1
|
Khan N, Kumar V, Li P, Schlapbach LJ, Boyd AW, Coulthard MG, Woodruff TM. Inhibiting Eph/ephrin signaling reduces vascular leak and endothelial cell dysfunction in mice with sepsis. Sci Transl Med 2024; 16:eadg5768. [PMID: 38657024 DOI: 10.1126/scitranslmed.adg5768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Sepsis is a life-threatening disease caused by a dysregulated host response to infection, resulting in 11 million deaths globally each year. Vascular endothelial cell dysfunction results in the loss of endothelial barrier integrity, which contributes to sepsis-induced multiple organ failure and mortality. Erythropoietin-producing hepatocellular carcinoma (Eph) receptors and their ephrin ligands play a key role in vascular endothelial barrier disruption but are currently not a therapeutic target in sepsis. Using a cecal ligation and puncture (CLP) mouse model of sepsis, we showed that prophylactic or therapeutic treatment of mice with EphA4-Fc, a decoy receptor and pan-ephrin inhibitor, resulted in improved survival and a reduction in vascular leak, lung injury, and endothelial cell dysfunction. EphA2-/- mice also exhibited reduced mortality and pathology after CLP compared with wild-type mice. Proteomics of plasma samples from mice with sepsis after CLP revealed dysregulation of a number of Eph/ephrins, including EphA2/ephrin A1. Administration of EphA4-Fc to cultured human endothelial cells pretreated with TNF-α or ephrin-A1 prevented loss of endothelial junction proteins, specifically VE-cadherin, with maintenance of endothelial barrier integrity. In children admitted to hospital with fever and suspected infection, we observed that changes in EphA2/ephrin A1 in serum samples correlated with endothelial and organ dysfunction. Targeting Eph/ephrin signaling may be a potential therapeutic strategy to reduce sepsis-induced endothelial dysfunction and mortality.
Collapse
Affiliation(s)
- Nemat Khan
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
- Mayne Academy of Paediatrics, Faculty of Medicine, University of Queensland, Queensland Children's Hospital, Brisbane, QLD 4101, Australia
| | - Vinod Kumar
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Pengcheng Li
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
- Mayne Academy of Paediatrics, Faculty of Medicine, University of Queensland, Queensland Children's Hospital, Brisbane, QLD 4101, Australia
| | - Luregn J Schlapbach
- Children's Intensive Care Research Program, Child Health Research Centre, University of Queensland, Brisbane, QLD 4101, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, QLD 4101, Australia
- Department of Intensive Care and Neonatology, and Children's Research Center, University Children's Hospital Zürich, University of Zürich, 8032 Zürich, Switzerland
| | - Andrew W Boyd
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - Mark G Coulthard
- Mayne Academy of Paediatrics, Faculty of Medicine, University of Queensland, Queensland Children's Hospital, Brisbane, QLD 4101, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, QLD 4101, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Bickle M. The Academic Pill: How Academia Contributes to Curing Diseases. SLAS DISCOVERY 2019; 24:203-212. [PMID: 30784367 PMCID: PMC6484663 DOI: 10.1177/2472555218824280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Marc Bickle
- 1 Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|