1
|
Kang HJ, Mao J, Kim MJ, Yoon KW, Eom GD, Chu KB, Moon EK, Quan FS. The detection of Toxoplasma gondii ME49 infections in BALB/c mice using various techniques. PARASITES, HOSTS AND DISEASES 2023; 61:418-427. [PMID: 38043537 PMCID: PMC10693974 DOI: 10.3347/phd.23048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/23/2023] [Indexed: 12/05/2023]
Abstract
Toxoplasma gondii infections are primarily diagnosed by serological assays, whereas molecular and fluorescence-based techniques are garnering attention for their high sensitivity in detecting these infections. Nevertheless, each detection method has its limitations. The toxoplasmosis detection capabilities of most of the currently available methods have not been evaluated under identical experimental conditions. This study aimed to assess the diagnostic potential of enzyme-linked immunosorbent assay (ELISA), real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and immunofluorescence (IF) in BALB/c mice experimentally infected with various doses of T. gondii ME49. The detection of toxoplasmosis from sera and brain tissues was markedly enhanced in mice subjected to high infection doses (200 and 300 cysts) compared to those subjected to lower doses (10 and 50 cysts) for all the detection methods. Additionally, increased B1 gene expression levels and cyst sizes were observed in the brain tissues of the mice. Importantly, IHC, IF, and ELISA, but not RT-PCR, successfully detected T. gondii infections at the lowest infection dose (10 cysts) in the brain. These findings may prove beneficial while designing experimental methodologies for detecting T. gondii infections in mice.
Collapse
Affiliation(s)
- Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303,
USA
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| | - Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| | - Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447,
Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447,
Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447,
Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447,
Korea
| |
Collapse
|
2
|
Kim MJ, Mao J, Kang HJ, Chu KB, Quan FS. Detection of Toxoplasma gondii Infections using Virus-Like Particles Displaying T. gondii ROP4 Antigen. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:565-572. [PMID: 34974663 PMCID: PMC8721301 DOI: 10.3347/kjp.2021.59.6.565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Abstract
Toxoplasma gondii ME49 infections are typically diagnosed by serological tests. However, serological diagnosis of RH strain-induced toxoplasmosis remains unknown. In order to develop seradiagnosis of above 2 kinds of infections, we generated recombinant virus-like particles (VLPs) displaying the T. gondii rhoptry protein 4 (ROP4) and evaluated their potential in T. gondii ME49 or RH strain infection diagnostics. Mice were orally infected with either the tachyzoites of T. gondii (RH) or cysts of T. gondii (ME49) at various dosages, and sera were collected at regular intervals. ELISA-based serological tests were performed to assess IgG, IgM, and IgA antibody responses against ROP4 VLP antigen and tissue lysate antigen (TLA). Compared to TLA, IgG, IgM, and IgA levels to ROP4 VLP antigen were significantly higher in the sera of T. gondii RH-infected mice 1 and 2 week post-infection (PI). T. gondii-specific IgG antibody was detected at 1, 2, 4, and 8 week PI in the T. gondii ME49-infected mice with infection dose-dependent manner. These results indicated that the ROP4 VLP antigen was highly sensitive antigens detecting T. gondii RH and ME49 antibodies at an early stage.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| | - Ki-Back Chu
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447,
Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447,
Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| |
Collapse
|
3
|
An antigenic domain of the Leishmania amazonensis nucleoside triphosphate diphosphohydrolase (NTPDase 1) is associated with disease progression in susceptible infected mice. Parasitol Res 2013; 112:2773-82. [DOI: 10.1007/s00436-013-3445-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 04/28/2013] [Indexed: 11/25/2022]
|
4
|
Furuta T, Imajo-Ohmi S, Fukuda H, Kano S, Miyake K, Watanabe N. Mast cell-mediated immune responses through IgE antibody and Toll-like receptor 4 by malarial peroxiredoxin. Eur J Immunol 2008; 38:1341-50. [PMID: 18398934 DOI: 10.1002/eji.200738059] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, 2-Cys Plasmodium berghei ANKA (PbA) peroxiredoxin (Prx) was identified as an antigenic protein recognized by an anti-PbA IgE antibody using two-dimensional polyacrylamide gel electrophoresis and proteomic analysis. Innate immune responses to PbAPrx were examined using cells from mice deficient in Toll-like receptors (TLR) or related molecules, and it was demonstrated that responses were severely impaired in TLR4(-/-), MyD88(-/-) and MD-2(-/-) mice, but not in Toll/IL-1 receptor domain-containing adaptor inducing IFN-gamma (TRIF)(-/-), TLR2(-/-) or radioprotective 105 (RP105)(-/-) mice. An association between PbAPrx and TLR4 was observed following immunoprecipitation and immunoblotting, suggesting that PbAPrx was associated with TLR4/MD-2. Interactions between Prx and TLR4/MD-2 were also examined by flow cytometry using TLR4/MD-2- or TLR2-expressing cells. NFkappaB/GFP activity was observed in TLR4/MD-2- but not in TLR2-expressing cells following stimulation with Prx. However, this effect was not observed after treatment with proteinase K, suggesting that PbAPrx is a protein ligand for TLR4 and that the PbAPrx activity observed in this study is not due to contamination with LPS. These findings indicate that malarial Prx induces IgE-mediated protection through FcepsilonRI on mast cells and innate immunity through TLR4 with MyD88 and MD-2, suggesting a novel function for malarial Prx in innate and acquired immune responses in malaria.
Collapse
Affiliation(s)
- Takahisa Furuta
- Division of Infectious Genetics, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|