1
|
Gao X, Wang Y, Meng H, Li S, Jiang H, Zhang Z, He J, Zhao Y, Zhang S, Zhai W, Bao T, Rong P. Acupuncture for brain diseases: Conception, application, and exploration. Anat Rec (Hoboken) 2023; 306:2958-2973. [PMID: 35195374 DOI: 10.1002/ar.24884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/04/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022]
Abstract
The brain is probably the most complex organ in the human body. It has been the hot spot and direction of brain science research all over the world to deeply study the pathogenesis of various kinds of brain diseases and find effective treatment methods. Acupuncture is a nonpharmacological therapy of traditional Chinese medicine originating from ancient clinical practice. The research on the treatment of brain diseases by acupuncture has been constantly enriched and updated with the promotion of interdisciplinary research. In order to account for the current achievements in the field of acupuncture for brain diseases, this article reviews it in terms of conception, application, and exploration. Based on the literature review, we found that in the past decades, acupuncture has received widespread attention worldwide and many literatures have reported the clinical efficacy and underlying mechanisms of acupuncture in the treatment of brain diseases. Presently, the conception, application, and exploration of acupuncture in the treatment of brain diseases have evolved from empirical medicine to evidence-based medicine and precision medicine, and are experiencing a deeper understanding of the information about acupuncture regulating the brain function based on interdisciplinary research.
Collapse
Affiliation(s)
- Xingzhou Gao
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, China
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong Meng
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, China
| | - Shaoyuan Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huili Jiang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zixuan Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiakai He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanan Zhao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuai Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weihang Zhai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tuya Bao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Acupuncture for Parkinson's Disease: Efficacy Evaluation and Mechanisms in the Dopaminergic Neural Circuit. Neural Plast 2021; 2021:9926445. [PMID: 34221005 PMCID: PMC8221898 DOI: 10.1155/2021/9926445] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disease caused by degeneration of dopaminergic neurons in the substantia nigra. Existing pharmaceutical treatments offer alleviation of symptoms but cannot delay disease progression and are often associated with significant side effects. Clinical studies have demonstrated that acupuncture may be beneficial for PD treatment, particularly in terms of ameliorating PD symptoms when combined with anti-PD medication, reducing the required dose of medication and associated side effects. During early stages of PD, acupuncture may even be used to replace medication. It has also been found that acupuncture can protect dopaminergic neurons from degeneration via antioxidative stress, anti-inflammatory, and antiapoptotic pathways as well as modulating the neurotransmitter balance in the basal ganglia circuit. Here, we review current studies and reflect on the potential of acupuncture as a novel and effective treatment strategy for PD. We found that particularly during the early stages, acupuncture may reduce neurodegeneration of dopaminergic neurons and regulate the balance of the dopaminergic circuit, thus delaying the progression of the disease. The benefits of acupuncture will need to be further verified through basic and clinical studies.
Collapse
|
3
|
Ko JH, Lee H, Kim SN, Park HJ. Does Acupuncture Protect Dopamine Neurons in Parkinson's Disease Rodent Model?: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2019; 11:102. [PMID: 31139074 PMCID: PMC6517785 DOI: 10.3389/fnagi.2019.00102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Acupuncture has been reported to have significant effects, not only in alleviating impaired motor function, but also rescuing dopaminergic neuron deficits in rodent models of Parkinson's disease (PD). However, a systemic analysis of these beneficial effects has yet to be performed. Objective: To evaluate the neuroprotective effect of acupuncture in animal models of PD. Methods: A literature search of the PubMed, MEDLINE, EMBASE, China National Knowledge Infrastructure, Research Information Service System, and Japan Society of Acupuncture and Moxibustion databases was performed to retrieve studies that investigated the effects of acupuncture on PD. The quality of each included study was evaluated using the 10-item checklist modified from the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies. RevMan version 5.3 (Foundation for Statistical Computing, Vienna, Austria) was used for meta-analysis. Results: The 42 studies included scored between 2 and 7 points, with a mean score of 4.6. Outcome measures included tyrosine hydroxylase (TH) level and dopamine content. Meta-analysis results revealed statistically significant effects of acupuncture for increasing both TH levels (33.97 [95% CI 33.15-34.79]; p < 0.00001) and dopamine content (4.23 [95% CI 3.53-4.92]; p < 0.00001) compared with that observed in PD control groups. In addition, motor dysfunctions exhibited by model PD animals were also mitigated by acupuncture treatment. Conclusions: Although there were limitations in the number and quality of the included studies, results of this analysis suggest that acupuncture exerts a protective effect on dopaminergic neurons in rodent models of PD.
Collapse
Affiliation(s)
- Jade Heejae Ko
- College of Korean Medicine, Dongguk University, Goyang, South Korea.,Graduate School, Dongguk University, Seoul, South Korea
| | - Hyangsook Lee
- Acupuncture and Meridian Science Research Center, Seoul, South Korea.,College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, Seoul, South Korea.,College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
4
|
Antipruritic Effect of Acupuncture in Patients with Atopic Dermatitis: Feasibility Study Protocol for a Randomised, Sham-Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2017:1926806. [PMID: 29358961 PMCID: PMC5735323 DOI: 10.1155/2017/1926806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 09/27/2017] [Indexed: 12/03/2022]
Abstract
This study aims to test the feasibility of a randomised clinical trial to evaluate how acupuncture affects atopic dermatitis (AD) symptoms and quality of life and to explore potential biomarkers that may be associated with AD. It is a sham-controlled trial in which 30 eligible patients will be randomly allocated in a 1 : 1 : 1 ratio to one of three groups: verum acupuncture (VA) group 1 (3 times weekly for 4 weeks); VA group 2 (twice weekly for 4 weeks); or sham acupuncture group (SA; twice weekly for 4 weeks). SA will consist of nonpenetrating acupuncture. Outcome measures will include the Visual Analogue Scale for itch, SCORing Atopic Dermatitis, and Eczema Area and Severity Index to evaluate AD symptoms improvement along with the Patient Oriented Eczema Measure and Dermatology Life Quality Index to assess quality of life. Measures will be collected at baseline, once weekly during the treatment period, and after a 4-week follow-up period. Blood collection will be at baseline and 4 and 8 weeks after treatment and compared with healthy controls. Illumina sequencing will be used to profile microRNA expression in each group to explore candidate microRNA biomarkers for specific effects of acupuncture in patients with AD. This trial is registered via US National Institutes of Health Clinical Trials registry (ClinicalTrials.gov) on 15 July 2016, identifier: NCT02844452.
Collapse
|
5
|
The use of acupuncture in patients with Parkinson's disease. Geriatr Nurs 2016; 38:302-314. [PMID: 28041638 DOI: 10.1016/j.gerinurse.2016.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022]
Abstract
Parkinson's disease, a progressive neuro-degeneration of multiple systems damaging motor and non-motor functions, affects individual and societal dimensions negatively. In addition to standard treatments, complementary and alternative medicine has been adopted, in which acupuncture, a traditional Chinese medical practice by needle penetration at specific stimulation points (acupoints) along the body, indicates positive outcomes in this illness. Apart from offering an overview of using acupuncture in Parkinson's disease, this literature review analyses the effects of acupuncture on Parkinson's-induced physical symptoms and mental problems such as slow movements, stiffness, constipation, and sleep disorders. In light of the 35 reviewed research projects in mainland China, Japan, Korea, Taiwan, and the United States of America, this study reveals the optimization of this approach through combined therapy and its preventive contribution using acupuncture alone. It also suggests research and practical implications that hint at enhancements in medical applications.
Collapse
|
6
|
Lee SH, van den Noort M, Bosch P, Lim S. Sex differences in acupuncture effectiveness in animal models of Parkinson's disease: a systematic review. Altern Ther Health Med 2016; 16:430. [PMID: 27809909 PMCID: PMC5094083 DOI: 10.1186/s12906-016-1405-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 10/19/2016] [Indexed: 01/08/2023]
Abstract
Background Many animal experimental studies have been performed to investigate the efficacy of acupuncture in Parkinson’s disease (PD). Sex differences are a major issue in all diseases including PD. However, to our knowledge, there have been no reviews investigating sex differences on the effectiveness of acupuncture treatment for animal PD models. The current study aimed to summarize and analyze past studies in order to evaluate these possible differences. Method Each of 7 databases (MEDLINE, EMBASE, the Cochrane Library, 3 Korean medical databases, and the China National Knowledge Infrastructure) was searched from its inception through March 2015 without language restrictions. Results We included studies of the use of acupuncture treatment in animal models of PD. A total of 810 potentially relevant articles were identified, 57 of which met our inclusion criteria. C57/BL6 mice were used most frequently (42 %) in animal PD models. Most of the studies were carried out using only male animals (67 %); only 1 study (2 %) was performed using solely females. The further 31 % of the studies used a male/female mix or did not specify the sex. Conclusions The results of our review suggest that acupuncture is an effective treatment for animal PD models, but there is insufficient evidence to determine whether sex differences exist. Future studies of acupuncture treatment for PD should use female animal models because they reflect the physiological characteristics of both males and females to fully evaluate the effect and the safety of the treatment for each sex. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1405-5) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Kim HJ, Jeon B, Chung SJ. Professional ethics in complementary and alternative medicines in management of Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2016; 6:675-683. [PMID: 27589539 PMCID: PMC5088405 DOI: 10.3233/jpd-160890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 12/27/2022]
Abstract
The practice of complementary and alternative medicine (CAM) is not, at present, considered an integral part of conventional medicine. As the popularity of CAM grows and access to information about CAM increases through the media and internet where CAMs are often promoted, patients are at risk of exposure unvalidated information. Therefore, there is a need for physicians to examine objectively the efficacy and safety of CAM, compare it with current medications, and become actively involved in the CAM treatment with patients. In accordance with these needs, this manuscript reviews the utility, scientific evidence, safety and cost-effectiveness of CAM in the treatment of Parkinson's disease (PD). We also address the ethical issues of CAM practices.
Collapse
Affiliation(s)
- Hee Jin Kim
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
- Parkinson Disease Study Group, Seoul National University Hospital, Seoul, South Korea
| | - Beomseok Jeon
- Parkinson Disease Study Group, Seoul National University Hospital, Seoul, South Korea
- Department of Neurology and Movement Disorder Center, College of Medicine, Seoul National University, Seoul, South Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Tian T, Sun Y, Wu H, Pei J, Zhang J, Zhang Y, Wang L, Li B, Wang L, Shi J, Hu J, Fan C. Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain. Sci Rep 2016; 6:19714. [PMID: 26792101 PMCID: PMC4726430 DOI: 10.1038/srep19714] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023] Open
Abstract
Acupuncture has historically been practiced to treat medical disorders by mechanically stimulating specific acupoints with fine needles. Despite its well-documented efficacy, its biological basis remains largely elusive. In this study, we found that mechanical stimulation at the acupoint of Yanglingquan (GB34) promoted the autophagic clearance of α-synuclein (α-syn), a well known aggregation-prone protein closely related to Parkinson's disease (PD), in the substantia nigra par compacta (SNpc) of the brain in a PD mouse model. We found the protein clearance arose from the activation of the autophagy-lysosome pathway (ALP) in a mammalian target of rapamycin (mTOR)-independent approach. Further, we observed the recovery in the activity of dopaminergic neurons in SNpc, and improvement in the motor function at the behavior level of PD mice. Whereas acupuncture and rapamycin, a chemical mTOR inhibitor, show comparable α-syn clearance and therapeutic effects in the PD mouse model, the latter adopts a distinctly different, mTOR-dependent, autophagy induction process. Due to this fundamental difference, acupuncture may circumvent adverse effects of the rapamycin treatment. The newly discovered connection between acupuncture and autophagy not only provides a new route to understanding the molecular mechanism of acupuncture but also sheds new light on cost-effective and safe therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Tian Tian
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yanhong Sun
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Huangan Wu
- Shanghai Institute of Acupuncture Moxibustion and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jian Pei
- Department of Acupuncture and Moxibustion, Long Hua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jing Zhang
- College of Acumox and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi Zhang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lu Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Bin Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiye Shi
- Kellogg College, University of Oxford, Banbury Road, Oxford, OX2 6PN, UK
- UCB Pharma, 208 Bath Road, Slough, SL1 3WE, UK
| | - Jun Hu
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
9
|
Danqing X. Acupuncture for Parkinson's Disease: a review of clinical, animal, and functional Magnetic Resonance Imaging studies. J TRADIT CHIN MED 2015; 35:709-17. [DOI: 10.1016/s0254-6272(15)30164-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Lu Y, Zhao H, Wang Y, Han B, Wang T, Zhao H, Cui K, Wang S. Electro-acupuncture up-regulates astrocytic MCT1 expression to improve neurological deficit in middle cerebral artery occlusion rats. Life Sci 2015; 134:68-72. [DOI: 10.1016/j.lfs.2015.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/20/2015] [Accepted: 05/09/2015] [Indexed: 01/02/2023]
|
11
|
Yeo S, An KS, Hong YM, Choi YG, Rosen B, Kim SH, Lim S. Neuroprotective changes in degeneration-related gene expression in the substantia nigra following acupuncture in an MPTP mouse model of Parkinsonism: Microarray analysis. Genet Mol Biol 2015; 38:115-27. [PMID: 25983633 PMCID: PMC4415566 DOI: 10.1590/s1415-475738120140137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/17/2014] [Indexed: 01/12/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the death of dopamine-generating cells in the substantia nigra (SN). Acupuncture stimulation results in an enhanced survival of dopaminergic neurons in the SN in Parkinsonism animal models. The present study investigated changes in gene expression profiles measured using whole transcript array in the SN region related to the inhibitory effects of acupuncture in a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Parkinsonism model. In this model, acupuncture stimulation at GB34 and LR3 attenuated the decrease in tyrosine hydroxylase in the SN region; stimulation at non-acupoints did not suppress this decrease. Gene array analysis revealed that 22 (10 annotated genes: Cdh1, Itih2, Mpzl2, Rdh9, Serping1, Slc6a13, Slc6a20a, Slc6a4, Tph2, and Ucma) probes that were up-regulated in MPTP animals relative to controls were exclusively down-regulated by acupuncture stimulation. In addition, 17 (two annotated genes: 4921530L21Rik and Gm13931) probes that were down-regulated in MPTP animals compared to controls were exclusively up-regulated by acupuncture stimulation. These findings indicate that the 39 probes (12 annotated genes) affected by MPTP and acupuncture may be responsible for the inhibitory effects of acupuncture on degeneration-related gene expression in the SN following damage induced by MPTP intoxication.
Collapse
Affiliation(s)
- Sujung Yeo
- Research Group of Pain and Neuroscience, WHO Collaborating Center for
Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul,
Republic of Korea
- Department of Basic Korean Medical Science, College of Korean Medicine,
Kyung Hee University, Seoul, Republic of Korea
| | - Keon Sang An
- Department of Basic Korean Medical Science, College of Korean Medicine,
Kyung Hee University, Seoul, Republic of Korea
| | - Yeon-Mi Hong
- Research Group of Pain and Neuroscience, WHO Collaborating Center for
Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul,
Republic of Korea
- Department of Basic Korean Medical Science, College of Korean Medicine,
Kyung Hee University, Seoul, Republic of Korea
| | - Yeong-Gon Choi
- Research Group of Pain and Neuroscience, WHO Collaborating Center for
Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul,
Republic of Korea
- Department of Basic Korean Medical Science, College of Korean Medicine,
Kyung Hee University, Seoul, Republic of Korea
| | - Bruce Rosen
- Department of Basic Korean Medical Science, College of Korean Medicine,
Kyung Hee University, Seoul, Republic of Korea
- Department of Radiology, Athinoula A. Martinos Center for Biomedical
Imaging, Massachusetts General Hospital, Harvard Medical School, Boston,
USA
| | - Sung-Hoon Kim
- Department of Basic Korean Medical Science, College of Korean Medicine,
Kyung Hee University, Seoul, Republic of Korea
| | - Sabina Lim
- Research Group of Pain and Neuroscience, WHO Collaborating Center for
Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul,
Republic of Korea
- Department of Basic Korean Medical Science, College of Korean Medicine,
Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
12
|
The neuroprotective role of acupuncture and activation of the BDNF signaling pathway. Int J Mol Sci 2014; 15:3234-52. [PMID: 24566146 PMCID: PMC3958908 DOI: 10.3390/ijms15023234] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 11/17/2022] Open
Abstract
Recent studies have been conducted to examine the neuroprotective effects of acupuncture in many neurological disorders. Although the neuroprotective effects of acupuncture has been linked to changes in signaling pathways, accumulating evidence suggest the participation of endogenous biological mediators, such as the neurotrophin (NT) family of proteins, specifically, the brain derived neurotrophic factor (BDNF). Accordingly, acupuncture can inhibit neurodegeneration via expression and activation of BDNF. Moreover, recent studies have reported that acupuncture can increase ATP levels at local stimulated points. We have also demonstrated that acupuncture could activate monocytes and increase the expression of BDNF via the stimulation of ATP. The purpose of this article is to review the recent findings and ongoing studies on the neuroprotective roles of acupuncture and therapeutic implications of acupuncture-induced activation of BDNF and its signaling pathway.
Collapse
|
13
|
Yin HY, Tang Y, Lu SF, Luo L, Wang JP, Liu XG, Yu SG. Gene Expression Profiles at Moxibustioned Site (ST36): A Microarray Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:890579. [PMID: 24198847 PMCID: PMC3807720 DOI: 10.1155/2013/890579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/02/2013] [Indexed: 01/09/2023]
Abstract
As a major alternative therapy in Traditional Chinese Medicine, it has been demonstrated that moxibustion could generate a series of molecular events in blood, spleen, and brain, and so forth. However, what would happen at the moxibustioned site remained unclear. To answer this question, we performed a microarray analysis with skin tissue taken from the moxibustioned site also Zusanli acupoint (ST36) where 15-minute moxibustion stimulation was administrated. The results exhibited 145 upregulated and 72 downregulated genes which responded immediately under physiological conditions, and 255 upregulated and 243 downregulated genes under pathological conditions. Interestingly, most of the pathways and biological processes of the differentially expressed genes (DEGs) under pathological conditions get involved in immunity, while those under physiological conditions are involved in metabolism.
Collapse
Affiliation(s)
- Hai-Yan Yin
- Acupuncture & Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Joint Laboratory of Biochip between Chengdu University of Traditional Chinese Medicine and CapitalBio Co. Ltd., 37 Shi-er Qiao Road, Chengdu 610075, China
- Key Laboratory for Acupuncture & Chronobiology of Sichuan Province, Chengdu 610075, China
| | - Yong Tang
- Acupuncture & Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Joint Laboratory of Biochip between Chengdu University of Traditional Chinese Medicine and CapitalBio Co. Ltd., 37 Shi-er Qiao Road, Chengdu 610075, China
- Key Laboratory for Acupuncture & Chronobiology of Sichuan Province, Chengdu 610075, China
| | - Sheng-Feng Lu
- Acupuncture & Tuina School, Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| | - Ling Luo
- Acupuncture & Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jia-Ping Wang
- Acupuncture & Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xu-Guang Liu
- Acupuncture & Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shu-Guang Yu
- Acupuncture & Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Laboratory for Acupuncture & Systematic Biology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
14
|
Systems biology approach opens door to essence of acupuncture. Complement Ther Med 2013; 21:253-9. [DOI: 10.1016/j.ctim.2013.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/21/2013] [Accepted: 03/03/2013] [Indexed: 12/17/2022] Open
|
15
|
Zeng BY, Salvage S, Jenner P. Current Development of Acupuncture Research in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 111:141-58. [DOI: 10.1016/b978-0-12-411545-3.00007-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Systems biology of meridians, acupoints, and chinese herbs in disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:372670. [PMID: 23118787 PMCID: PMC3483864 DOI: 10.1155/2012/372670] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/26/2012] [Indexed: 02/07/2023]
Abstract
Meridians, acupoints, and Chinese herbs are important components of traditional Chinese medicine (TCM). They have been used for disease treatment and prevention and as alternative and complementary therapies. Systems biology integrates omics data, such as transcriptional, proteomic, and metabolomics data, in order to obtain a more global and complete picture of biological activity. To further understand the existence and functions of the three components above, we reviewed relevant research in the systems biology literature and found many recent studies that indicate the value of acupuncture and Chinese herbs. Acupuncture is useful in pain moderation and relieves various symptoms arising from acute spinal cord injury and acute ischemic stroke. Moreover, Chinese herbal extracts have been linked to wound repair, the alleviation of postmenopausal osteoporosis severity, and anti-tumor effects, among others. Different acupoints, variations in treatment duration, and herbal extracts can be used to alleviate various symptoms and conditions and to regulate biological pathways by altering gene and protein expression. Our paper demonstrates how systems biology has helped to establish a platform for investigating the efficacy of TCM in treating different diseases and improving treatment strategies.
Collapse
|
17
|
Jia J, Yu Y, Deng JH, Robinson N, Bovey M, Cui YH, Liu HR, Ding W, Wu HG, Wang XM. A review of Omics research in acupuncture: the relevance and future prospects for understanding the nature of meridians and acupoints. JOURNAL OF ETHNOPHARMACOLOGY 2012; 140:594-603. [PMID: 22322253 DOI: 10.1016/j.jep.2012.01.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/16/2012] [Accepted: 01/21/2012] [Indexed: 05/31/2023]
Abstract
RELEVANCE Acupuncture is an intrinsic part of traditional Chinese medicine. The current understanding of the acupuncture meridian system, acupoints and the potential utilizing Omics technologies are summarized in this review. MATERIAL AND METHODS A systematic search for acupuncture involving Omics technologies was carried out using multiple online literature databases. The records retrieved were from the full collections of each database dated to September 2011. Data produced from functional genomic technologies were extracted from the collected acupuncture/moxibustion studies and subjected to evaluation. Analyses and comments were summarized on the advances in experimental research in acupuncture/moxibustion-related studies, and the future for strategies and approaches in the era of functional genomics highlighted. RESULTS An overview of articles indicated that several diseases or symptoms with evidence of effectiveness had been piloted for using functional genomic technologies, such as Parkinson's disease, allergic disorders, pain, and spinal cord injury, most of which are chronic "difficult diseases". High-throughput genomic and proteomic profiling of gene expression in tissues has been able to identify potential candidates for the effects of acupuncture and provide valuable information toward understanding the possible mechanisms of the therapy. However, without further holistic and sophisticated analyses in the context of metabolomics and systems biology, the current attempts and the foreseeable developments appear to be insufficient to produce firm conclusions. Noticeably, the recent rapid advances in functional molecular imaging targeting specific metabolites have shown great promise and if combined with other post-genomic technologies, could be extremely helpful for the acupuncture studies in human subjects. CONCLUSION This review suggest that disease-oriented studies using the approach of multi-indexed high-throughput technologies and systems biology analyses will be a preferred strategy for future acupuncture/moxibustion research.
Collapse
Affiliation(s)
- Jun Jia
- Department of Physiology, Capital Medical University, Beijing 100069, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The cortical and striatal gene expression profile of 100 hz electroacupuncture treatment in 6-hydroxydopamine-induced Parkinson's disease model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:908439. [PMID: 22319547 PMCID: PMC3272844 DOI: 10.1155/2012/908439] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 09/05/2011] [Accepted: 09/26/2011] [Indexed: 11/18/2022]
Abstract
Electroacupuncture (EA), especially high-frequency EA, has frequently been used as an alternative therapy for Parkinson disease (PD) and is reportedly effective for alleviating motor symptoms in patients and PD models. However, the molecular mechanism underlying its effectiveness is not completely understood. To implement a full-scale search for the targets of 100 Hz EA, we selected rat models treated with 6-hydroxydopamine into the unilateral MFB, which mimic end-stage PD. High-throughput microarray analysis was then used to uncover the regulated targets in the cortex and striatum after 4-week EA treatment. In the differentially regulated transcripts, the proportion of recovered expression profiles in the genes, the functional categories of targets in different profiles, and the affected pathways were analyzed. Our results suggested that the recovery of homeostasis in the transcript network and many regulated functional clusters in the cortex and striatum after EA treatment may contribute to the behavioral improvement of PD rats.
Collapse
|
19
|
Choi YG, Yeo S, Hong YM, Lim S. Neuroprotective changes of striatal degeneration-related gene expression by acupuncture in an MPTP mouse model of Parkinsonism: microarray analysis. Cell Mol Neurobiol 2011; 31:377-91. [PMID: 21107677 DOI: 10.1007/s10571-010-9629-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/02/2010] [Indexed: 01/02/2023]
Abstract
Acupuncture at acupoints GB34 and LR3 has been reported to inhibit nigrostriatal degeneration in Parkinsonism models, yet the genes related to this preventive effect of acupuncture on the nigrostriatal dopaminergic system remain elusive. This study investigated gene expression profile changes in the striatal region of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism models after acupuncture at the acupoints GB34 and LR3 using a whole transcript genechip microarray (Affymetrix genechip mouse gene 1.0 ST array). It was confirmed that acupuncture at these acupoints could inhibit the decrease of tyrosine hydroxylase and dopamine transporter in the nigrostriatal region of the MPTP model while acupuncture at the non-acupoints could not counteract this decrease. Genechip gene array analysis (fold change cutoff 1.3 and P < 0.05) showed that 12 of the 69 probes up-regulated in MPTP when compared to the control were down-regulated by acupuncture at the acupoints. Of these 12 probes, 11 probes (nine annotated genes) were exclusively down-regulated by acupuncture only at the acupoints; the Gfral gene was excluded because it was commonly down-regulated by acupuncture at both the acupoints and the non-acupoints. In addition, 28 of the 189 probes down-regulated in MPTP when compared to the control were up-regulated by acupuncture at the acupoints. Of these 28 probes, 19 probes (seven annotated genes) were exclusively up-regulated by acupuncture only at the acupoints while nine probes were commonly up-regulated by acupuncture at both the acupoints and the non-acupoints. The regulation patterns of representative genes in real-time RT-PCR correlated with those of the genes in the microarray. These results suggest that the 30 probes (16 annotated genes), which are affected by MPTP and acupuncture only at the acupoints, are responsible for exerting in the striatal regions the inhibitory effect of acupuncture at the acupoints on MPTP-induced striatal degeneration.
Collapse
Affiliation(s)
- Yeong-Gon Choi
- Research Group of Pain and Neuroscience, WHO Collaborating Center for Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
20
|
Choi YG, Yeo S, Hong YM, Kim SH, Lim S. Changes of gene expression profiles in the cervical spinal cord by acupuncture in an MPTP-intoxicated mouse model: microarray analysis. Gene 2011; 481:7-16. [PMID: 21440609 DOI: 10.1016/j.gene.2011.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/14/2011] [Indexed: 01/14/2023]
Abstract
It has been shown that acupuncture at acupoints GB34 and LR3 inhibits the degeneration of nigrostriatal neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. The degeneration of spinal cord was reported to be induced in the MPTP-treated pre-symptomatic mouse. In this study, the gene expression profile changes following acupuncture at the acupoints were investigated in the cervical spinal cord of an MPTP-induced parkinsonism model using a whole transcript array (Affymetrix GeneChip mouse gene 1.0 ST array). It was shown that 8 of the probes up-regulated in MPTP, as compared to the control, were down-regulated after acupuncture at the acupoints. Of these 8 probes, 6 probes (4 annotated genes in 6 probes: Ctla2a, EG383229, Ppbp and Ube2l6) were exclusively down-regulated by acupuncture at the specific acupoints except for 2 probes as these 2 probes were commonly down-regulated by acupuncture at both the acupoints and the non-acupoints. In addition, 11 of the probes down-regulated in MPTP, as compared to the control, were up-regulated by acupuncture at the acupoints. Of these 11 probes, 10 probes (5 annotated genes in 10 probes: EG665033, ENSMUSG00000055323, Obox6, Pbp2 and Tmem150) were exclusively up-regulated by acupuncture at the specific acupoints except for the Fut11 because the Fut11 was commonly up-regulated by acupuncture at both the acupoints and the non-acupoints. The expression levels of the representative genes in the microarray were validated by real-time RT-PCR. These data suggest that the expression of these exclusively regulated 16 probes (9 genes) may be, at least in part, affected by acupuncture at the acupoints in the cervical spinal cord which can be damaged by MPTP intoxication.
Collapse
Affiliation(s)
- Yeong-Gon Choi
- Research Group of Pain and Neuroscience, WHO Collaborating Center for Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|