1
|
Hou X, Jiang J, Deng M. Exploring epigenetic modifications as potential biomarkers and therapeutic targets in amyotrophic lateral sclerosis. J Neurol 2025; 272:304. [PMID: 40169452 DOI: 10.1007/s00415-025-13028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 04/03/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder and the most common motor neuron disease. Whole-genome sequencing has identified many novel ALS-associated genes, but genetics alone cannot fully explain the onset of ALS and an effective treatment is still lacking. Moreover, we need more biomarkers for accurate diagnosis and assessment of disease prognosis. Epigenetics, which includes DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs, influences gene transcription and expression by affecting chromatin accessibility and transcription factor binding without altering genetic information. These processes play a role in the onset and progression of ALS. Epigenetic targets can serve as potential biomarkers and more importantly, the reversibility of epigenetic changes supports their potential role as versatile therapeutic targets in ALS. This review summarized the alterations in different epigenetic modulations in ALS. Additionally, given the close association between aberrant metabolic profiles characterized by hypoxia and high glycolytic metabolism in ALS and epigenetic changes, we also integrate epigenetics with metabolomics. Finally, we discuss the application of therapies based on epigenetic mechanisms in ALS. Our data integration helps to identify potential diagnostic and prognostic biomarkers and support the development of new effective therapies.
Collapse
Affiliation(s)
- XiaoTong Hou
- Institute of Medical Innovation and Research, Peking University Third Hospital, No. 49, North Garden Road, HaiDian District, Beijing, China
| | - JingSi Jiang
- Institute of Medical Innovation and Research, Peking University Third Hospital, No. 49, North Garden Road, HaiDian District, Beijing, China
| | - Min Deng
- Institute of Medical Innovation and Research, Peking University Third Hospital, No. 49, North Garden Road, HaiDian District, Beijing, China.
| |
Collapse
|
2
|
González Molina LA, Dolga AM, Rots MG, Sarno F. The Promise of Epigenetic Editing for Treating Brain Disorders. Subcell Biochem 2025; 108:111-190. [PMID: 39820862 DOI: 10.1007/978-3-031-75980-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Brain disorders, especially neurodegenerative diseases, affect millions of people worldwide. There is no causal treatment available; therefore, there is an unmet clinical need for finding therapeutic options for these diseases. Epigenetic research has resulted in identification of various genomic loci with differential disease-specific epigenetic modifications, mainly DNA methylation. These biomarkers, although not yet translated into clinically approved options, offer therapeutic targets as epigenetic modifications are reversible. Indeed, clinical trials are designed to inhibit epigenetic writers, erasers, or readers using epigenetic drugs to interfere with epigenetic dysregulation in brain disorders. However, since such drugs elicit genome-wide effects and potentially cause toxicity, the recent developments in the field of epigenetic editing are gaining widespread attention. In this review, we provide examples of epigenetic biomarkers and epi-drugs, while describing efforts in the field of epigenetic editing, to eventually make a difference for the currently incurable brain disorders.
Collapse
Affiliation(s)
- Luis A González Molina
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Marianne G Rots
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Federica Sarno
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Grant OA, Iacoangeli A, Zwamborn RAJ, van Rheenen W, Byrne R, Van Eijk KR, Kenna K, van Vugt JJFA, Cooper-Knock J, Kenna B, Vural A, Topp S, Campos Y, Weber M, Smith B, Dobson R, van Es MA, Vourc'h P, Corcia P, de Carvalho M, Gotkine M, Panades MP, Mora JS, Mill J, Garton F, McRae A, Wray NR, Shaw PJ, Landers JE, Glass JD, Shaw CE, Basak N, Hardiman O, Van Damme P, McLaughlin RL, van den Berg LH, Veldink JH, Al-Chalabi A, Al Khleifat A. Sex-specific DNA methylation differences in Amyotrophic lateral sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624866. [PMID: 39651197 PMCID: PMC11623544 DOI: 10.1101/2024.11.22.624866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Sex is an important covariate in all genetic and epigenetic research due to its role in the incidence, progression and outcome of many phenotypic characteristics and human diseases. Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with a sex bias towards higher incidence in males. Here, we report for the first time a blood-based epigenome-wide association study meta-analysis in 9274 individuals after stringent quality control (5529 males and 3975 females). We identified a total of 226 ALS saDMPs (sex-associated DMPs) annotated to a total of 159 unique genes. These ALS saDMPs were depleted at transposable elements yet significantly enriched at enhancers and slightly enriched at 3'UTRs. These ALS saDMPs were enriched for transcription factor motifs such as ESR1 and REST. Moreover, we identified an additional 10 genes associated with ALS saDMPs through chromatin loop interactions, suggesting a potential regulatory role for these saDMPs on distant genes. Furthermore, we investigated the relationship between DNA methylation at specific CpG sites and overall survival in ALS using Cox proportional hazards models. We identified two ALS saDMPs, cg14380013 and cg06729676, that showed significant associations with survival. Overall, our study reports a reliable catalogue of sex-associated ALS saDMPs in ALS and elucidates several characteristics of these sites using a large-scale dataset. This resource will benefit future studies aiming to investigate the role of sex in the incidence, progression and risk for ALS.
Collapse
|
4
|
Coppedè F. DNA methylation in amyotrophic lateral sclerosis: where do we stand and what is next? Epigenomics 2024; 16:1185-1196. [PMID: 39258797 PMCID: PMC11457677 DOI: 10.1080/17501911.2024.2394380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Genes involved in immune response, inflammation and metabolism are among those most likely affected by changes in DNA methylation (DNAm) and expression levels in amyotrophic lateral sclerosis (ALS) tissues. Unfortunately, it is still largely unclear whether any of these changes precede the onset of disease symptoms or whether most of them are the result of the muscular and metabolic changes that follow symptoms onset. In this article the author discusses the strengths and limitations of the available studies of DNAm in ALS and provides some suggestions on what, in his opinion, could be done in the near future for a better understanding of the DNAm changes occurring in ALS, their link with environmental exposures and their potential clinical utility.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Pisa, 56126, Italy
- Interdepartmental Research Center of Biology & Pathology of Aging, University of Pisa, Pisa, 56126, Italy
| |
Collapse
|
5
|
Feró O, Varga D, Nagy É, Karányi Z, Sipos É, Engelhardt J, Török N, Balogh I, Vető B, Likó I, Fóthi Á, Szabó Z, Halmos G, Vécsei L, Arányi T, Székvölgyi L. DNA methylome, R-loop and clinical exome profiling of patients with sporadic amyotrophic lateral sclerosis. Sci Data 2024; 11:123. [PMID: 38267456 PMCID: PMC10808109 DOI: 10.1038/s41597-024-02985-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the death of motor neurons, the aetiology of which is essentially unknown. Here, we present an integrative epigenomic study in blood samples from seven clinically characterised sporadic ALS patients to elucidate molecular factors associated with the disease. We used clinical exome sequencing (CES) to study DNA variants, DNA-RNA hybrid immunoprecipitation sequencing (DRIP-seq) to assess R-loop distribution, and reduced representation bisulfite sequencing (RRBS) to examine DNA methylation changes. The above datasets were combined to create a comprehensive repository of genetic and epigenetic changes associated with the ALS cases studied. This repository is well-suited to unveil new correlations within individual patients and across the entire patient cohort. The molecular attributes described here are expected to guide further mechanistic studies on ALS, shedding light on the underlying genetic causes and facilitating the development of new epigenetic therapies to combat this life-threatening disease.
Collapse
Affiliation(s)
- Orsolya Feró
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary
| | - Dóra Varga
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary
| | - Éva Nagy
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary
| | - Zsolt Karányi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Éva Sipos
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary
| | - József Engelhardt
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Nóra Török
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - István Balogh
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary
| | - Borbála Vető
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary
| | - István Likó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ábel Fóthi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Szabó
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Arányi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
| | - Lóránt Székvölgyi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary.
- Doctoral School of Pharmaceutical Sciences, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary.
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary.
| |
Collapse
|