1
|
Latimer CS, Prater KE, Postupna N, Dirk Keene C. Resistance and Resilience to Alzheimer's Disease. Cold Spring Harb Perspect Med 2024; 14:a041201. [PMID: 38151325 PMCID: PMC11293546 DOI: 10.1101/cshperspect.a041201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Dementia is a significant public health crisis; the most common underlying cause of age-related cognitive decline and dementia is Alzheimer's disease neuropathologic change (ADNC). As such, there is an urgent need to identify novel therapeutic targets for the treatment and prevention of the underlying pathologic processes that contribute to the development of AD dementia. Although age is the top risk factor for dementia in general and AD specifically, these are not inevitable consequences of advanced age. Some individuals are able to live to advanced age without accumulating significant pathology (resistance to ADNC), whereas others are able to maintain cognitive function despite the presence of significant pathology (resilience to ADNC). Understanding mechanisms of resistance and resilience will inform therapeutic strategies to promote these processes to prevent or delay AD dementia. This article will highlight what is currently known about resistance and resilience to AD, including our current understanding of possible underlying mechanisms that may lead to candidate preventive and treatment interventions for this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| | - Katherine E Prater
- Department of Neurology, University of Washington, Seattle 98195, Washington, USA
| | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| |
Collapse
|
2
|
Liao K, Lou Q. Alzheimer's disease increases the risk of erectile dysfunction independent of cardiovascular diseases: A mendelian randomization study. PLoS One 2024; 19:e0303338. [PMID: 38870203 PMCID: PMC11175418 DOI: 10.1371/journal.pone.0303338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/23/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Previous research has underscored the correlation between Alzheimer's disease (AD) and erectile dysfunction (ED). However, due to inherent limitations of observational studies, the causative relationship remains inconclusive. METHODS Utilizing publicly available data from genome-wide association studies (GWAS) summary statistics, this study probed the potential causal association between AD and ED using univariate Mendelian randomization (MR). Further, the multivariable MR assessed the confounding effects of six cardiovascular diseases (CVDs). The primary approach employed was inverse variance weighted (IVW), supplemented by three additional methods. A series of sensitivity analyses were conducted to ensure the robustness of the results. RESULTS In the forward MR analysis, the IVW method revealed causal evidence of genetically predicted AD being a risk factor for ED (OR = 1.077, 95% CI 1.007∼1.152, P = 0.031). Reverse analysis did not demonstrate any causal evidence linking ED to AD (OR = 1.018, 95% CI 0.974∼1.063, P = 0.430). Multivariable MR analysis showed that after adjusting for coronary heart disease (OR = 1.082, 95% CI 0.009∼1.160, P = 0.027), myocardial infarction (OR = 1.085, 95% CI 1.012∼1.163, P = 0.022), atrial fibrillation (OR = 1.076, 95% CI 1.002∼1.154, P = 0.043), heart failure (OR = 1.103, 95% CI 1.024∼1.188, P = 0.010), ischemic stroke (OR = 1.079, 95% CI 1.009∼1.154, P = 0.027), hypertension (OR = 1.092, 95% CI 1.011∼1.180, P = 0.025), and all models (OR = 1.115, 95% CI 1.024∼1.214, P = 0.012), the causal association between AD and ED persisted. Sensitivity analyses confirmed the absence of pleiotropy, heterogeneity, and outliers, validating the robustness of our results (P > 0.05). CONCLUSIONS This MR study consistently evidences a causal effect of genetically predicted AD on the risk of ED, independent of certain CVDs, yet offers no evidence for a reverse effect from ED.
Collapse
Affiliation(s)
- Kaisen Liao
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qiang Lou
- Department of Andrology, the Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Al‐Hamed FS, Kouniaris S, Tamimi I, Lordkipanidzé M, Madathil SA, Kezouh A, Karp I, Nicolau B, Tamimi F. Acetylcholinesterase inhibitors and risk of bleeding and acute ischemic events in non-hypertensive Alzheimer's patients. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12184. [PMID: 34458554 PMCID: PMC8377777 DOI: 10.1002/trc2.12184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Acetylcholinesterase inhibitors (AChEIs) are commonly used to treat mild to moderate cases of Alzheimer disease (AD). To the best of our knowledge, there has been no study estimating the risk of bleeding and cardiovascular events in patients with non-hypertensive AD. Therefore, this study aimed to estimate the association between AChEIs and the risk of bleeding and cardiovascular ischemic events in patients with non-hypertensive AD. METHODS A nested case-control study was conducted to estimate the risk of bleeding and ischemic events (angina, myocardial infarction [MI], and stroke) in patients with AD. This study was conducted using the UK Clinical Practice Research Datalink and Hospital Episode Statistics (HES) databases. The study cohort consisted of AD patients ≥65 years of age. The case groups included all AD subjects in the database who had a bleeding or ischemic event during the cohort follow-up. Four controls were selected for each case. Patients were classified as current users or past users based on a 60-day threshold of consuming the drug. Simple and multivariable conditional logistic regression analyses were used to calculate the adjusted odds ratio for bleeding events and cardiovascular events. RESULTS We identified 507 cases and selected 2028 controls for the bleeding event cohort and 555 cases and 2220 controls for the ischemic event cohort. The adjusted odds ratio (OR) (95% confidence interval [CI]) for the association of AChEI use was 0.93 (0.75 to 1.16) for bleeding events, 2.58 (1.01 to 6.59) for angina, and 1.89 (1.07 to 3.33) for MI. Past users of AChEIs were also at increased risk of stroke (1.51 [1.00 to 2.27]). DISCUSSION This is the first study assessing the risk of bleeding and cardiovascular events in patients with non-hypertensive AD. Our findings could be of great interest for clinicians and researchers working on AD.
Collapse
Affiliation(s)
- Faez Saleh Al‐Hamed
- Faculty of DentistryMcGill University2001 McGill College AvenueMontrealQuebecH3A 1G1Canada
| | - Stamatis Kouniaris
- Faculty of DentistryMcGill University2001 McGill College AvenueMontrealQuebecH3A 1G1Canada
| | - Iskandar Tamimi
- Orthopedic Surgery DepartmentHospital Regional Universitario de MalagaMalagaSpain
| | - Marie Lordkipanidzé
- Faculté de pharmacieUniversité de MontréalMontréalQuebecCanada
- Research CenterMontreal Heart InstituteMontrealQuebecCanada
| | | | - Abbas Kezouh
- Department of Epidemiology and BiostatisticsDavis InstituteMontrealQuebecCanada
| | - Igor Karp
- Department of Epidemiology and BiostatisticsSchulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
- Département de Médecine Sociale et PréventiveUniversité de MontréalMontréalQuébecCanada
| | - Belinda Nicolau
- Faculty of DentistryMcGill University2001 McGill College AvenueMontrealQuebecH3A 1G1Canada
| | - Faleh Tamimi
- Faculty of DentistryMcGill University2001 McGill College AvenueMontrealQuebecH3A 1G1Canada
- College of Dental MedicineQatar UniversityDohaQatar
| |
Collapse
|
4
|
Enhancing and Complementary Mechanisms of Synergistic Action of Acori Tatarinowii Rhizoma and Codonopsis Radix for Alzheimer's Disease Based on Systems Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6317230. [PMID: 32802132 PMCID: PMC7334796 DOI: 10.1155/2020/6317230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Abstract
Materials and Methods In this study, a systems pharmacology-based strategy was used to elucidate the synergistic mechanism of Acori Tatarinowii Rhizoma and Codonopsis Radix for the treatment of AD. This novel systems pharmacology model consisted of component information, pharmacokinetic analysis, and pharmacological data. Additionally, the related pathways were compressed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the organ distributions were determined in the BioGPS bank. Results Sixty-eight active ingredients with suitable pharmacokinetic profiles and biological activities were selected through ADME screening in silico. Based on 62 AD-related targets, such as APP, CHRM1, and PTGS1, systematic analysis showed that these two herbs were mainly involved in the PI3K-Akt signaling pathway, MAPK signaling pathway, neuroactive ligand-receptor interaction, and fluid shear stress and atherosclerosis, indicating that they had a synergistic effect on AD. However, ATR acted on the KDR gene, while CR acted on IGF1R, MET, IL1B, and CHUK, showing that they also had complementary effects on AD. The ingredient contribution score involved 29 ingredients contributing 90.14% of the total contribution score of this formula for AD treatment, which emphasized that the effective therapeutic effects of these herbs for AD were derived from both ATR and CR, not a single herb. Organ distribution showed that the targets of the active ingredients were mainly located in the whole blood, the brain, and the muscle, which are associated with AD. Conclusions In sum, our findings suggest that the systems pharmacology methods successfully revealed the synergistic and complementary mechanisms of ATR and CR for the treatment of AD.
Collapse
|
5
|
de la Torre JC. Hemodynamic Instability in Heart Failure Intensifies Age-Dependent Cognitive Decline. J Alzheimers Dis 2020; 76:63-84. [PMID: 32444552 DOI: 10.3233/jad-200296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This review attempts to examine two key elements in the evolution of cognitive impairment in the elderly who develop heart failure. First, major left side heart parts can structurally and functionally deteriorate from aging wear and tear to provoke hemodynamic instability where heart failure worsens or is initiated; second, heart failure is a major inducer of cognitive impairment and Alzheimer's disease in the elderly. In heart failure, when the left ventricular myocardium of an elderly person does not properly contract, it cannot pump out adequate blood to the brain, raising the risk of cognitive impairment due to the intensification of chronic brain hypoperfusion. Chronic brain hypoperfusion originates from chronically reduced cardiac output which progresses as heart failure worsens. Other left ventricular heart parts, including atrium, valves, myocardium, and aorta can contribute to the physiological shortfall of cardiac output. It follows that hemodynamic instability and perfusion changes occurring from the aging heart's blood pumping deficiency will, in time, damage vulnerable brain cells linked to specific cognitive regulatory sites, diminishing neuronal energy metabolism to a level where progressive cognitive impairment is the outcome. Could cognitive impairment progress be reversed with a heart transplant? Evidence is presented detailing the errant hemodynamic pathways leading to cognitive impairment during aging as an offshoot of inefficient structural and functional heart parts and their contribution to heart failure.
Collapse
Affiliation(s)
- Jack C de la Torre
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.,University of Valencia, Valencia, Spain
| |
Collapse
|
6
|
Ong WY, Wu YJ, Farooqui T, Farooqui AA. Qi Fu Yin-a Ming Dynasty Prescription for the Treatment of Dementia. Mol Neurobiol 2018; 55:7389-7400. [PMID: 29417476 PMCID: PMC6096952 DOI: 10.1007/s12035-018-0908-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/11/2018] [Indexed: 12/19/2022]
Abstract
The Traditional Chinese Medicine (TCM) theory that “kidneys give rise to marrow, and the brain is the sea of marrow” has been a guide for the clinical application of kidney, qi and blood tonics for prevention and treatment of dementia and improvement in memory. As low resistance end-organs, both the brain and the kidneys are subjected to blood flow of high volumes throughout the cardiac cycle. Alzheimer’s disease and vascular dementia are two common causes of dementia, and it is increasingly recognized that many older adults with dementia have both AD and vascular pathologies. The underlying molecular mechanisms are incompletely understood, but may involve atherosclerosis, vascular dysfunction, hypertension, type 2 diabetes, history of cardiac disease and possibly, kidney dysfuntion, leading to reduced erythropoietin production, anemia, brain energy deficit and slow excitotoxicity. During the Ming Dynasty, Zhang Jing-Yue used Qi Fu Yin (seven blessings decoction), comprising Panax ginseng, Rehmannia glutinosa, Angelica polymorpha, Atractylodes macrocephala, Glycyrrhiza uralensis, Ziziphus jujube, and Polygala tenuifolia to boost qi and blood circulation, strengthen the heart, and calm the spirit—skillfully linking heart, spleen, kidney, qi, blood and brain as a whole to treat age-related dementia. The purpose of this review is to outline TCM concepts for the treatment of dementia and illustrated with a historical prescription for the treatment of the condition, with the hope that this description may lead to advances in its management.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore. .,Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| | - Ya-Jun Wu
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Tahira Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, 43220, USA
| | - Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, 43220, USA
| |
Collapse
|
7
|
Amyloid precursor protein modulates macrophage phenotype and diet-dependent weight gain. Sci Rep 2017; 7:43725. [PMID: 28262782 PMCID: PMC5338020 DOI: 10.1038/srep43725] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/26/2017] [Indexed: 02/07/2023] Open
Abstract
It is well known that mutations in the gene coding for amyloid precursor protein are responsible for autosomal dominant forms of Alzheimer’s disease. Proteolytic processing of the protein leads to a number of metabolites including the amyloid beta peptide. Although brain amyloid precursor protein expression and amyloid beta production are associated with the pathophysiology of Alzheimer’s disease, it is clear that amyloid precursor protein is expressed in numerous cell types and tissues. Here we demonstrate that amyloid precursor protein is involved in regulating the phenotype of both adipocytes and peripheral macrophages and is required for high fat diet-dependent weight gain in mice. These data suggest that functions of this protein include modulation of the peripheral immune system and lipid metabolism. This biology may have relevance not only to the pathophysiology of Alzheimer’s disease but also diet-associated obesity.
Collapse
|
8
|
|
9
|
Beach TG, Adler CH, Sue LI, Serrano G, Shill HA, Walker DG, Lue L, Roher AE, Dugger BN, Maarouf C, Birdsill AC, Intorcia A, Saxon-Labelle M, Pullen J, Scroggins A, Filon J, Scott S, Hoffman B, Garcia A, Caviness JN, Hentz JG, Driver-Dunckley E, Jacobson SA, Davis KJ, Belden CM, Long KE, Malek-Ahmadi M, Powell JJ, Gale LD, Nicholson LR, Caselli RJ, Woodruff BK, Rapscak SZ, Ahern GL, Shi J, Burke AD, Reiman EM, Sabbagh MN. Arizona Study of Aging and Neurodegenerative Disorders and Brain and Body Donation Program. Neuropathology 2015; 35:354-89. [PMID: 25619230 DOI: 10.1111/neup.12189] [Citation(s) in RCA: 325] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/11/2014] [Indexed: 12/13/2022]
Abstract
The Brain and Body Donation Program (BBDP) at Banner Sun Health Research Institute (http://www.brainandbodydonationprogram.org) started in 1987 with brain-only donations and currently has banked more than 1600 brains. More than 430 whole-body donations have been received since this service was commenced in 2005. The collective academic output of the BBDP is now described as the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND). Most BBDP subjects are enrolled as cognitively normal volunteers residing in the retirement communities of metropolitan Phoenix, Arizona. Specific recruitment efforts are also directed at subjects with Alzheimer's disease, Parkinson's disease and cancer. The median age at death is 82. Subjects receive standardized general medical, neurological, neuropsychological and movement disorders assessments during life and more than 90% receive full pathological examinations by medically licensed pathologists after death. The Program has been funded through a combination of internal, federal and state of Arizona grants as well as user fees and pharmaceutical industry collaborations. Subsets of the Program are utilized by the US National Institute on Aging Arizona Alzheimer's Disease Core Center and the US National Institute of Neurological Disorders and Stroke National Brain and Tissue Resource for Parkinson's Disease and Related Disorders. Substantial funding has also been received from the Michael J. Fox Foundation for Parkinson's Research. The Program has made rapid autopsy a priority, with a 3.0-hour median post-mortem interval for the entire collection. The median RNA Integrity Number (RIN) for frozen brain and body tissue is 8.9 and 7.4, respectively. More than 2500 tissue requests have been served and currently about 200 are served annually. These requests have been made by more than 400 investigators located in 32 US states and 15 countries. Tissue from the BBDP has contributed to more than 350 publications and more than 200 grant-funded projects.
Collapse
Affiliation(s)
- Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Geidy Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Holly A Shill
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - LihFen Lue
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Alex E Roher
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Chera Maarouf
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Alex C Birdsill
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | - Joel Pullen
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Jessica Filon
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Sarah Scott
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Angelica Garcia
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | | | | | - Kathryn J Davis
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Kathy E Long
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | - Lisa D Gale
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | | | | | | | - Jiong Shi
- Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Anna D Burke
- Banner Alzheimer Institute, Phoenix, Arizona, USA
| | | | | |
Collapse
|
10
|
Abstract
As life expectancy lengthens, dementia is becoming a significant human condition in terms of its prevalence and cost to society worldwide. It is important in that context to understand the preventable and treatable causes of dementia. This article exposes the link between dementia and heart disease in all its forms, including coronary artery disease, myocardial infarction, atrial fibrillation, valvular disease, and heart failure. This article also explores the cardiovascular risk factors and emphasizes that several of them are preventable and treatable. In addition to medical therapies, the lifestyle changes that may be useful in retarding the onset of dementia are also summarized.
Collapse
Affiliation(s)
- B Ng Justin
- Departments of Neuroscience and Psychology, McGill University, Montreal, QC, Canada
| | - Michele Turek
- Division of Cardiology, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Antoine M Hakim
- Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
- Canadian Stroke Network, Ottawa, ON, Canada
| |
Collapse
|
11
|
Martins IJ, Wilson AC, Lim WLF, Laws SM, Fuller SJ, Martins RN. Sirtuin-1 mediates the obesity induced risk of common degenerative diseases: Alzheimer’s disease, coronary artery disease and type 2 diabetes. Health (London) 2012. [DOI: 10.4236/health.2012.412a209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Semon B. Dietary intake of cottonseed toxins is hypothesized to be a partial cause of Alzheimer's disorder. Med Hypotheses 2011; 78:293-8. [PMID: 22136946 DOI: 10.1016/j.mehy.2011.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/08/2011] [Indexed: 11/29/2022]
Abstract
The cause of Alzheimer's disorder is not known. The most influential known risk factor is increasing age. The risk factor of increasing age is consistent with exposure to environmental toxins throughout life as a cause of Alzheimer's. In addition, microbleeding, changes in membrane permeability and increased cholesterol are all factors important in Alzheimer's. Cottonseed contains toxins and is fed to animals, fish and poultry. Cottonseed toxins remain in the animals, fish and poultry and are present in the human diet at seemingly low levels. The average person is ingesting cottonseed toxins throughout life. Cottonseed toxins cause bleeding, changes in membrane permeability and increased cholesterol. In addition, the cottonseed toxin gossypol is known to reach the brain and bind randomly to important cellular structures. Gossypol also binds to microtubules and interferes with microtubule assembly, which may inhibit binding of tau to microtubules and lead to formation of neurofibrillary tangles. Cottonseed toxins are also known to accumulate in the body. In a preliminary study of female rats fed low level cottonseed for their lifetimes, apparent neurofibrillary tangles and phosphorylated tau were found. The intake of cottonseed toxins throughout life should be evaluated further as a possible cause of Alzheimer's.
Collapse
Affiliation(s)
- Bruce Semon
- Wisconsin Institute of Nutrition, 6789 N. Green Bay Ave., Milwaukee, WI 53209, USA.
| |
Collapse
|
13
|
Kim JM, Stewart R, Kim SY, Kim SW, Bae KY, Yang SJ, Shin IS, Yoon JS. Synergistic associations of depression and apolipoprotein E genotype with incidence of dementia. Int J Geriatr Psychiatry 2011; 26:893-8. [PMID: 21845591 DOI: 10.1002/gps.2621] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 07/20/2010] [Indexed: 11/09/2022]
Abstract
OBJECTIVES A cohort study of Japanese-American men suggested interactive effects of depression and apolipoprotein E (APOE) e4 allele on risk of incident dementia. In another sample of East Asian origin, we sought to replicate the findings and to explore individual depressive symptoms where this interaction was most evident. METHODS Of 625 Korean community elders without dementia at baseline, 518 (83%) were followed over a 2.4-year period and were clinically assessed for incident dementia. Depression was identified by the Geriatric Mental State Schedule (GMS), and nine individual depressive symptoms relevant to DSM-IV major depressive episode criteria were extracted. APOE genotype was ascertained. Covariates included age, gender, education, and disability. RESULTS There were synergistic interactions between depression and APOE e4 on incident dementia independent of covariates. This interaction was particularly strong for four depressive symptoms: depressed mood, worthlessness, concentration difficulty, and suicidal ideation. CONCLUSIONS We were able to replicate the previous study, finding that, at least in East Asian origin populations, the APOE e4 allele is a stronger predictor of incident dementia in the presence of depressive syndrome, and particular depressive symptoms.
Collapse
Affiliation(s)
- Jae-Min Kim
- Department of Psychiatry and Depression Clinical Research Centre, Chonnam National University Medical School, Kwangju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kokjohn TA, Van Vickle GD, Maarouf CL, Kalback WM, Hunter JM, Daugs ID, Luehrs DC, Lopez J, Brune D, Sue LI, Beach TG, Castaño EM, Roher AE. Chemical characterization of pro-inflammatory amyloid-beta peptides in human atherosclerotic lesions and platelets. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1508-14. [PMID: 21784149 DOI: 10.1016/j.bbadis.2011.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/27/2011] [Accepted: 07/05/2011] [Indexed: 01/23/2023]
Abstract
Amyloid-β (Aβ) peptides are intimately involved in the inflammatory pathology of atherosclerotic vascular disease (AVD) and Alzheimer's disease (AD). Although substantial amounts of these peptides are produced in the periphery, their role and significance to vascular disease outside the brain requires further investigation. Amyloid-β peptides present in the walls of human aorta atherosclerotic lesions as well as activated and non-activated human platelets were isolated using sequential size-exclusion columns and HPLC reverse-phase methods. The Aβ peptide isolates were quantified by ELISA and structurally analyzed using MALDI-TOF mass spectrometry procedures. Our experiments revealed that both aorta and platelets contained Aβ peptides, predominately Aβ40. The source of the Aβ pool in aortic atherosclerosis lesions is probably the activated platelets and/or vascular wall cells expressing APP/PN2. Significant levels of Aβ42 are present in the plasma, suggesting that this reservoir makes a minor contribution to atherosclerotic plaques. Our data reveal that although aortic atherosclerosis and AD cerebrovascular amyloidosis exhibit clearly divergent end-stage manifestations, both vascular diseases share some key pathophysiological promoting elements and pathways. Whether they happen to be deposited in vessels of the central nervous system or atherosclerotic plaques in the periphery, Aβ peptides may promote and perhaps synergize chronic inflammatory processes which culminate in the degeneration, malfunction and ultimate destruction of arterial walls.
Collapse
Affiliation(s)
- Tyler A Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Apolipoprotein E: Implications for AD neurobiology, epidemiology and risk assessment. Neurobiol Aging 2011; 32:778-90. [DOI: 10.1016/j.neurobiolaging.2009.04.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/20/2009] [Accepted: 04/29/2009] [Indexed: 11/18/2022]
|
16
|
Abstract
The hippocampus is a vulnerable and plastic brain structure that is damaged by a variety of stimuli, e.g. hypoxia, hypoperfusion, hypoglycaemia, stress and seizures. Alzheimer's disease is a common and important disorder in which hippocampal atrophy is reported. Indeed, the available evidence suggests that hippocampal atrophy is the starting point of the pathogenesis of Alzheimer's disease and a significant number of patients with hippocampal atrophy will develop Alzheimer's disease. Studies indicate that hippocampal atrophy has functional consequences, e.g. cognitive impairment. Deposition of tau protein, formation of neurofibrillary tangles and accumulation of β-amyloid (Aβ) contributes to hippocampal atrophy together with damage caused by several other factors. Some of the factors associated with the development of hippocampal atrophy in Alzheimer's disease have been identified, e.g. hypertension, diabetes mellitus, hyperlipidaemia, seizures, affective disturbances and stress, and more is being learnt about other factors. Hypertension can potentially damage the hippocampus through ischaemia caused by atherosclerosis and cerebral amyloid angiopathy. Diabetes can produce hippocampal lesions via both vascular and non-vascular pathologies and can reduce the threshold for hippocampal damage. Carriers of the apolipoprotein E (ApoE)-ε4 genotype have been shown to have greater mesial temporal atrophy and poorer memory functions than non-carriers. In addition to giving rise to abnormal lipid metabolism, the ApoE-ε4 allele can affect the course of Alzheimer's disease via both Aβ-dependent and -independent pathways. Repetitive seizures can increase Aβ-peptide production and cause neurotransmission dysfunction and cytoskeletal abnormalities or a combination of these. Affective disturbances and stress are proposed to increase corticosteroid-induced hippocampal damage in many different ways. In the absence of any specific markers for predicting Alzheimer's disease progression, it seems appropriate to learn more about the various predictors of hippocampal atrophy that determine the progression of Alzheimer's disease from mild cognitive impairment (MCI), and then attempt to address these. It would be interesting to know to what extent these predictors play a role in the development of MCI or hasten the conversion of MCI to full-blown Alzheimer's disease. Finally, it would be useful to know the extent to which these predictors can worsen or aggravate existing Alzheimer's disease. Of the clinically used drugs in Alzheimer's disease, anticholinesterases have been shown to slow down the rate of progression of hippocampal atrophy. One study observed that the neuroprotective effect of these agents is possibly due to an anti-Aβ effect produced by cholinergic stimulation. Similarly, antihypertensive and antihyperglycaemic drugs (pioglitazone and insulin) have been shown to reduce the risk of Alzheimer's disease or disease progression. Currently, there are no disease-modifying therapies available for Alzheimer's disease. It has been suggested that for treatment to be most effective, the regimen must be started before significant downstream damage has occurred (i.e. before the clinical diagnosis of Alzheimer's disease, at the stage of MCI or earlier). Since the hippocampus is a plastic structure and atrophy of this structure is closely related to the pathophysiology of Alzheimer's disease, if we could control blood pressure, regulate blood sugar, treat behavioural and psychological symptoms, achieve satisfactory lipid lowering and maintain a seizure-free state in patients with Alzheimer's disease, this may not only improve disease control but could also potentially affect the rate of disease progression.
Collapse
Affiliation(s)
- Vikas Dhikav
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | | |
Collapse
|
17
|
Ferrington L, Miners JS, Palmer LE, Bond SM, Povey JE, Kelly PAT, Love S, Horsburgh KJ, Kehoe PG. Angiotensin II-inhibiting drugs have no effect on intraneuronal Aβ or oligomeric Aβ levels in a triple transgenic mouse model of Alzheimer's disease. Am J Transl Res 2011; 3:197-208. [PMID: 21416061 PMCID: PMC3056565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 02/04/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND Reducing the excessive accumulation of amyloid β-protein (Aβ) in Alzheimer's disease (AD) is a key objective of most AD therapies. Several studies suggest that pharmacological inhibition of angiotensin-converting enzyme (ACE) or its by-product angiotensin II may delay onset or progression of dementia and it has been suggested that this occurs via regulation of Aβ. Intraneuronal oligomeric accumulation of Aβ is postulated to be one of the earliest pathological events. Thus this study investigated the effect of an ACE-inhibitor, captopril, and two angiotensin II receptor blockers (ARBs), eprosartan and valsartan, on intraneuronal Aβ pathology and oligomeric Aβ levels in a triple transgenic (3xTGAD) mouse model of AD. METHODS Male, adult (3-4 month old) 3xTgAD mice (n=39) were randomly assigned to 4 treatment groups: valsartan (0.17g/l), eprosartan (0.8g/l), captopril (5g/l) or normal drinking water and the drugs given ad libitum for 2 months. Mean arterial blood pressure (MABP) was measured at baseline, at 2 weeks and at 2 months when the mice were sacrificed and the brains hemisected for analysis. One hemisphere was processed for Aβ and amyloid precursor protein (APP) immunohistochemistry and the other for biochemical measurement of oligomeric Aβ and APP. ACE activity was measured in the brain and kidney. RESULTS MABP was significantly reduced at 2 weeks and 2 months in the ACE-I group (p=0.0006) but was unaltered in the ARB groups compared to vehicle. Neither ACE-I nor ARB treatment altered Aβ and APP immunolabelling or the level of Aβ or APP in brain tissue homogenates. Similarly neither ACE-I nor ARB treatment altered ACE activity in either brain or kidney compared to control tissue. CONCLUSIONS ACE-I or ARB administration over 2 months did not affect APP levels or either intraneuronal Aβ or oligomeric Aβ levels in 3xTGAD mice. While ARBs did not alter MABP, captopril did mediate reductions in MABP in the 3xTGAD mice which appeared to be independent of ACE activity. Further studies are needed to examine the effects of these drugs over a longer term and in older mice (i.e. when AD-like changes are more pronounced).
Collapse
Affiliation(s)
- Linda Ferrington
- Cerebral Pharmacology Laboratory, Centre for Cognitive and Neural Systems, University of Edinburgh1 George Square, Edinburgh, EH8 9JZ, UK
- Centre for Cognitive Aging and Cognitive Epidemiology, Centre for Cognitive and Neural Systems, University of Edinburgh1 George Square, Edinburgh EH8 9JZ, UK
| | - J Scott Miners
- Dementia Research Group, John James Laboratories, University of Bristol, Frenchay HospitalBristol, BS16 1LE, UK
| | - Laura E Palmer
- Dementia Research Group, John James Laboratories, University of Bristol, Frenchay HospitalBristol, BS16 1LE, UK
| | - Susan M Bond
- Centre for Cognitive Aging and Cognitive Epidemiology, Centre for Cognitive and Neural Systems, University of Edinburgh1 George Square, Edinburgh EH8 9JZ, UK
| | - Joanne E Povey
- Centre for Cognitive Aging and Cognitive Epidemiology, Centre for Cognitive and Neural Systems, University of Edinburgh1 George Square, Edinburgh EH8 9JZ, UK
- Dept of Anatomy & Structural Biology, University of OtagoDunedin, New Zealand
| | - Paul AT Kelly
- Cerebral Pharmacology Laboratory, Centre for Cognitive and Neural Systems, University of Edinburgh1 George Square, Edinburgh, EH8 9JZ, UK
| | - Seth Love
- Department of Neuropathology, Institute of Clinical Neurosciences, University of Bristol, Frenchay HospitalBristol, BS16 1LE, UK
| | - Karen J Horsburgh
- Centre for Cognitive Aging and Cognitive Epidemiology, Centre for Cognitive and Neural Systems, University of Edinburgh1 George Square, Edinburgh EH8 9JZ, UK
| | - Patrick G Kehoe
- Dementia Research Group, John James Laboratories, University of Bristol, Frenchay HospitalBristol, BS16 1LE, UK
| |
Collapse
|
18
|
Beach TG, Maarouf CL, Brooks RG, Shirohi S, Daugs ID, Sue LI, Sabbagh MN, Walker DG, Lue L, Roher AE. Reduced clinical and postmortem measures of cardiac pathology in subjects with advanced Alzheimer's Disease. BMC Geriatr 2011; 11:3. [PMID: 21266042 PMCID: PMC3039594 DOI: 10.1186/1471-2318-11-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 01/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidemiological studies indicate a statistical linkage between atherosclerotic vascular disease (ATH) and Alzheimer's disease (AD). Autopsy studies of cardiac disease in AD have been few and inconclusive. In this report, clinical and gross anatomic measures of cardiac disease were compared in deceased human subjects with and without AD. METHODS Clinically documented cardiovascular conditions from AD (n = 35) and elderly non-demented control subjects (n = 22) were obtained by review of medical records. Coronary artery stenosis and other gross anatomical measures, including heart weight, ventricular wall thickness, valvular circumferences, valvular calcifications and myocardial infarct number and volume were determined at autopsy. RESULTS Compared to non-demented age-similar control subjects, those with AD had significantly fewer total diagnosed clinical conditions (2.91 vs 4.18), decreased coronary artery stenosis (70.8 vs 74.8%), heart weight (402 vs 489 g for males; 319 vs 412 g for females) and valvular circumferences. Carriage of the Apolipoprotein E-ε4 allele did not influence the degree of coronary stenosis. Group differences in heart weight remained significant after adjustment for age, gender, body mass index and apolipoprotein E genotype while differences in coronary artery stenosis were significantly associated with body mass index alone. CONCLUSIONS The results are in agreement with an emerging understanding that, while midlife risk factors for ATH increase the risk for the later development of AD, once dementia begins, both risk factors and manifest disease diminish, possibly due to progressive weight loss with increasing dementia as well as disease involvement of the brain's vasomotor centers.
Collapse
Affiliation(s)
- Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mishra M, Huang J, Lee YY, Chua DSK, Lin X, Hu JM, Heese K. Gastrodia elata modulates amyloid precursor protein cleavage and cognitive functions in mice. Biosci Trends 2011; 5:129-38. [DOI: 10.5582/bst.2011.v5.3.129] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Manisha Mishra
- Department of Molecular and Cell Biology, School of Biological Sciences, College of Science, Nanyang Technological University
- Institute of Advanced Studies, Nanyang Technological University
| | - Junjie Huang
- Institute of Advanced Studies, Nanyang Technological University
| | - Yin Yeng Lee
- Institute of Advanced Studies, Nanyang Technological University
| | | | - Xiaoyan Lin
- Institute of Advanced Studies, Nanyang Technological University
| | - Jiang-Miao Hu
- Kunming Institute of Botany, Chinese Academy of Science
| | - Klaus Heese
- Department of Molecular and Cell Biology, School of Biological Sciences, College of Science, Nanyang Technological University
- Institute of Advanced Studies, Nanyang Technological University
| |
Collapse
|
20
|
De Gasperi R, Sosa MAG, Dracheva S, Elder GA. Presenilin-1 regulates induction of hypoxia inducible factor-1α: altered activation by a mutation associated with familial Alzheimer's disease. Mol Neurodegener 2010; 5:38. [PMID: 20863403 PMCID: PMC2955646 DOI: 10.1186/1750-1326-5-38] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 09/23/2010] [Indexed: 12/23/2022] Open
Abstract
Background Mutations in presenilin-1 (Psen1) cause familial Alzheimer's disease (FAD). Both hypoxia and ischemia have been implicated in the pathological cascade that leads to amyloid deposition in AD. Here we investigated whether Psen1 might regulate hypoxic responses by modulating induction of the transcription factor hypoxia inducible factor 1-α (HIF-1α). Results In fibroblasts that lack Psen1 induction of HIF-1α was impaired in response to the hypoxia mimetic cobalt chloride, as well as was induction by insulin and calcium chelation. Reintroduction of human Psen1 using a lentiviral vector partially rescued the responsiveness of Psen1-/- fibroblasts to cobalt chloride induction. HIF-1α induction did not require Psen1's associated γ-secretase activity. In addition, the failure of insulin to induce HIF-1α was not explicable on the basis of failed activation of the phosphatidylinositol 3-kinase (PI3K/Akt) pathway which activated normally in Psen1-/- fibroblasts. Rather we found that basal levels of HIF-1α were lower in Psen1-/- fibroblasts and that the basis for lower constitutive levels of HIF-1α was best explained by accelerated HIF-1α degradation. We further found that Psen1 and HIF-1α physically interact suggesting that Psen1 may protect HIF-1α from degradation through the proteasome. In fibroblasts harboring the M146V Psen1 FAD mutation on a mouse Psen1 null background, metabolic induction of HIF-1α by insulin was impaired but not hypoxic induction by cobalt chloride. Unlike Psen1-/- fibroblasts, basal levels of HIF-1α were normal in FAD mutant fibroblasts but activation of the insulin-receptor pathway was impaired. Interestingly, in Psen1-/- primary neuronal cultures HIF-1α was induced normally in response to cobalt chloride but insulin induction of HIF-1α was impaired even though activation of the PI3K/Akt pathway by insulin proceeded normally in Psen1-/- neuronal cultures. Basal levels of HIF-1α were not significantly different in Psen1-/- neurons and HIF-1α levels were normal in Psen1-/- embryos. Conclusions Collectively these studies show that Psen1 regulates induction of HIF-1α although they indicate that cell type specific differences exist in the effect of Psen1 on induction. They also show that the M146V Psen1 FAD mutation impairs metabolic induction of HIF-1α, an observation that may have pathophysiological significance for AD.
Collapse
Affiliation(s)
- Rita De Gasperi
- Neurology Service, James J Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
AD (Alzheimer's disease) is a progressive neurodegenerative disease of unknown origin. Despite questions as to the underlying cause(s) of this disease, shared risk factors for both AD and atherosclerotic cardiovascular disease indicate that vascular mechanisms may critically contribute to the development and progression of both AD and atherosclerosis. An increased risk of developing AD is linked to the presence of the apoE4 (apolipoprotein E4) allele, which is also strongly associated with increased risk of developing atherosclerotic cardiovascular disease. Recent studies also indicate that cardiovascular risk factors, including elevated blood cholesterol and triacylglycerol (triglyceride), increase the likelihood of AD and vascular dementia. Lipids and lipoproteins in the circulation interact intimately with the cerebrovasculature, and may have important effects on its constituent brain microvascular endothelial cells and the adjoining astrocytes, which are components of the neurovascular unit. The present review will examine the potential mechanisms for understanding the contributions of vascular factors, including lipids, lipoproteins and cerebrovascular Abeta (amyloid beta), to AD, and suggest therapeutic strategies for the attenuation of this devastating disease process. Specifically, we will focus on the actions of apoE, TGRLs (triacylglycerol-rich lipoproteins) and TGRL lipolysis products on injury of the neurovascular unit and increases in blood-brain barrier permeability.
Collapse
|
22
|
Kumari U, Heese K. Cardiovascular dementia - a different perspective. Open Biochem J 2010; 4:29-52. [PMID: 20448820 PMCID: PMC2864432 DOI: 10.2174/1874091x01004010029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/12/2010] [Accepted: 01/22/2010] [Indexed: 02/08/2023] Open
Abstract
The number of dementia patients has been growing in recent years and dementia represents a significant threat to aging people all over the world. Recent research has shown that the number of people affected by Alzheimer's disease (AD) and dementia is growing at an epidemic pace. The rapidly increasing financial and personal costs will affect the world's economies, health care systems, and many families. Researchers are now exploring a possible connection among AD, vascular dementia (VD), diabetes mellitus (type 2, T2DM) and cardiovascular diseases (CD). This correlation may be due to a strong association of cardiovascular risk factors with AD and VD, suggesting that these diseases share some biologic pathways. Since heart failure is associated with an increased risk of AD and VD, keeping the heart healthy may prove to keep the brain healthy as well. The risk for dementia is especially high when diabetes mellitus is comorbid with severe systolic hypertension or heart disease. In addition, the degree of coronary artery disease (CAD) is independently associated with cardinal neuropathological lesions of AD. Thus, the contribution of T2DM and CD to AD and VD implies that cardiovascular therapies may prove useful in preventing AD and dementia.
Collapse
Affiliation(s)
- Udhaya Kumari
- Division of Cell and Molecular Biology, School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | |
Collapse
|
23
|
Franciosi S, Gama Sosa MA, English DF, Oler E, Oung T, Janssen WG, De Gasperi R, Schmeidler J, Dickstein DL, Schmitz C, Gandy S, Hof PR, Buxbaum JD, Elder GA. Novel cerebrovascular pathology in mice fed a high cholesterol diet. Mol Neurodegener 2009; 4:42. [PMID: 19852847 PMCID: PMC2774302 DOI: 10.1186/1750-1326-4-42] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Accepted: 10/24/2009] [Indexed: 11/20/2022] Open
Abstract
Background Hypercholesterolemia causes atherosclerosis in medium to large sized arteries. Cholesterol is less known for affecting the microvasculature and has not been previously reported to induce microvascular pathology in the central nervous system (CNS). Results Mice with a null mutation in the low-density lipoprotein receptor (LDLR) gene as well as C57BL/6J mice fed a high cholesterol diet developed a distinct microvascular pathology in the CNS that differs from cholesterol-induced atherosclerotic disease. Microvessel diameter was increased but microvascular density and length were not consistently affected. Degenerative changes and thickened vascular basement membranes were present ultrastructurally. The observed pathology shares features with the microvascular pathology of Alzheimer's disease (AD), including the presence of string-like vessels. Brain apolipoprotein E levels which have been previously found to be elevated in LDLR-/- mice were also increased in C57BL/6J mice fed a high cholesterol diet. Conclusion In addition to its effects as an inducer of atherosclerosis in medium to large sized arteries, hypercholesterolemia also induces a microvascular pathology in the CNS that shares features of the vascular pathology found in AD. These observations suggest that high cholesterol may induce microvascular disease in a range of CNS disorders including AD.
Collapse
Affiliation(s)
- Sonia Franciosi
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Roher AE, Esh CL, Kokjohn TA, Castaño EM, Van Vickle GD, Kalback WM, Patton RL, Luehrs DC, Daugs ID, Kuo YM, Emmerling MR, Soares H, Quinn JF, Kaye J, Connor DJ, Silverberg NB, Adler CH, Seward JD, Beach TG, Sabbagh MN. Amyloid beta peptides in human plasma and tissues and their significance for Alzheimer's disease. Alzheimers Dement 2009; 5:18-29. [PMID: 19118806 DOI: 10.1016/j.jalz.2008.10.004] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/27/2008] [Accepted: 10/06/2008] [Indexed: 01/17/2023]
Abstract
BACKGROUND We evaluated the amounts of amyloid beta (Abeta)) peptides in the central nervous system (CNS) and in reservoirs outside the CNS and their potential impact on Abeta plasma levels and Alzheimer's disease (AD) pathology. METHODS Amyloid beta levels were measured in (1) the plasma of AD and nondemented (ND) controls in a longitudinal study, (2) the plasma of a cohort of AD patients receiving a cholinesterase inhibitor, and (3) the skeletal muscle, liver, aorta, platelets, leptomeningeal arteries, and in gray and white matter of AD and ND control subjects. RESULTS Plasma Abeta levels fluctuated over time and among individuals, suggesting continuous contributions from brain and peripheral tissues and associations with reactive circulating proteins. Arteries with atherosclerosis had larger amounts of Abeta40 than disease-free vessels. Inactivated platelets contained more Abeta peptides than activated ones. Substantially more Abeta was present in liver samples from ND patients. Overall, AD brain and skeletal muscle contained increased levels of Abeta. CONCLUSIONS Efforts to use plasma levels of Abeta peptides as AD biomarkers or disease-staging scales have failed. Peripheral tissues might contribute to both the circulating amyloid pool and AD pathology within the brain and its vasculature. The wide spread of plasma Abeta values is also due in part to the ability of Abeta to bind to a variety of plasma and membrane proteins. Sources outside the CNS must be accounted for because pharmacologic interventions to reduce cerebral amyloid are assessed by monitoring Abeta plasma levels. Furthermore, the long-range impact of Abeta immunotherapy on peripheral Abeta sources should also be considered.
Collapse
Affiliation(s)
- Alex E Roher
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, AZ, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The incidence and prevalence of dementia are increasing. Dementia is a major cause of disability. Alzheimer's disease (AD) is the most common type of dementia. There are no good prevention or treatment options. Experimental animal and laboratory studies have suggested that cholesterol metabolism in the brain is important in the causal pathway for dementia, possibly by modifying amyloid metabolism. A few studies have showed a possible relationship between mid-life blood cholesterol levels and risk of dementia, including AD. Case-control studies report that patients with AD were less likely to use lipid-lowering drugs, especially statins. Longitudinal epidemiology studies have not demonstrated a decreased risk of AD among statin users versus nonusers. Two clinical trials of statin therapy to reduce cardiovascular disease have not shown any reduction in risk of cognitive decline or dementia. The results of two secondary prevention trials will be reported shortly. In spite of negative studies, the possibility remains that statin therapy may reduce risk of dementia and AD. Primary prevention trials are difficult and expensive and will likely not be done in the United States.
Collapse
Affiliation(s)
- Lewis H Kuller
- University of Pittsburgh, GSPH, 130 North Bellefield Avenue, Room 550, Pittsburgh, PA 15213, USA.
| |
Collapse
|
26
|
Butterfield DA, Reed T, Newman SF, Sultana R. Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairment. Free Radic Biol Med 2007; 43:658-77. [PMID: 17664130 PMCID: PMC2031860 DOI: 10.1016/j.freeradbiomed.2007.05.037] [Citation(s) in RCA: 427] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 05/20/2007] [Accepted: 05/25/2007] [Indexed: 12/17/2022]
Abstract
Oxidative stress has been implicated to play a crucial role in the pathogenesis of a number of diseases, including neurodegenerative disorders, cancer, and ischemia, just to name a few. Alzheimer disease (AD) is an age-related neurodegenerative disorder that is recognized as the most common form of dementia. AD is histopathologically characterized by the presence of extracellular amyloid plaques, intracellular neurofibrillary tangles, the presence of oligomers of amyloid beta-peptide (Abeta), and synapse loss. In this review we discuss the role of Abeta in the pathogenesis of AD and also the use of redox proteomics to identify oxidatively modified brain proteins in AD and mild cognitive impairment. In addition, redox proteomics studies in in vivo models of AD centered around human Abeta(1-42) are discussed.
Collapse
|
27
|
Morrison‐Bogorad M, Cahan V, Wagster MV. Brain health interventions: The need for further research. Alzheimers Dement 2007; 3:S80-5. [DOI: 10.1016/j.jalz.2007.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 01/24/2007] [Indexed: 10/23/2022]
Affiliation(s)
- Marcelle Morrison‐Bogorad
- National Institute on AgingNational Institutes of HealthDepartment of Health and Human ServicesBethesdaMDUSA
| | - Vicky Cahan
- National Institute on AgingNational Institutes of HealthDepartment of Health and Human ServicesBethesdaMDUSA
| | - Molly V. Wagster
- National Institute on AgingNational Institutes of HealthDepartment of Health and Human ServicesBethesdaMDUSA
| |
Collapse
|