1
|
Neri I, Ramazzotti G, Mongiorgi S, Rusciano I, Bugiani M, Conti L, Cousin M, Giorgio E, Padiath QS, Vaula G, Cortelli P, Manzoli L, Ratti S. Understanding the Ultra-Rare Disease Autosomal Dominant Leukodystrophy: an Updated Review on Morpho-Functional Alterations Found in Experimental Models. Mol Neurobiol 2023; 60:6362-6372. [PMID: 37450245 PMCID: PMC10533580 DOI: 10.1007/s12035-023-03461-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Autosomal dominant leukodystrophy (ADLD) is an ultra-rare, slowly progressive, and fatal neurodegenerative disorder associated with the loss of white matter in the central nervous system (CNS). Several years after its first clinical description, ADLD was found to be caused by coding and non-coding variants in the LMNB1 gene that cause its overexpression in at least the brain of patients. LMNB1 encodes for Lamin B1, a protein of the nuclear lamina. Lamin B1 regulates many cellular processes such as DNA replication, chromatin organization, and senescence. However, its functions have not been fully characterized yet. Nevertheless, Lamin B1 together with the other lamins that constitute the nuclear lamina has firstly the key role of maintaining the nuclear structure. Being the nucleus a dynamic system subject to both biochemical and mechanical regulation, it is conceivable that changes to its structural homeostasis might translate into functional alterations. Under this light, this review aims at describing the pieces of evidence that to date have been obtained regarding the effects of LMNB1 overexpression on cellular morphology and functionality. Moreover, we suggest that further investigation on ADLD morpho-functional consequences is essential to better understand this complex disease and, possibly, other neurological disorders affecting CNS myelination.
Collapse
Affiliation(s)
- Irene Neri
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Isabella Rusciano
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Marianna Bugiani
- Department of Pathology, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, 1105, Amsterdam, The Netherlands
| | - Luciano Conti
- Department of Cellular, Computational, and Integrative Biology (CIBIO), Università Degli Studi Di Trento, 38123, Povo-Trento, Italy
| | - Margot Cousin
- Center for Individualized Medicine and Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy
- Medical Genetics Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - Quasar S Padiath
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Giovanna Vaula
- Department of Neuroscience, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, 10126, Turin, Italy
| | - Pietro Cortelli
- IRCCS, Istituto Di Scienze Neurologiche Di Bologna, 40139, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 , Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
2
|
Nmezi B, Bey GR, Oranburg TD, Dudnyk K, Lardo SM, Herdman N, Jacko A, Rubio S, Alcocer EL, Kofler J, Kim D, Rankin J, Kivuva E, Gutowski N, Schon K, van den Ameele J, Chinnery PF, Sousa SB, Palavra F, Toro C, Pinto E Vairo F, Saute J, Pan L, Alturkustani M, Hammond R, Gros-Louis F, Gold M, Park Y, Bernard G, Raininko R, Zhou J, Hainer SJ, Padiath QS. An oligodendrocyte silencer element underlies the pathogenic impact of lamin B1 structural variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551473. [PMID: 37609196 PMCID: PMC10441294 DOI: 10.1101/2023.08.03.551473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The role of non-coding regulatory elements and how they might contribute to tissue type specificity of disease phenotypes is poorly understood. Autosomal Dominant Leukodystrophy (ADLD) is a fatal, adult-onset, neurological disorder that is characterized by extensive CNS demyelination. Most cases of ADLD are caused by tandem genomic duplications involving the lamin B1 gene ( LMNB1 ) while a small subset are caused by genomic deletions upstream of the gene. Utilizing data from recently identified families that carry LMNB1 gene duplications but do not exhibit demyelination, ADLD patient tissues, CRISPR modified cell lines and mouse models, we have identified a novel silencer element that is lost in ADLD patients and that specifically targets overexpression to oligodendrocytes. This element consists of CTCF binding sites that mediate three-dimensional chromatin looping involving the LMNB1 and the recruitment of the PRC2 repressor complex. Loss of the silencer element in ADLD identifies a previously unknown role for silencer elements in tissue specificity and disease causation.
Collapse
|
3
|
Vogt A, Eicher SL, Myers TD, Hrizo SL, Vollmer LL, Meyer EM, Palladino MJ. A High-Content Screening Assay for Small Molecules That Stabilize Mutant Triose Phosphate Isomerase (TPI) as Treatments for TPI Deficiency. SLAS DISCOVERY 2021; 26:1029-1039. [PMID: 34167376 DOI: 10.1177/24725552211018198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Triose phosphate isomerase deficiency (TPI Df) is an untreatable, childhood-onset glycolytic enzymopathy. Patients typically present with frequent infections, anemia, and muscle weakness that quickly progresses with severe neuromusclar dysfunction requiring aided mobility and often respiratory support. Life expectancy after diagnosis is typically ~5 years. There are several described pathogenic mutations that encode functional proteins; however, these proteins, which include the protein resulting from the "common" TPIE105D mutation, are unstable due to active degradation by protein quality control (PQC) pathways. Previous work has shown that elevating mutant TPI levels by genetic or pharmacological intervention can ameliorate symptoms of TPI Df in fruit flies. To identify compounds that increase levels of mutant TPI, we have developed a human embryonic kidney (HEK) stable knock-in model expressing the common TPI Df protein fused with green fluorescent protein (HEK TPIE105D-GFP). To directly address the need for lead TPI Df therapeutics, these cells were developed into an optical drug discovery platform that was implemented for high-throughput screening (HTS) and validated in 3-day variability tests, meeting HTS standards. We initially used this assay to screen the 446-member National Institutes of Health (NIH) Clinical Collection and validated two of the hits in dose-response, by limited structure-activity relationship studies with a small number of analogs, and in an orthogonal, non-optical assay in patient fibroblasts. The data form the basis for a large-scale phenotypic screening effort to discover compounds that stabilize TPI as treatments for this devastating childhood disease.
Collapse
Affiliation(s)
- Andreas Vogt
- Department of Computational & Systems Biology, Drug Discovery Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Samantha L Eicher
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tracey D Myers
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacy L Hrizo
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Biology, Slippery Rock University of Pennsylvania, Slippery Rock, PA, USA
| | - Laura L Vollmer
- Department of Computational & Systems Biology, Drug Discovery Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Michael J Palladino
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|