796652 DOI: 10.1182/blood.2021011597] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Current limitations in using chimeric antigen receptor T(CART) cells to treat patients with hematological cancers include limited expansion and persistence in vivo that contribute to cancer relapse. Patients with chronic lymphocytic leukemia (CLL) have terminally differentiated T cells with an exhausted phenotype and experience low complete response rates after autologous CART therapy. Because PI3K inhibitor therapy is associated with the development of T-cell-mediated autoimmunity, we studied the effects of inhibiting the PI3Kδ and PI3Kγ isoforms during the manufacture of CART cells prepared from patients with CLL. Dual PI3Kδ/γ inhibition normalized CD4/CD8 ratios and maximized the number of CD8+ T-stem cell memory, naive, and central memory T-cells with dose-dependent decreases in expression of the TIM-3 exhaustion marker. CART cells manufactured with duvelisib (Duv-CART cells) showed significantly increased in vitro cytotoxicity against CD19+ CLL targets caused by increased frequencies of CD8+ CART cells. Duv-CART cells had increased expression of the mitochondrial fusion protein MFN2, with an associated increase in the relative content of mitochondria. Duv-CART cells exhibited increased SIRT1 and TCF1/7 expression, which correlated with epigenetic reprograming of Duv-CART cells toward stem-like properties. After transfer to NOG mice engrafted with a human CLL cell line, Duv-CART cells expressing either a CD28 or 41BB costimulatory domain demonstrated significantly increased in vivo expansion of CD8+ CART cells, faster elimination of CLL, and longer persistence. Duv-CART cells significantly enhanced survival of CLL-bearing mice compared with conventionally manufactured CART cells. In summary, exposure of CART to a PI3Kδ/γ inhibitor during manufacturing enriched the CART product for CD8+ CART cells with stem-like qualities and enhanced efficacy in eliminating CLL in vivo.
Collapse
Affiliation(s)
- Christopher Ronald Funk
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Shuhua Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Kevin Z Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Alexandra Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Aditi Sharma
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Claudia L Edgar
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Vikas A Gupta
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | | | - Jaquelyn T Zoine
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA
| | - Andrew Fedanov
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA
| | - Sunil S Raikar
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA
| | - Jean L Koff
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Christopher R Flowers
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX; and
| | | | | | - Sruthi Ravindranathan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - H Trent Spencer
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
4
|
Comparative analysis of assays to measure CAR T-cell-mediated cytotoxicity. Nat Protoc 2021; 16:1331-1342. [PMID: 33589826 DOI: 10.1038/s41596-020-00467-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023]
Abstract
The antitumor efficacy of genetically engineered 'living drugs', including chimeric antigen receptor and T-cell receptor T cells, is influenced by their activation, proliferation, inhibition, and exhaustion. A sensitive and reproducible cytotoxicity assay that collectively reflects these functions is an essential requirement for translation of these cellular therapeutic agents. Here, we compare various in vitro cytotoxicity assays (including chromium release, bioluminescence, impedance, and flow cytometry) with respect to their experimental setup, appropriate uses, advantages, and disadvantages, and measures to overcome their limitations. We also highlight the US Food and Drug Administration (FDA) directives for a potency assay for release of clinical cell therapy products. In addition, we discuss advanced assays of repeated antigen exposure and simultaneous testing of combinations of immune effector cells, immunomodulatory antibodies, and targets with variable antigen expression. This review article should help to equip investigators with the necessary knowledge to select appropriate cytotoxicity assays to test the efficacy of immunotherapeutic agents alone or in combination.
Collapse
|
5
|
Cornel AM, Szanto CL, van Til NP, van Velzen JF, Boelens JJ, Nierkens S. A "No-Touch" Antibody-Staining Method of Adherent Cells for High-Throughput Flow Cytometry in 384-Well Microplate Format for Cell-Based Drug Library Screening. Cytometry A 2019; 97:845-851. [PMID: 31876358 PMCID: PMC7496799 DOI: 10.1002/cyto.a.23956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
In the last decade, screening compound libraries on live cells has become an important step in drug discovery. The abundance of compounds in these libraries requires effective high‐throughput (HT) analyzing methods. Although current cell‐based assay protocols are suitable for HT analyses, the analysis itself is often restrained to simple, singular outcomes. Incorporation of HT samplers on flow cytometers has provided an interesting approach to increase the number of measurable parameters and increase the sensitivity and specificity of analyses. Nonetheless, to date, the labor intensive and time‐consuming strategies to detach and stain adherent cells before flow cytometric analysis has restricted use of HT flow cytometry (HTFC) to suspension cells. We have developed a universal “no‐touch” HTFC antibody staining protocol in 384‐well microplates to bypass washing and centrifuging steps of conventional flow cytometry protocols. Optimizing culture conditions, cell‐detachment and staining strategies in 384‐well microplates resulted in an HTFC protocol with an optimal stain index with minimal background staining. The method has been validated using six adherent cell lines and simultaneous staining of four parameters. This HT screening protocol allows for effective monitoring of multiple cellular markers simultaneously, thereby increasing informativity and cost‐effectiveness of drug screening. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Annelisa M Cornel
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Celina L Szanto
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Niek P van Til
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jeroen F van Velzen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jaap J Boelens
- Stem Cell transplantation and Cellular Therapies Program, Department Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
6
|
Ding M, Edwards BS. High-Throughput Flow Cytometry in Drug Discovery. SLAS DISCOVERY 2018; 23:599-602. [DOI: 10.1177/2472555218778250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Mei Ding
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - Bruce S. Edwards
- Department of Pathology, Center for Molecular Discovery, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|