1
|
Fang Y, Yang C, Lu Y, Wei L, Zhao J, Lu L, Lin J. Based on the Network Pharmacology to Investigate the Mechanism of Qingjie Fuzheng Granules against Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7242640. [PMID: 35280511 PMCID: PMC8916896 DOI: 10.1155/2022/7242640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 01/19/2023]
Abstract
Qingjie Fuzheng granules (QFG) exert an anticancer effect against colorectal cancers (CRC). However, the pharmacological molecular mechanisms are still unclear. This study was aimed to establish a simple method to predict targets of QFG against CRC by the network pharmacology strategy. 461 compounds and 1559 targets in QFG were enriched by BATMAN-TCM. 21 of the common targets were obtained by the groups of "Jun," "Chen," "Zuo," and "Shi" medicine in QFG. The enrichment analyses of GO functional terms, KEGG pathway, and OMIM/TTD diseases displayed the targets in the different and complementary effects of four functional medicines in QFG. Then, 613 differential targets for QFG in CRC were identified. GO functional terms and KEGG pathway analyses showed that QFG regulated the inflammatory function and lipid metabolic process. There were also targets that played a role in the binding to the receptors in membranes, in the activation of the transportation signal, and provided pain relief by regulation of the neural related pathways. Next, the protein-protein interaction network was analyzed, and the levels of the predicted targets in CRC primary tumor were explored, and 7 candidate targets of QFG against CRC were obtained. Furthermore, with real-time PCR and enzyme-linked immunosorbent assay (ELISA) analysis, downregulation of dopamine D2 receptor (DRD2) and interleukin-6 (IL-6), and upregulation of interleukin-10 (IL-10) were identified following the treatment of QFG. At last, the survival and prognosis of the potential targets of QFG in CRC patients were analyzed by GenomicScape, and IL-6 was suggested to be an index for the regulation of QFG in CRC. These results might elucidate the possible antitumor mechanism of QFG and highlight the candidate therapeutic targets and the application direction in clinical treatment for QFG.
Collapse
Affiliation(s)
- Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Chi Yang
- Institute of Edible Fungi, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Yao Lu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jinyan Zhao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Lisha Lu
- Oncology Department, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
2
|
Zhu X, Chen Y, Lin M, Huang B, Lin J. Qingjie Fuzheng Granule Inhibits EMT and Induces Autophagy in Colorectal Cancer via mTOR Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9950499. [PMID: 34887935 PMCID: PMC8651347 DOI: 10.1155/2021/9950499] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/04/2021] [Accepted: 11/03/2021] [Indexed: 01/10/2023]
Abstract
Qingjie Fuzheng granule (QFG) is a traditional Chinese medicinal formula used extensively as an alternative medicine for cancer treatment, including colorectal cancer (CRC). But its pathological mechanism in CRC is unclear. To study antitumor treatment effects and mechanisms of QFG, we established a CRC HCT-116 xenograft mouse model and assessed QFG on EMT and autophagy progression in vivo. The mice were randomly divided into 2 groups (n = 10 each group) and treated with intragastric administration of 1 g/kg of QFG or saline 6 days a week for 28 days (4 weeks). Body weight was measured every other day with electronic balance. At the end of the treatment, the tumor weight was measured. Immunohistochemical (IHC) and western blot (WB) assay were used to detect the expression level of E-cadherin, N-cadherin, vimentin, and TWIST1 to evaluate the effect of QFG on tumor cell EMT progression. IHC and WB assay were also used to detect the expression level of beclin-1, LC3-II, and p62 to evaluate the effect of QFG on tumor cell autophagy progression. Furthermore, the expression level of relative proteins in mTOR pathway was detected by WB assay to investigate the mechanism of QFG effect on CRC. We discovered that QFG inhibited the rise of tumor weight while it had no effect on mice body weight, which proved that QFG could inhibit CRC growth progression without significant side effects in vivo. In addition, QFG treatment inhibited EMT and induced autophagy progression in CRC tumor cells, including that QFG upregulated the expression of E-cadherin, beclin-1, and LC3-II, but downregulated the expression of N-cadherin, vimentin, TWIST1, and p62. And, QFG decreased the ratio of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR, but increased the ratio of p-AMPK/AMPK. All findings from this research proved that QFG can induce autophagy and inhibit EMT progression in CRC via regulating the mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaoqin Zhu
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine (Fujian University of Traditional Chinese Medicine), Fujian Province University, Fuzhou 350122, China
| | - Yongan Chen
- Department of Oncology, Naval Medical Center of Chinese People's Liberation Army, Shanghai 20000, China
| | - Minghe Lin
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine (Fujian University of Traditional Chinese Medicine), Fujian Province University, Fuzhou 350122, China
| | - Bin Huang
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine (Fujian University of Traditional Chinese Medicine), Fujian Province University, Fuzhou 350122, China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine (Fujian University of Traditional Chinese Medicine), Fujian Province University, Fuzhou 350122, China
| |
Collapse
|
3
|
Li W, Zhou J, Zhang Y, Zhang J, Li X, Yan Q, Han J, Hu F. Echinacoside exerts anti-tumor activity via the miR-503-3p/TGF-β1/Smad aixs in liver cancer. Cancer Cell Int 2021; 21:304. [PMID: 34112163 PMCID: PMC8191129 DOI: 10.1186/s12935-021-01890-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background Echinacoside (ECH) is the main active ingredient of Cistanches Herba, which is known to have therapeutic effects on metastatic tumors. However, the effects of ECH on liver cancer are still unclear. This study was to investigate the effects of ECH on the aggression of liver cancer cells. Methods Two types of liver cancer cells Huh7 and HepG2 were treated with different doses of ECH at different times and gradients. MTT and colony formation assays were used to determine the effects of ECH on the viability of Huh7 and HepG2 cells. Transwell assays and flow cytometry assays were used to detect the effects of ECH treatment on the invasion, migration, apoptosis and cell cycle of Huh7 and HepG2 cells. Western blot analysis was used to detect the effects of ECH on the expression levels of TGF-β1, smad3, smad7, apoptosis-related proteins (Caspase-3, Caspase-8), and Cyto C in liver cancer cells. The relationship between miR-503-3p and TGF-β1 was detected using bioinformatics analysis and Luciferase reporter assay. Results The results showed that ECH inhibited the proliferation, invasion and migration of Huh7 and HepG2 cells in a dose- and time-dependent manner. Moreover, we found that ECH caused Huh7 and HepG2 cell apoptosis by blocking cells in S phase. Furthermore, the expression of miR-503-3p was found to be reduced in liver tumor tissues, but ECH treatment increased the expression of miR-503-3p in Huh7 and HepG2 cells. In addition, we found that TGF-β1 was identified as a potential target of miR-503-3p. ECH promoted the activation of the TGF-β1/Smad signaling pathway and increased the expression levels of Bax/Bcl-2. Moreover, ECH could trigger the release of mitochondrial Cyto C, and cause the reaction Caspases grade. Conclusions This study demonstrates that ECH exerts anti-tumor activity via the miR-503-3p/TGF-β1/Smad aixs in liver cancer, and provides a safe and effective anti-tumor agent for liver cancer.
Collapse
Affiliation(s)
- Wen Li
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, China.
| | - Jing Zhou
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, China
| | - Yajie Zhang
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, China
| | - Jing Zhang
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, China
| | - Xue Li
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, China
| | - Qiao Yan
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, China
| | - Jiabing Han
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, China
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
4
|
The Most Competent Plant-Derived Natural Products for Targeting Apoptosis in Cancer Therapy. Biomolecules 2021; 11:biom11040534. [PMID: 33916780 PMCID: PMC8066452 DOI: 10.3390/biom11040534] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a challenging problem for the global health community, and its increasing burden necessitates seeking novel and alternative therapies. Most cancers share six basic characteristics known as "cancer hallmarks", including uncontrolled proliferation, refractoriness to proliferation blockers, escaping apoptosis, unlimited proliferation, enhanced angiogenesis, and metastatic spread. Apoptosis, as one of the best-known programmed cell death processes, is generally promoted through two signaling pathways, including the intrinsic and extrinsic cascades. These pathways comprise several components that their alterations can render an apoptosis-resistance phenotype to the cell. Therefore, targeting more than one molecule in apoptotic pathways can be a novel and efficient approach for both identifying new anticancer therapeutics and preventing resistance to therapy. The main purpose of this review is to summarize data showing that various plant extracts and plant-derived molecules can activate both intrinsic and extrinsic apoptosis pathways in human cancer cells, making them attractive candidates in cancer treatment.
Collapse
|
5
|
Zhu XQ, Yang H, Lin MH, Shang HX, Peng J, Chen WJ, Chen XZ, Lin JM. Qingjie Fuzheng Granules regulates cancer cell proliferation, apoptosis and tumor angiogenesis in colorectal cancer xenograft mice via Sonic Hedgehog pathway. J Gastrointest Oncol 2020; 11:1123-1134. [PMID: 33456987 PMCID: PMC7807284 DOI: 10.21037/jgo-20-213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/25/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Sonic Hedgehog (SHh) signaling pathway plays a critical role in cell proliferation, apoptosis, and tumor angiogenesis in various types of malignancies including colorectal cancer (CRC). Qingjie Fuzheng Granules (QFG) is a traditional Chinese medicinal formula, which has been clinically used in various cancer treatments, including CRC. In this study, we explored the potential molecular mechanisms of QFG treatment effects on CRC via the SHh pathway. METHODS A CRC HCT-116 xenograft mouse model was utilized for all experiments. Mice were treated with intra-gastric administration of 1 g/kg of QFG or saline 6 days a week for 28 days (4 weeks). Body weight, length and shortest diameter of the tumor were measured every 3 days. At the end of the treatment, the tumor weight was measured. TUNEL staining assays were used to detect tumor apoptosis. Western blot and immunohistochemistry (IHC) assays were used to detect the expression of relative proteins. RESULTS In our results, QFG inhibited the increase of tumor volume and weight, and exhibited no impact on mouse body weight. Furthermore, QFG significantly decreased the expression of SHh, Smo and Gli proteins, indicating the action of SHh signaling. Consequently, the expression of pro-proliferative survivin, Ki-67, Cyclin-D1 and CDK4 were decreased and expression of anti-proliferative p21 was increased. The pro-apoptotic Bax/Bcl-2 ratio, cle-caspase-3 and TUNEL-positive cell percentage in tumor tissues were increased. Meanwhile, the pro-angiogenic VEGF-A and VEGFR-2 expression was down-regulated. CONCLUSIONS QFG inhibited CRC cell proliferation and promoted CRC cell apoptosis and tumor angiogenesis in vivo through the suppression of SHh pathway, suggesting that QFG could be a potential therapeutic drug for CRC.
Collapse
Affiliation(s)
- Xiao-Qin Zhu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| | - Hong Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| | - Ming-He Lin
- Editorial Department of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hai-Xia Shang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| | - Wu-Jin Chen
- Department of Oncology, Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xu-Zheng Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| | - Jiu-Mao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| |
Collapse
|
6
|
Zhang L, Liu J, Lin S, Tan J, Huang B, Lin J. Qingjie Fuzheng Granule Inhibited the Migration and Invasion of Colorectal Cancer Cells by Regulating the lncRNA ANRIL/let-7a/TGF- β1/Smad Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5264651. [PMID: 32714407 PMCID: PMC7341385 DOI: 10.1155/2020/5264651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022]
Abstract
Qingjie Fuzheng granule (QFG) promotes cancer cell apoptosis and ameliorates intestinal mucosal damage caused by 5-fluorouracil. However, the antitumor role of QFG in colorectal cancer (CRC) progression remains unclear. In this study, the growth of HCT-8 and HCT116 cells incubated with various concentrations of QFG for 24 and 48 h was evaluated using MTT assays; their abilities of migration and invasion were investigated through wound healing and Transwell assays. The expression of lncRNA ANRIL, let-7a, and the TGF-β1/Smad signaling pathway components was assessed using real-time PCR and western blotting. The results elicited that QFG significantly suppressed the growth of HCT-8 and HCT116 cells; the half-maximal inhibitory concentrations (IC50) of QFG for HCT-8 and HCT116 cells for 48 h were 1.849 and 1.608 mg/mL, respectively. The abilities of wound healing, migration, and invasion of HCT-8 and HCT116 cells were dose-dependently decreased by QFG treatment for 24 h, respectively. QFG decreased the expression of lncRNA ANRIL, TGF-β1, phosphorylated (p)-Smad2/3, Smad4, and N-cadherin and upregulated the expression of let-7a in HCT-8 and HCT116 cells. Collectively, our data demonstrated that QFG inhibited the metastasis of CRC cells by regulating the lncRNA ANRIL/let-7a/TGF-β1/Smad axis, indicating that they might serve as an adjunctive medicine for CRC treatment.
Collapse
Affiliation(s)
- Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jianxin Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jingzhuang Tan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Bin Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
7
|
Yang H, Liu JX, Shang HX, Lin S, Zhao JY, Lin JM. Qingjie Fuzheng granules inhibit colorectal cancer cell growth by the PI3K/AKT and ERK pathways. World J Gastrointest Oncol 2019; 11:377-392. [PMID: 31139308 PMCID: PMC6522764 DOI: 10.4251/wjgo.v11.i5.377] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/17/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Qingjie Fuzheng granules (QFGs) are part of a traditional Chinese medicine formula, which has been widely used and found to be clinically effective with few side effects in various cancer treatments, including colorectal cancer (CRC). However, the precise mechanisms and molecular signaling pathways involved in the activity of QFGs' anticancer effect have not been reported in the literature. In this study, we hypothesized that QFGs can inhibit the growth of colorectal cancer cells, and that its mechanism is closely related to one or more intracellular signal transduction pathways. AIM To better evaluate the mechanism underlying the anti-cancer effect of QFGs on the CRC cell lines HCT-116 and HCT-8. METHOD First, we measured cell viability and cytotoxicity by performing MTT and lactate dehydrogenase (LDH) assays. We evaluated the role of QFGs in cell proliferation and apoptosis by assessing colony formation and analyzing Hoechst 33258 staining. Second, cell cycle and apoptosis rates were measured by fluorescence activated cell sorting, and the expression levels of survivin, cyclin D1, CDK4, p21, Bax, Bcl-2, Fas, FasL, and cleaved-caspase-3/-8/-9 were measured by performing western blots and caspase activity assays. Furthermore, inhibitors of caspase-3/-8/-9 were used to elucidate the specific apoptosis pathway induced by QFGs in cancer cells. Finally, activation of the PI3K/AKT and ERK signaling pathways was examined using the western blot assay to investigate the possible mechanism. RESULTS MTT and LDH assays revealed that after 0.5-2.0 mg/mL of QFGs treatment, cell viability was reduced by (6.90% ± 1.03%)-(59.70% ± 1.51%) (HCT-116; P < 0.05) and (5.56% ± 4.52%)-(49.44% ± 2.47%) (HCT-8; P < 0.05), and cytotoxicity was increased from 0.52 ± 0.023 to 0.77 ± 0.002 (HCT-116; P < 0.01) and from 0.56 ± 0.054 to 0.81 ± 0.044 (HCT-8; P < 0.01) compared with the non-QFGs treatment groups. Additionally, colony formation and Hoechst 33258 staining assays showed that QFGs inhibited proliferation and induced apoptosis in CRC cells. QFGs also increased the expression levels of Bax, Fas and FasL, decreased the level of Bcl-2, and stimulated the activation of caspase-3/-8/-9, which were revealed by western blot and caspase activity assays. In contrast, when adding the three caspase inhibitors, the suppression effect of QFGs on cell viability and apoptosis were markedly inhibited. Moreover, QFGs suppressed the phosphorylation levels of PI3K, AKT and ERK. CONCLUSION These results demonstrated that QFGs can inhibit CRC cell proliferation and induce apoptosis by suppressing the PI3K/AKT and ERK signaling pathways.
Collapse
Affiliation(s)
- Hong Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Jian-Xin Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Hai-Xia Shang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Jin-Yan Zhao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Jiu-Mao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| |
Collapse
|
8
|
Zhu P, Liu Z, Zhou J, Chen Y. Tanshinol inhibits the growth, migration and invasion of hepatocellular carcinoma cells via regulating the PI3K-AKT signaling pathway. Onco Targets Ther 2018; 12:87-99. [PMID: 30588033 PMCID: PMC6304085 DOI: 10.2147/ott.s185997] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Tanshinol is an active constituent of Salvia miltiorrhiza and possess anti-inflammatory, antioxidant, and anti-bacterial activity. Herein, we explored the role of tanshinol on the growth and aggressiveness of hepatocellular carcinoma (HCC) cells in vitro and in vivo. Materials and methods The proliferation of a panel of HCC cell lines was measured using MTT assay. The expressions of phosphatidylinositol 3 kinase (PI3K) and protein kinase B (AKT) were detected by immunofluorescence staining and immunohistochemical assay. The levels of Bcl-2 and Bax were determined using immunoblotting assay. The secretions of matrix metalloproteinase-2 (MMP-2) and MMP-9 were detected by ELISA. The migration and invasion abilities of HepG2 cell were determined using wound healing and Transwell invasion assays. The apoptosis of HepG2 cell induced by tanshinol was analyzed by Annexin V/propidium iodide staining. A xenograft model was constructed to investigate the inhibitory effect of tanshinol on HepG2 cell growth in vivo. To further investigate the role of tanshinol on the metastasis of HepG2 cell in vivo, an experimental metastasis assay was performed. Results Tanshinol inhibited the growth and colony formation of HCC cell in vitro. Tanshinol also induced the apoptosis of HepG2 cell and inhibited the migration and invasion of HepG2 cell. In in vivo experiments, tanshinol suppressed the tumor growth and metastasis of HepG2 cell. Furthermore, the phosphorylation of PI3K and AKT was decreased by tanshinol in vitro and in vivo. Conclusion Tanshinol exerts its anti-cancer effects via regulating the PI3K-AKT signaling pathway in HCC.
Collapse
Affiliation(s)
- Pingting Zhu
- School of Nursing, Yangzhou University, Yangzhou, China, .,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China,
| | - Zhaoguo Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - JiaoJiao Zhou
- School of Nursing, Yangzhou University, Yangzhou, China,
| | - Yuanyuan Chen
- School of Nursing, Yangzhou University, Yangzhou, China,
| |
Collapse
|