1
|
He P, Li Y, Hu J, Deng B, Tan Z, Chen Y, Yu B, Dong W. Pterostilbene suppresses gastric cancer proliferation and metastasis by inhibiting oncogenic JAK2/STAT3 signaling: In vitro and in vivo therapeutic intervention. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155316. [PMID: 38518635 DOI: 10.1016/j.phymed.2023.155316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 03/24/2024]
Abstract
BACKGROUND Gastric cancer (GC) represents a significant health burden with dire prognostic implications upon metastasis and recurrence. Pterostilbene (PTE) has been proven to have a strong ability to inhibit proliferation and metastasis in other cancers, while whether PTE exhibits anti-GC activity and its potential mechanism remain unclear. PURPOSE To explore the efficacy and potential mechanism of PTE in treating GC. METHODS We employed a comprehensive set of assays, including CCK-8, EdU staining, colony formation, flow cytometry, cell migration, and invasion assays, to detect the effect of PTE on the biological function of GC cells in vitro. The xenograft tumor model was established to evaluate the in vivo anti-GC activity of PTE. Network pharmacology was employed to predict PTE's potential targets and pathways within GC. Subsequently, Western blotting, immunofluorescence, and immunohistochemistry were utilized to analyze protein levels related to the cell cycle, EMT, and the JAK2/STAT3 pathway. RESULTS Our study demonstrated strong inhibitory effects of PTE on GC cells both in vitro and in vivo. In vitro, PTE significantly induced cell cycle arrest at G0/G1 and S phases and suppressed proliferation, migration, and invasion of GC cells. In vivo, PTE led to a dose-dependent reduction in tumor volume and weight. Importantly, PTE exhibited notable safety, leaving mouse weight, liver function, and kidney function unaffected. The involvement of the JAK2/STAT3 pathway in PTE's anti-GC effect was predicted utilizing network pharmacology. PTE suppressed JAK2 kinase activity by binding to the JH1 kinase structural domain and inhibited the downstream STAT3 signaling pathway. Western blotting confirmed PTE's inhibition of the JAK2/STAT3 pathway and EMT-associated protein levels. The anti-GC effect was partially reversed upon STAT3 activation, validating the pivotal role of the JAK2/STAT3 signaling pathway in PTE's activity. CONCLUSION Our investigation validates the potent inhibitory effects of PTE on the proliferation and metastasis of GC cells. Importantly, we present novel evidence implicating the JAK2/STAT3 pathway as the key mechanism through which PTE exerts its anti-GC activity. These findings not only establish the basis for considering PTE as a promising lead compound for GC therapeutics but also contribute significantly to our comprehension of the intricate molecular mechanisms underlying its exceptional anti-cancer properties.
Collapse
Affiliation(s)
- Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yangbo Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jiaming Hu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Beiying Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zongbiao Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ying Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
2
|
Lee YC, Chang YT, Cheng YH, Pranata R, Hsu HH, Chen YL, Chen RJ. Pterostilbene Protects against Osteoarthritis through NLRP3 Inflammasome Inactivation and Improves Gut Microbiota as Evidenced by In Vivo and In Vitro Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 38624135 PMCID: PMC11046483 DOI: 10.1021/acs.jafc.3c09749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Osteoarthritis (OA) is a persistent inflammatory disease, and long-term clinical treatment often leads to side effects. In this study, we evaluated pterostilbene (PT), a natural anti-inflammatory substance, for its protective effects and safety during prolonged use on OA. Results showed that PT alleviated the loss of chondrocytes and widened the narrow joint space in an octacalcium phosphate (OCP)-induced OA mouse model (n = 3). In vitro experiments demonstrate that PT reduced NLRP3 inflammation activation (relative protein expression: C: 1 ± 0.09, lipopolysaccharide (LPS): 1.14 ± 0.07, PT: 0.91 ± 0.07, LPS + PT: 0.68 ± 0.04) and the release of inflammatory cytokines through NF-κB signaling inactivation (relative protein expression: C: 1 ± 0.03, LPS: 3.49 ± 0.02, PT: 0.66 ± 0.08, LPS + PT: 2.78 ± 0.05), ultimately preventing cartilage catabolism. Interestingly, PT also altered gut microbiota by reducing inflammation-associated flora and increasing the abundance of healthy bacteria in OA groups. Collectively, these results suggest that the PT can be considered as a protective strategy for OA.
Collapse
Affiliation(s)
- Yen-Chien Lee
- Department
of Oncology, Tainan Hospital, Tainan 70043, Taiwan
- Department
of Internal Medicine, National Cheng Kung
University Hospital, College of Medicine, Tainan 70043, Taiwan
- Department
of Nursing, National Tainan Junior College
of Nursing, Tainan 70043, Taiwan
| | - Yu-Ting Chang
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yung-Hsuan Cheng
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Rosita Pranata
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Heng-Hsuan Hsu
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yen-Lin Chen
- Bioresource
Collection and Research Center (BCRC), Food
Industry Research and Development Institute, Hsinchu 300, Taiwan
| | - Rong-Jane Chen
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|