1
|
Picciotto YD, Lithwick Algon A, Amit I, Vakil E, Saban W. Large-scale evidence for the validity of remote MoCA administration among people with cerebellar ataxia. Clin Neuropsychol 2024:1-17. [PMID: 39235357 DOI: 10.1080/13854046.2024.2397835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Objective: For over half a century, studies of rare diseases using in-person cognitive tools have faced challenges, such as long study periods and small sample sizes (e.g. n = 10). The Montreal Cognitive Assessment (MoCA) was widely employed to assess mild cognitive impairment (MCI). We aimed to validate a modified online version of the MoCA in a large sample of a rare disease (population prevalence < .01%). Method: First, we analyzed 20 previous findings (n = 1,377), comparing the MoCA scores between large groups of neurotypically healthy (NH; n = 837) and cerebellar ataxia (CA; n = 540), where studies were conducted in-person. Second, we administered the MoCA in-person to a group of NH (n = 41) and a large group of CA (n = 103). Third, we administered a video conferencing version of the MoCA to NH (n = 38) and a large group of CA (n = 83). Results: We observed no performance differences between online and in-person MoCA administration in the NH and CA groups (p > .05, η2 = 0.001), supporting reliability. Additionally, our online CA group had lower MoCA scores than the NH group (p < .001, Hedges' g = 0.68). This result is consistent with previous studies, as demonstrated by our forest plot across 20 previous in-person findings, supporting construct validity. Conclusion: The results indicate that an online screening tool is valid in a large sample of individuals with CA. Online testing is not only time and cost-effective, but facilitates disease management and monitoring, ultimately enabling early detection of MCI.
Collapse
Affiliation(s)
- Yael De Picciotto
- Center for Accessible Neuropsychology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Occupational Therapy, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avigail Lithwick Algon
- Center for Accessible Neuropsychology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Occupational Therapy, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Amit
- Center for Accessible Neuropsychology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Occupational Therapy, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eli Vakil
- Department of Psychology and Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Centre, Bar-Ilan University, Ramat-Gan, Israel
| | - William Saban
- Center for Accessible Neuropsychology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Occupational Therapy, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Singh S, Singh S, Joshi D, Mohanty C, Singh R. In Silico Prediction of Potential Inhibitors for Targeting RNA CAG Repeats via Molecular Docking and Dynamics Simulation: A Drug Discovery Approach. J Cell Biochem 2024; 125:e30611. [PMID: 38884365 DOI: 10.1002/jcb.30611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/03/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
Spinocerebellar ataxia (SCA) is a rare neurological illness inherited dominantly that causes severe impairment and premature mortality. While each rare disease may affect individuals infrequently, collectively they pose a significant healthcare challenge. It is mainly carried out due to the expansion of RNA triplet (CAG) repeats, although missense or point mutations can also be induced. Unfortunately, there is no cure; only symptomatic treatments are available. To date, SCA has about 48 subtypes, the most common of these being SCA 1, 2, 3, 6, 7, 12, and 17 having CAG repeats. Using molecular docking and molecular dynamics (MD) simulation, this study seeks to investigate effective natural herbal neuroprotective compounds against CAG repeats, which are therapeutically significant in treating SCA. Initially, virtual screening followed by molecular docking was used to estimate the binding affinity of neuroprotective natural compounds toward CAG repeats. The compound with the highest binding affinity, somniferine, was then chosen for MD simulation. The structural stability, interaction mechanism, and conformational dynamics of CAG repeats and somniferine were investigated via MD simulation. The MD study revealed that during the simulation period, the interaction between CAG repeats and somniferine stabilizes and results in fewer conformational variations. This in silico study suggests that Somniferine can be used as a therapeutic medication against RNA CAG repeats in SCA.
Collapse
Affiliation(s)
- Surbhi Singh
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Suchitra Singh
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Deepika Joshi
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Chhandamayee Mohanty
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Royana Singh
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Vohra A, Keefe P, Puthanveetil P. Altered Metabolic Signaling and Potential Therapies in Polyglutamine Diseases. Metabolites 2024; 14:320. [PMID: 38921455 PMCID: PMC11205831 DOI: 10.3390/metabo14060320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Polyglutamine diseases comprise a cluster of genetic disorders involving neurodegeneration and movement disabilities. In polyglutamine diseases, the target proteins become aberrated due to polyglutamine repeat formation. These aberrant proteins form the root cause of associated complications. The metabolic regulation during polyglutamine diseases is not well studied and needs more attention. We have brought to light the significance of regulating glutamine metabolism during polyglutamine diseases, which could help in decreasing the neuronal damage associated with excess glutamate and nucleotide generation. Most polyglutamine diseases are accompanied by symptoms that occur due to excess glutamate and nucleotide accumulation. Along with a dysregulated glutamine metabolism, the Nicotinamide adenine dinucleotide (NAD+) levels drop down, and, under these conditions, NAD+ supplementation is the only achievable strategy. NAD+ is a major co-factor in the glutamine metabolic pathway, and it helps in maintaining neuronal homeostasis. Thus, strategies to decrease excess glutamate and nucleotide generation, as well as channelizing glutamine toward the generation of ATP and the maintenance of NAD+ homeostasis, could aid in neuronal health. Along with understanding the metabolic dysregulation that occurs during polyglutamine diseases, we have also focused on potential therapeutic strategies that could provide direct benefits or could restore metabolic homeostasis. Our review will shed light into unique metabolic causes and into ideal therapeutic strategies for treating complications associated with polyglutamine diseases.
Collapse
Affiliation(s)
- Alisha Vohra
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (A.V.); (P.K.)
| | - Patrick Keefe
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (A.V.); (P.K.)
| | - Prasanth Puthanveetil
- College of Graduate Studies, Department of Pharmacology, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
4
|
Pilotto F, Del Bondio A, Puccio H. Hereditary Ataxias: From Bench to Clinic, Where Do We Stand? Cells 2024; 13:319. [PMID: 38391932 PMCID: PMC10886822 DOI: 10.3390/cells13040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Cerebellar ataxias are a wide heterogeneous group of movement disorders. Within this broad umbrella of diseases, there are both genetics and sporadic forms. The clinical presentation of these conditions can exhibit a diverse range of symptoms across different age groups, spanning from pure cerebellar manifestations to sensory ataxia and multisystemic diseases. Over the last few decades, advancements in our understanding of genetics and molecular pathophysiology related to both dominant and recessive ataxias have propelled the field forward, paving the way for innovative therapeutic strategies aimed at preventing and arresting the progression of these diseases. Nevertheless, the rarity of certain forms of ataxia continues to pose challenges, leading to limited insights into the etiology of the disease and the identification of target pathways. Additionally, the lack of suitable models hampers efforts to comprehensively understand the molecular foundations of disease's pathophysiology and test novel therapeutic interventions. In the following review, we describe the epidemiology, symptomatology, and pathological progression of hereditary ataxia, including both the prevalent and less common forms of these diseases. Furthermore, we illustrate the diverse molecular pathways and therapeutic approaches currently undergoing investigation in both pre-clinical studies and clinical trials. Finally, we address the existing and anticipated challenges within this field, encompassing both basic research and clinical endeavors.
Collapse
Affiliation(s)
- Federica Pilotto
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| | - Andrea Del Bondio
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| | - Hélène Puccio
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| |
Collapse
|
5
|
Álvarez-Cuesta JA, Mora-Batista C, Reyes-Carreto R, Carrillo-Rodes FJ, Fitz SJT, González-Zaldivar Y, Vargas-De-León C. On the Cut-Off Value of the Anteroposterior Diameter of the Midbrain Atrophy in Spinocerebellar Ataxia Type 2 Patients. Brain Sci 2024; 14:53. [PMID: 38248268 PMCID: PMC10813098 DOI: 10.3390/brainsci14010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
(1) Background: Spinocerebellar ataxias (SCA) is a term that refers to a group of hereditary ataxias, which are neurological diseases characterized by degeneration of the cells that constitute the cerebellum. Studies suggest that magnetic resonance imaging (MRI) supports diagnoses of ataxias, and linear measurements of the aneteroposterior diameter of the midbrain (ADM) have been investigated using MRI. These measurements correspond to studies in spinocerebellar ataxia type 2 (SCA2) patients and in healthy subjects. Our goal was to obtain the cut-off value for ADM atrophy in SCA2 patients. (2) Methods: This study evaluated 99 participants (66 SCA2 patients and 33 healthy controls). The sample was divided into estimations (80%) and validation (20%) samples. Using the estimation sample, we fitted a logistic model using the ADM and obtained the cut-off value through the inverse of regression. (3) Results: The optimal cut-off value of ADM was found to be 18.21 mm. The area under the curve (AUC) of the atrophy risk score was 0.957 (95% CI: 0.895-0.991). Using this cut-off on the validation sample, we found a sensitivity of 100.00% (95% CI: 76.84%-100.00%) and a specificity of 85.71% (95% CI: 42.13%-99.64%). (4) Conclusions: We obtained a cut-off value that has an excellent discriminatory capacity to identify SCA2 patients.
Collapse
Affiliation(s)
- José Alberto Álvarez-Cuesta
- Centro de Investigación y Rehabilitación de las Ataxias Hereditarias, VPWP+RM5, Holguín 80100, Cuba; (J.A.Á.-C.); (F.J.C.-R.); (Y.G.-Z.)
| | - Camilo Mora-Batista
- Facultad de Matemáticas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39087, Mexico;
| | - Ramón Reyes-Carreto
- Facultad de Matemáticas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39087, Mexico;
| | - Frank Jesus Carrillo-Rodes
- Centro de Investigación y Rehabilitación de las Ataxias Hereditarias, VPWP+RM5, Holguín 80100, Cuba; (J.A.Á.-C.); (F.J.C.-R.); (Y.G.-Z.)
| | | | - Yanetza González-Zaldivar
- Centro de Investigación y Rehabilitación de las Ataxias Hereditarias, VPWP+RM5, Holguín 80100, Cuba; (J.A.Á.-C.); (F.J.C.-R.); (Y.G.-Z.)
| | - Cruz Vargas-De-León
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico
- Laboratorio de Modelación Bioestadística para la Salud, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
6
|
Morris S, Vallortigara J, Greenfield J, Hunt B, Hoffman D, Reinhard C, Graessner H, Federico A, Quoidbach V, Giunti P. Impact of specialist ataxia centres on health service resource utilisation and costs across Europe: cross-sectional survey. Orphanet J Rare Dis 2023; 18:382. [PMID: 38062507 PMCID: PMC10704806 DOI: 10.1186/s13023-023-02971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Little is known about the costs of treating ataxia and whether treatment at a specialist ataxia centre affects the cost of care. The aim of this study was to investigate whether patients who attended specialist ataxia centres in three European countries reported differences in their health care use and costs compared with patients who did not attend a specialist ataxia centre. We compared mean resource use and health service costs per patient affected by ataxia in the United Kingdom, Italy and Germany over a 12-month period. Data were obtained from a survey distributed to people with ataxia in the three countries. We compared mean resource use for each contact type and costs, stratifying patients by whether they were currently attending a specialist ataxia centre or had never attended one. RESULTS Responses were received from 181 patients from the United Kingdom, 96 from Italy and 43 from Germany. Differences in the numbers of contacts for most types of health service use between the specialist ataxia centre and non-specialist ataxia centre groups were non-significant. In the United Kingdom the mean total cost per patient was €2209 for non-specialist ataxia centre patients and €1813 for specialist ataxia centre patients (P = 0.59). In Italy these figures were €2126 and €1971, respectively (P = 0.84). In Germany they were €2431 and €4087, respectively (P = 0.19). Inpatient stays made the largest contribution to total costs. CONCLUSIONS Within each country, resource use and costs were broadly similar for specialist ataxia centre and non-specialist ataxia centre groups. There were differences between countries in terms of health care contacts and costs.
Collapse
Affiliation(s)
- Stephen Morris
- Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, East Forvie Building, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK.
| | - Julie Vallortigara
- Ataxia Centre, Queen Square Institute of Neurology, Department of Molecular and Movement Neurosciences, University College London, Queen Square House, London, WC1N 3BG, UK
| | | | | | | | - Carola Reinhard
- Centre for Rare Diseases and Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Holm Graessner
- Centre for Rare Diseases and Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Siena, Italy
- European Academy of Neurology, Vienna, Austria
| | | | - Paola Giunti
- Ataxia Centre, Queen Square Institute of Neurology, Department of Molecular and Movement Neurosciences, University College London, Queen Square House, London, WC1N 3BG, UK.
| |
Collapse
|
7
|
Vallortigara J, Greenfield J, Hunt B, Hoffman D, Reinhard C, Graessner H, Federico A, Quoidbach V, Morris S, Giunti P. Patient pathways for rare diseases in Europe: ataxia as an example. Orphanet J Rare Dis 2023; 18:328. [PMID: 37848998 PMCID: PMC10583310 DOI: 10.1186/s13023-023-02907-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/04/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Progressive ataxias are rare and complex neurological disorders that represent a challenge for the clinicians to diagnose and manage them. This study explored the patient pathways of individuals attending specialist ataxia centres (SAC) compared with non-specialist settings. We investigated specifically how diagnosis was reached, the access to healthcare services, treatments, and care satisfaction. The focus of this study was on early intervention, coordination of treatment to understand the care provision in different countries. METHODS A patient survey was done in the UK, Germany and Italy to gather information about diagnosis and management of the ataxias in specialist (SAC) and non-specialist settings, utilisation of other primary and secondary health care services, and patients' satisfaction of received treatment. RESULTS Patients gave positive feedback about the role of SAC in understanding their condition, ways to manage their ataxia (p < 0.001; UK) and delivering care adapted to their needs (p < 0.001; UK), in coordinating referrals to other healthcare specialists, and in offering opportunities to take part in research studies. Similar barriers for patients were identified in accessing the SACs among the selected countries, UK, Germany, and Italy. CONCLUSIONS This study provides crucial information about the ataxia patients care pathways in three European countries. Overall, the results showed a trend in patients' satisfaction being better in SAC compared to non-SAC. The outcomes can be used now for policy recommendations on how to improve treatment and care for people with these very rare and complex neurological diseases across Europe.
Collapse
Affiliation(s)
- Julie Vallortigara
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square House, Queen Square, London, WC1N 3BG, UK
| | | | | | | | - Carola Reinhard
- Centre for Rare Diseases and Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Holm Graessner
- Centre for Rare Diseases and Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Italy and European Academy of Neurology, Siena, Italy
| | | | - Steve Morris
- Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square House, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
8
|
A novel biallelic variant further delineates PRDX3-related autosomal recessive cerebellar ataxia. Neurogenetics 2023; 24:55-60. [PMID: 36190665 DOI: 10.1007/s10048-022-00701-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/23/2022] [Indexed: 01/01/2023]
Abstract
Cerebellar ataxias (CAs) comprise a rare group of neurological disorders characterized by extensive phenotypic and genetic heterogeneity. In the last several years, our understanding of the CA etiology has increased significantly and resulted in the discoveries of numerous ataxia-associated genes. Herein, we describe a single affected individual from a consanguineous family segregating a recessive neurodevelopmental disorder. The proband showed features such as global developmental delay, cerebellar atrophy, hypotonia, speech issues, dystonia, and profound hearing impairment. Whole-exome sequencing and Sanger sequencing revealed a biallelic nonsense variant (c.496A > T; p.Lys166*) in the exon 5 of the PRDX3 gene that segregated perfectly within the family. This is the third report that associates the PRDX3 gene variant with cerebellar ataxia. In addition, associated hearing impairment further delineates the PRDX3 associated gene phenotypes.
Collapse
|
9
|
Jerie M, Vackova Z, Vojtech Z, Mares J, Meluzinova E, Krajciova J, Vymazal J, Cerna H, Martinek J. Prevalence of neurodegenerative/demyelinating disorders in patients with achalasia. Transl Neurosci 2022; 13:361-368. [PMID: 36304096 PMCID: PMC9552774 DOI: 10.1515/tnsci-2022-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction Esophageal achalasia is a primary motility disorder. Although the exact pathogenesis is unknown, autoimmune, and neurodegenerative processes seem to be involved similarly to neurodegenerative and/or demyelinating disorders (NDDs). We hypothesized that the prevalence of NDD may be higher among patients with achalasia and vice versa as the background pathogenetic mechanisms are similar. Methods This was a prospective, comparative questionnaire-based study. Patients with achalasia and patients with NDD were enrolled. Selected patients with achalasia were thoroughly examined by a neurologist and selected patients with NDD were examined by a gastroenterologist to confirm or rule out NDD or achalasia. We assessed the prevalence of both achalasia and NDD and compared them with their prevalence in general population. Results A total of 150 patients with achalasia and 112 patients with NDD were enrolled. We observed an increased prevalence of NDD among patients with achalasia (6.0% (9/150); 95% CI (confidence interval): 3.1–11.2%) as compared to the estimated 2.0% prevalence in general population (p = 0.003). Although 32 out of 112 patients (28.6%) with NDD reported dysphagia, we did not observe significantly increased prevalence of achalasia in these patients (1.8% (2/112) vs 0.8% in general population, p = 0.226). Conclusion The prevalence of NDD was significantly higher among patients with achalasia (6.0%) compared to general population (2.0%), suggesting an association of these disorders. Large-volume studies are necessary to confirm this finding.
Collapse
Affiliation(s)
- Martin Jerie
- First Faculty of Medicine, Charles University, 12108 Prague, Czech Republic
- Department of Neurology, Na Homolce Hospital, 15000 Prague, Czech Republic
| | - Zuzana Vackova
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
- Institute of Physiology, First Faculty of Medicine, Charles University, 12108 Prague, Czech Republic
| | - Zdenek Vojtech
- Department of Neurology, Na Homolce Hospital, 15000 Prague, Czech Republic
- Charles University, Third Faculty of Medicine, 10000 Prague, Czech Republic
| | - Jan Mares
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Eva Meluzinova
- Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, 15000 Prague, Czech Republic
| | - Jana Krajciova
- Institute of Physiology, First Faculty of Medicine, Charles University, 12108 Prague, Czech Republic
- ResTrial s.r.o., 16000 Prague, Czech Republic
| | - Josef Vymazal
- Department of Radiology, Na Homolce Hospital, 15000 Prague, Czech Republic
| | - Hana Cerna
- Sarkamed s.r.o., 27401 Slany, Czech Republic
| | - Jan Martinek
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
- Institute of Physiology, First Faculty of Medicine, Charles University, 12108 Prague, Czech Republic
| |
Collapse
|
10
|
van der Horn HJ, Meles SK, Kok JG, Vergara VM, Qi S, Calhoun VD, Dalenberg JR, Siero JCW, Renken RJ, de Vries JJ, Spikman JM, Kremer HPH, De Jong BM. A resting-state fMRI pattern of spinocerebellar ataxia type 3 and comparison with 18F-FDG PET. Neuroimage Clin 2022; 34:103023. [PMID: 35489193 PMCID: PMC9062756 DOI: 10.1016/j.nicl.2022.103023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
Abstract
This is the first study identifying a resting-state fMRI pattern in SCA3. This pattern was closely associated with a metabolic (18F-FDG PET) counterpart. Pattern subject scores were highly correlated with ataxia severity.
Spinocerebellar ataxia type 3 (SCA3) is a rare genetic neurodegenerative disease. The neurobiological basis of SCA3 is still poorly understood, and up until now resting-state fMRI (rs-fMRI) has not been used to study this disease. In the current study we investigated (multi-echo) rs-fMRI data from patients with genetically confirmed SCA3 (n = 17) and matched healthy subjects (n = 16). Using independent component analysis (ICA) and subsequent regression with bootstrap resampling, we identified a pattern of differences between patients and healthy subjects, which we coined the fMRI SCA3 related pattern (fSCA3-RP) comprising cerebellum, anterior striatum and various cortical regions. Individual fSCA3-RP scores were highly correlated with a previously published 18F-FDG PET pattern found in the same sample (rho = 0.78, P = 0.0003). Also, a high correlation was found with the Scale for Assessment and Rating of Ataxia scores (r = 0.63, P = 0.007). No correlations were found with neuropsychological test scores, nor with levels of grey matter atrophy. Compared with the 18F-FDG PET pattern, the fSCA3-RP included a more extensive contribution of the mediofrontal cortex, putatively representing changes in default network activity. This rs-fMRI identification of additional regions is proposed to reflect a consequence of the nature of the BOLD technique, enabling measurement of dynamic network activity, compared to the more static 18F-FDG PET methodology. Altogether, our findings shed new light on the neural substrate of SCA3, and encourage further validation of the fSCA3-RP to assess its potential contribution as imaging biomarker for future research and clinical use.
Collapse
Affiliation(s)
- Harm J van der Horn
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands.
| | - Sanne K Meles
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Jelmer G Kok
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Victor M Vergara
- Tri-institutional Center for Translational Research (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Shile Qi
- Tri-institutional Center for Translational Research (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Jelle R Dalenberg
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Jeroen C W Siero
- Department of Radiology, Utrecht Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands; Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, the Netherlands
| | - Remco J Renken
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Jeroen J de Vries
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Jacoba M Spikman
- Department of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hubertus P H Kremer
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Bauke M De Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| |
Collapse
|
11
|
Sharma P, Sonakar AK, Tyagi N, Suroliya V, Kumar M, Kutum R, Asokchandran V, Ambawat S, Shamim U, Anand A, Ahmad I, Shakya S, Uppili B, Mathur A, Parveen S, Jain S, Singh J, Seth M, Zahra S, Joshi A, Goel D, Sahni S, Kamai A, Wadhwa S, Murali A, Saifi S, Chowdhury D, Pandey S, Anand KS, Narasimhan RL, Laskar S, Kushwaha S, Kumar M, Shaji CV, Srivastava MVP, Srivastava AK, Faruq M. Genetics of Ataxias in Indian Population: A Collative Insight from a Common Genetic Screening Tool. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100078. [PMID: 36618024 PMCID: PMC9744545 DOI: 10.1002/ggn2.202100078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 01/11/2023]
Abstract
Cerebellar ataxias (CAs) represent a group of autosomal dominant and recessive neurodegenerative disorders affecting cerebellum with or without spinal cord. Overall, CAs have preponderance for tandem nucleotide repeat expansions as an etiological factor (10 TREs explain nearly 30-40% of ataxia cohort globally). The experience of 10 years of common genetic ataxia subtypes for ≈5600 patients' referrals (Pan-India) received at a single center is shared herein. Frequencies (in %, n) of SCA types and FRDA in the sample cohort are observed as follows: SCA12 (8.6%, 490); SCA2 (8.5%, 482); SCA1 (4.8%, 272); SCA3 (2%, 113); SCA7 (0.5%, 28); SCA6 (0.1%, 05); SCA17 (0.1%, 05), and FRDA (2.2%, 127). A significant amount of variability in TRE lengths at each locus is observed, we noted presence of biallelic expansion, co-occurrence of SCA-subtypes, and the presence of premutable normal alleles. The frequency of mutated GAA-FRDA allele in healthy controls is 1/158 (0.63%), thus an expected FRDA prevalence of 1:100 000 persons. The data of this study are relevant not only for clinical decision making but also for guidance in direction of genetic investigations, transancestral comparison of genotypes, and lastly provide insight for policy decision for the consideration of SCAs under rare disease category.
Collapse
Affiliation(s)
- Pooja Sharma
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | | | - Nishu Tyagi
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Varun Suroliya
- Neurology DepartmentNeuroscience CentreNew Delhi110029India
| | - Manish Kumar
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Rintu Kutum
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Vivekananda Asokchandran
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Sakshi Ambawat
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Uzma Shamim
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Avni Anand
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Ishtaq Ahmad
- Neurology DepartmentNeuroscience CentreNew Delhi110029India
| | - Sunil Shakya
- Neurology DepartmentNeuroscience CentreNew Delhi110029India
| | - Bharathram Uppili
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Aradhana Mathur
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Shaista Parveen
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Shweta Jain
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Jyotsna Singh
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Neurology DepartmentNeuroscience CentreNew Delhi110029India
| | - Malika Seth
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Sana Zahra
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Aditi Joshi
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Divya Goel
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Shweta Sahni
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Asangla Kamai
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Saruchi Wadhwa
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Aparna Murali
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Sheeba Saifi
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | | | - Sanjay Pandey
- Department of NeurologyGB Pant HospitalDelhi110002India
| | - Kuljeet Singh Anand
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchDr. Ram Manohar Lohia HospitalNew Delhi110001India
| | | | | | - Suman Kushwaha
- Department of NeurologyInstitute of Human Behaviour and Allied SciencesDelhi110095India
| | | | | | | | | | - Mohammed Faruq
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | | |
Collapse
|
12
|
Koebley SR, Mikheikin A, Leslie K, Guest D, McConnell-Wells W, Lehman JH, Al Juhaishi T, Zhang X, Roberts CH, Picco L, Toor A, Chesney A, Reed J. Digital Polymerase Chain Reaction Paired with High-Speed Atomic Force Microscopy for Quantitation and Length Analysis of DNA Length Polymorphisms. ACS NANO 2020; 14:15385-15393. [PMID: 33169971 DOI: 10.1021/acsnano.0c05897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
DNA length polymorphisms are found in many serious diseases, and assessment of their length and abundance is often critical for accurate diagnosis. However, measuring their length and frequency in a mostly wild-type background, as occurs in many situations, remains challenging due to their variable and repetitive nature. To overcome these hurdles, we combined two powerful techniques, digital polymerase chain reaction (dPCR) and high-speed atomic force microscopy (HSAFM), to create a simple, rapid, and flexible method for quantifying both the size and proportion of DNA length polymorphisms. In our approach, individual amplicons from each dPCR partition are imaged and sized directly. We focused on internal tandem duplications (ITDs) located within the FLT3 gene, which are associated with acute myeloid leukemia and often indicative of a poor prognosis. In an analysis of over 1.5 million HSAFM-imaged amplicons from cell line and clinical samples containing FLT3-ITDs, dPCR-HSAFM returned the expected variant length and variant allele frequency, down to 5% variant samples. As a high-throughput method with single-molecule resolution, dPCR-HSAFM thus represents an advance in HSAFM analysis and a powerful tool for the diagnosis of length polymorphisms.
Collapse
Affiliation(s)
- Sean R Koebley
- Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Andrey Mikheikin
- Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kevin Leslie
- Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Daniel Guest
- Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Wendy McConnell-Wells
- Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Joshua H Lehman
- Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Taha Al Juhaishi
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Xiaojie Zhang
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Catherine H Roberts
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Loren Picco
- Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Amir Toor
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Alden Chesney
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Jason Reed
- Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
13
|
Kashyap B, Phan D, Pathirana PN, Horne M, Power L, Szmulewicz D. Objective Assessment of Cerebellar Ataxia: A Comprehensive and Refined Approach. Sci Rep 2020; 10:9493. [PMID: 32528140 PMCID: PMC7289865 DOI: 10.1038/s41598-020-65303-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/24/2020] [Indexed: 12/25/2022] Open
Abstract
Parametric analysis of Cerebellar Ataxia (CA) could be of immense value compared to its subjective clinical assessments. This study focuses on a comprehensive scheme for objective assessment of CA through the instrumented versions of 9 commonly used neurological tests in 5 domains- speech, upper limb, lower limb, gait and balance. Twenty-three individuals diagnosed with CA to varying degrees and eleven age-matched healthy controls were recruited. Wearable inertial sensors and Kinect camera were utilised for data acquisition. Binary and multilabel discrimination power and intra-domain relationships of the features extracted from the sensor measures and the clinical scores were compared using Graph Theory, Centrality Measures, Random Forest binary and multilabel classification approaches. An optimal subset of 13 most important Principal Component (PC) features were selected for CA-control classification. This classification model resulted in an impressive performance accuracy of 97% (F1 score = 95.2%) with Holmesian dimensions distributed as 47.7% Stability, 6.3% Timing, 38.75% Accuracy and 7.24% Rhythmicity. Another optimal subset of 11 PC features demonstrated an F1 score of 84.2% in mapping the total 27 PC across 5 domains during CA multilabel discrimination. In both cases, the balance (Romberg) test contributed the most (31.1% and 42% respectively), followed by the peripheral tests whereas gait (Walking) test contributed the least. These findings paved the way for a better understanding of the feasibility of an instrumented system to assist informed clinical decision-making.
Collapse
Affiliation(s)
- Bipasha Kashyap
- Networked Sensing and Control Lab, School of Engineering, Deakin University, Waurn Ponds, Victoria, Australia.
| | - Dung Phan
- Networked Sensing and Control Lab, School of Engineering, Deakin University, Waurn Ponds, Victoria, Australia
| | - Pubudu N Pathirana
- Networked Sensing and Control Lab, School of Engineering, Deakin University, Waurn Ponds, Victoria, Australia
| | - Malcolm Horne
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Laura Power
- Balance Disorders and Ataxia Service, Royal Victorian Eye and Ear Hospital, St Andrews Place, East Melbourne, Victoria, Australia
| | - David Szmulewicz
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Balance Disorders and Ataxia Service, Royal Victorian Eye and Ear Hospital, St Andrews Place, East Melbourne, Victoria, Australia
- Cerebellar Ataxia Clinic, Alfred Hospital, Prahran, Victoria, Australia
| |
Collapse
|
14
|
Binda F, Pernaci C, Saxena S. Cerebellar Development and Circuit Maturation: A Common Framework for Spinocerebellar Ataxias. Front Neurosci 2020; 14:293. [PMID: 32300292 PMCID: PMC7145357 DOI: 10.3389/fnins.2020.00293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/13/2020] [Indexed: 01/24/2023] Open
Abstract
Spinocerebellar ataxias (SCAs) affect the cerebellum and its afferent and efferent systems that degenerate during disease progression. In the cerebellum, Purkinje cells (PCs) are the most vulnerable and their prominent loss in the late phase of the pathology is the main characteristic of these neurodegenerative diseases. Despite the constant advancement in the discovery of affected molecules and cellular pathways, a comprehensive description of the events leading to the development of motor impairment and degeneration is still lacking. However, in the last years the possible causal role for altered cerebellar development and neuronal circuit wiring in SCAs has been emerging. Not only wiring and synaptic transmission deficits are a common trait of SCAs, but also preventing the expression of the mutant protein during cerebellar development seems to exert a protective role. By discussing this tight relationship between cerebellar development and SCAs, in this review, we aim to highlight the importance of cerebellar circuitry for the investigation of SCAs.
Collapse
Affiliation(s)
- Francesca Binda
- Department of Neurology, Center for Experimental Neurology, University Hospital of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Carla Pernaci
- Department of Neurology, Center for Experimental Neurology, University Hospital of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, University Hospital of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|