1
|
Yang R, Lai C, Huang L, Li F, Peng W, Wu M, Xin J, Lu Y, Ouyang M, Bai Y, Lei H, He S, Lin Y. Role of disulfidptosis in colorectal adenocarcinoma: implications for prognosis and immunity. Front Immunol 2024; 15:1409149. [PMID: 39399504 PMCID: PMC11466812 DOI: 10.3389/fimmu.2024.1409149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024] Open
Abstract
Background Recent research has found a new way of cell death: disulfidptosis. Under glucose starvation, abnormal accumulation of disulfide molecules such as Cystine in Solute Carrier Family 7 Member 11 (SLC7A11) overexpression cells induced disulfide stress to trigger cell death. The research on disulfidptosis is still in its early stages, and its role in the occurrence and development of colorectal malignancies is still unclear. Method In this study, we employed bioinformatics methods to analyze the expression and mutation characteristics of disulfidptosis-related genes (DRGs) in colorectal cancer. Consensus clustering analysis was used to identify molecular subtypes of Colorectal Adenocarcinoma (COAD) associated with disulfidptosis. The biological behaviors between subtypes were analyzed to explore the impact of disulfidptosis on the tumor microenvironment. Constructing and validating a prognostic risk model for COAD using diverse data. The influence of key genes on prognosis was evaluated through SHapley Additive exPlanations (SHAP) analysis, and the predictive capability of the model was assessed using Overall Survival analysis, Area Under Curve and risk curves. The immunological status of different patients and the prediction of drug treatment response were determined through immune cell infiltration, TMB, MSI status, and drug sensitivity analysis. Single-cell analysis was employed to explore the expression of genes at the cellular level, and finally validated the expression of key genes in clinical samples. Result By integrating the public data from two platforms, we identified 2 colorectal cancer subtypes related to DRGs. Ultimately, we established a prognosis risk model for COAD using 7 genes (FABA4+GIPC2+EGR3+HOXC6+CCL11+CXCL10+ITLN1). SHAP analysis can further explained the positive or negative impact of gene expression on prognosis. By dividing patients into high-risk and low-risk groups, we found that patients in the high-risk group had poorer prognosis, higher TMB, and a higher proportion of MSI-H and MSI-L statuses. We also predicted that drugs such as 5-Fluorouracil, Oxaliplatin, Gefitinib, and Sorafenib would be more effective in low-risk patients, while drugs like Luminesib and Staurosporine would be more effective in high-risk patients. Single-cell analysis revealed that these 7 genes not only differ at the level of immune cells but also in epithelial cells, fibroblasts, and myofibroblasts, among other cell types. Finally, the expression of these key genes was verified in clinical samples, with consistent results. Conclusions Our research findings provide evidence for the role of disulfidptosis in COAD and offer new insights for personalized and precise treatment of COAD.
Collapse
Affiliation(s)
- Ruanruan Yang
- Department of Gastroenterology, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunxiao Lai
- Department of Gastroenterology, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Luji Huang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, Foshan, China
| | - Feng Li
- Department of Gastroenterology, Shenzhen Hospital of Beijing University of Chinese Medicine (Longgang), Shenzhen, China
| | - Weiqi Peng
- Department of Gastroenterology, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meiyan Wu
- Department of Gastroenterology, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinge Xin
- Department of Gastroenterology, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Lu
- Department of Good Clinical Practice (GCP), Shunde Hospital, Southern Medical University, Foshan, China
| | - Manzhao Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, Foshan, China
| | - Yang Bai
- Department of Gastroenterology, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoqiang Lei
- Huangpu People’s Hospital of Zhongshan, Zhongshan, China
| | - Shunhui He
- Department of Gastroenterology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Yu Lin
- Department of Gastroenterology, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Gu X, Wei Y, Shen D, Mao Y. Construction of a prognostic model for disulfidptosis-related long noncoding RNAs in R0 resected hepatocellular carcinoma and analysis of their impact on malignant behavior. BMC Cancer 2024; 24:1068. [PMID: 39210306 PMCID: PMC11363604 DOI: 10.1186/s12885-024-12816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Disulfidptosis is an emerging form of cellular death resulting from the binding of intracellular disulfide bonds to actin cytoskeleton proteins. This study aimed to investigate the expression and prognostic significance of hub disulfidptosis-related lncRNAs (DRLRs) in R0 resected hepatocellular carcinoma (HCC) as well as their impact on the malignant behaviour of HCC cells. METHODS A robust signature for R0 resected HCC was constructed using least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression and was validated in an independent internal validation cohort to predict the prognosis of R0 HCC patients. Comprehensive bioinformatics analysis was performed on the hub DRLRs (KDM4A-AS1, MKLN1-AS, and TMCC1-AS1), followed by experimental validation using quantitative real-time polymerase chain reaction (qRT‒PCR) and cellular functional assays. RESULTS The signature served as an independent prognostic factor applicable to R0 HCC patients across different age groups, tumour stages, and pathological characteristics. Gene Ontology (GO) and gene set enrichment analysis (GSEA) revealed hub pathways associated with this signature. The high-risk group presented an increased abundance of M0 macrophages and activated memory CD4 T cells as well as elevated macrophage and major histocompatibility complex (MHC) class I expression. High-risk R0 HCC patients also presented increased tumour immune dysfunction and exclusion scores (TIDEs), mutation frequencies, and tumour mutational burdens (TMBs). Drug sensitivity analysis revealed that high-risk patients were more responsive to drugs, including GDC0810 and osimertinib. High expression levels of the three hub DRLRs were detected in R0 HCC tissues and HCC cell lines. Functional assays revealed that the three hub DRLRs enhanced HCC cell proliferation, migration, and invasion. CONCLUSIONS A signature was constructed on the basis of three DRLRs, providing novel insights for personalized precision therapy in R0 HCC patients.
Collapse
Affiliation(s)
- Xuefeng Gu
- Department of Infectious Diseases, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanyan Wei
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Duo Shen
- Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 188 Gehu Road, Wujin District, Changzhou, Jiangsu, China.
| | - Yuan Mao
- Department of Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, 298 Nanpu Road, Jiangbei New District, Nanjing, China.
| |
Collapse
|
3
|
Li C, Sun C, Li Y, Dong L, Wang X, Li R, Su J, Cao Q, Xin S. Therapeutic and prognostic effect of disulfidptosis-related genes in lung adenocarcinoma. Heliyon 2024; 10:e33764. [PMID: 39050421 PMCID: PMC11267016 DOI: 10.1016/j.heliyon.2024.e33764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Disulfidptosis, a new form of cell death, may be induced by disulfide stress associated with cystine disulfide buildup, which can promote cell toxicity, leading to cell death. Nevertheless, the role of direct prognosis and the mechanism underlying the regulation of disulfidptosis-related genes (DRGs) in lung adenocarcinoma (LUAD) are still unknown. This study aimed to investigate the role of DRGs in LUAD prognosis and diagnosis through multiomics analysis. First, copy number variations (CNVs) and mutations in the 10 genes were assessed. Considering that five differentially expressed genes (DEGs) were associated with disulfidptosis, a novel DRG score that can be utilized to anticipate LUAD prognosis was developed. Next, the generated receiver operating characteristic (ROC) and survival curves demonstrated that the model had an excellent predictive quality in LUAD in both the training and validation cohorts. Meanwhile, substantial functional disparities between the high DRG group and the low DRG group were observed, and the second gap mitosis (G2M) checkpoint, E2 promoter-binding factor (E2F) targets, and myelocytomatosis (MYC) target activities were consistently higher in the high DRG group than in the low DRG group. Additionally, the T-cell dysfunction score and tumor inflammation signature (Merck18) were negatively correlated with DRGs, whereas myeloid-derived suppressor cells (MDSCs) were positively correlated with DRGs. Moreover, DRGs were negatively linked to most of the immunological checkpoints. Meanwhile, samples of low DRGs benefited more from immune checkpoint blockade (ICB). The correlation analysis between DRGs and clinical characteristics revealed increasing malignancy with increasing DRG scores. Drug sensitization experiment results indicated that sensitivity to cisplatin, vincristine, docetaxel, and gemcitabine was higher in the high DRG group than in the low DRG group. The function of model genes in LUAD was also verified using immunohistochemistry, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, 5-ethynyl-2'-deoxyuridine (EDU), and clonogenic formation.
Collapse
Affiliation(s)
- Changshuan Li
- Department of Thoracic and Cardiovascular Surgery, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Chao Sun
- Department of Thoracic and Cardiovascular Surgery, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Yakun Li
- Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Lin Dong
- Department of Oncology, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Xian Wang
- Department of Thoracic Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| | - Ruixin Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| | - Junjie Su
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| | - Qiong Cao
- Department of Pathology, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Shiyong Xin
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| |
Collapse
|
4
|
Wang Y, Tsukamoto Y, Hori M, Iha H. Disulfidptosis: A Novel Prognostic Criterion and Potential Treatment Strategy for Diffuse Large B-Cell Lymphoma (DLBCL). Int J Mol Sci 2024; 25:7156. [PMID: 39000261 PMCID: PMC11241771 DOI: 10.3390/ijms25137156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Diffuse Large B-cell Lymphoma (DLBCL), with its intrinsic genetic and epigenetic heterogeneity, exhibits significantly variable clinical outcomes among patients treated with the current standard regimen. Disulfidptosis, a novel form of regulatory cell death triggered by disulfide stress, is characterized by the collapse of cytoskeleton proteins and F-actin due to intracellular accumulation of disulfides. We investigated the expression variations of disulfidptosis-related genes (DRGs) in DLBCL using two publicly available gene expression datasets. The initial analysis of DRGs in DLBCL (GSE12453) revealed differences in gene expression patterns between various normal B cells and DLBCL. Subsequent analysis (GSE31312) identified DRGs strongly associated with prognostic outcomes, revealing eight characteristic DRGs (CAPZB, DSTN, GYS1, IQGAP1, MYH9, NDUFA11, NDUFS1, OXSM). Based on these DRGs, DLBCL patients were stratified into three groups, indicating that (1) DRGs can predict prognosis, and (2) DRGs can help identify novel therapeutic candidates. This study underscores the significant role of DRGs in various biological processes within DLBCL. Assessing the risk scores of individual DRGs allows for more precise stratification of prognosis and treatment strategies for DLBCL patients, thereby enhancing the effectiveness of clinical practice.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan;
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan;
| | - Mitsuo Hori
- Department of Hematology, Ibaraki Prefectural Central Hospital, Kasama 309-1703, Japan;
| | - Hidekatsu Iha
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan;
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 879-5503, Japan
| |
Collapse
|
5
|
Zhang F, Lv M, He Y. Identification of a novel disulfideptosis-related gene signature for prognostic implication in lower-grade gliomas. Aging (Albany NY) 2024; 16:6054-6067. [PMID: 38546389 PMCID: PMC11042955 DOI: 10.18632/aging.205688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/20/2024] [Indexed: 04/23/2024]
Abstract
Lower-grade gliomas (GBMLGG) are common, fatal, and difficult-to-treat cancers. The current treatment choices have impressive efficacy constraints. As a result, the development of effective treatments and the identification of new therapeutic targets are urgent requirements. Disulfide metabolism is the cause of the non-apoptotic programmed cell death known as disulfideptosis, which was only recently discovered. The mRNA expression data and related clinical information of GBMLGG patients downloaded from public databases were used in this study to investigate the prognostic significance of genes involved in disulfideptosis. In the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohort, our findings showed that many disulfidptosis-related genes were expressed differently in normal and GBMLGG tissues. It was discovered that IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a key gene that influences the outcome of GBMLGG. Besides, a nomogram model was built to foresee the visualization of GBMLGG patients. In addition, in vivo and in vitro validation of IQGAP1's cancer-promoting function was done. In conclusion, we discovered a gene signature associated with disulfideptosis that can effectively predict OS in GBMLGG patients. As a result, treating disulfideptosis may be a viable alternative for GBMLGG patients.
Collapse
Affiliation(s)
- Fuqiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Meihong Lv
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yi He
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
6
|
Xie J, Deng X, Xie Y, Zhu H, Liu P, Deng W, Ning L, Tang Y, Sun Y, Tang H, Cai M, Xie X, Zou Y. Multi-omics analysis of disulfidptosis regulators and therapeutic potential reveals glycogen synthase 1 as a disulfidptosis triggering target for triple-negative breast cancer. MedComm (Beijing) 2024; 5:e502. [PMID: 38420162 PMCID: PMC10901283 DOI: 10.1002/mco2.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Disruption of disulfide homeostasis during biological processes can have fatal consequences. Excess disulfides induce cell death in a novel manner, termed as "disulfidptosis." However, the specific mechanism of disulfidptosis has not yet been elucidated. To determine the cancer types sensitive to disulfidptosis and outline the corresponding treatment strategies, we firstly investigated the crucial functions of disulfidptosis regulators pan-cancer at multi-omics levels. We found that different tumor types expressed dysregulated levels of disulfidptosis regulators, most of which had an impact on tumor prognosis. Moreover, we calculated the disulfidptosis activity score in tumors and validated it using multiple independent datasets. Additionally, we found that disulfidptosis activity was correlated with classic biological processes and pathways in various cancers. Disulfidptosis activity was also associated with tumor immune characteristics and could predict immunotherapy outcomes. Notably, the disulfidptosis regulator, glycogen synthase 1 (GYS1), was identified as a promising target for triple-negative breast cancer and validated via in vitro and in vivo experiments. In conclusion, our study elucidated the complex molecular phenotypes and clinicopathological correlations of disulfidptosis regulators in tumors, laying a solid foundation for the development of disulfidptosis-targeting strategies for cancer treatment.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Xinpei Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Yi Xie
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Hongbo Zhu
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Peng Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Wei Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Li Ning
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Yuhui Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Yuying Sun
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Hailin Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Manbo Cai
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Yutian Zou
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| |
Collapse
|
7
|
Peng K, Wang N, Liu Q, Wang L, Duan X, Xie G, Li J, Ding D. Identification of disulfidptosis-related subtypes and development of a prognosis model based on stacking framework in renal clear cell carcinoma. J Cancer Res Clin Oncol 2023; 149:13793-13810. [PMID: 37530800 DOI: 10.1007/s00432-023-05201-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor with an unsatisfactory prognosis. This study aims to identify the expression patterns of disulfidptosis-related genes (DRGs), develop a prognostic model, and predict immunological profiles. METHODS First, we identified differentially expressed DRGs in TCGA-KIRC cohort and analyzed their mutational profiles, methylation levels, and interaction networks. Subsequently, we identified disulfidptosis-associated molecular subtypes and investigated their prognostic and immunological characteristics. Simultaneously, a disulfidptosis-related prognostic signature (DRPS) was developed using a two-stage stacking framework consisting of 5 machine learning models. The effect of DRPS on immune cell infiltration levels was explored using seven different algorithms, and the status and function of T cells for distinct risk-score groups were evaluated based on T cell exhaustion and dysfunction scores. Additionally, the study also examined differences in clinical characteristics and therapy efficacy between high- and low-risk groups. RESULTS We found two disulfidptosis-associated clusters, one of which had a poor prognosis and was linked to high immune cell infiltration but impaired T cell function. DRPS showed excellent predictive performance in all four cohorts and could accurately identified disulfidptosis-related molecular subtypes. The DRPS-based risk score was positively associated with poor prognosis, malignant pathological features, high immune cell infiltration levels, and T cell exhaustion or dysfunction, and better respond to immunotherapy and targeted therapy. Additionally, we have identified a close association between ISG20 and disulfidptosis as well as tumor immunity. CONCLUSION Our study identified distinct disulfidptosis-related subtypes in ccRCC patients, and constructed the highly accurate and robust DRPS based on an ensemble learning framework, which has critical reference value in clinical decision-making and individualized treatment. And this work also revealed ISG20 exhibits promising potential as a therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Kun Peng
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Ning Wang
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Qingyuan Liu
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Lingdian Wang
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Xiaoyu Duan
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Guochong Xie
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Jixi Li
- Department of Urology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Degang Ding
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
- Department of Urology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
- Institute of Urology, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
8
|
Wang Y, Xu Y, Liu C, Yuan C, Zhang Y. Identification of disulfidptosis-related subgroups and prognostic signatures in lung adenocarcinoma using machine learning and experimental validation. Front Immunol 2023; 14:1233260. [PMID: 37799714 PMCID: PMC10548142 DOI: 10.3389/fimmu.2023.1233260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Background Disulfidptosis is a newly identified variant of cell death characterized by disulfide accumulation, which is independent of ATP depletion. Accordingly, the latent influence of disulfidptosis on the prognosis of lung adenocarcinoma (LUAD) patients and the progression of tumors remains poorly understood. Methods We conducted a multifaceted analysis of the transcriptional and genetic modifications in disulfidptosis regulators (DRs) specific to LUAD, followed by an evaluation of their expression configurations to define DR clusters. Harnessing the differentially expressed genes (DEGs) identified from these clusters, we formulated an optimal predictive model by amalgamating 10 distinct machine learning algorithms across 101 unique combinations to compute the disulfidptosis score (DS). Patients were subsequently stratified into high and low DS cohorts based on median DS values. We then performed an exhaustive comparison between these cohorts, focusing on somatic mutations, clinical attributes, tumor microenvironment, and treatment responsiveness. Finally, we empirically validated the biological implications of a critical gene, KYNU, through assays in LUAD cell lines. Results We identified two DR clusters and there were great differences in overall survival (OS) and tumor microenvironment. We selected the "Least Absolute Shrinkage and Selection Operator (LASSO) + Random Survival Forest (RFS)" algorithm to develop a DS based on the average C-index across different cohorts. Our model effectively stratified LUAD patients into high- and low-DS subgroups, with this latter demonstrating superior OS, a reduced mutational landscape, enhanced immune status, and increased sensitivity to immunotherapy. Notably, the predictive accuracy of DS outperformed the published LUAD signature and clinical features. Finally, we validated the DS expression using clinical samples and found that inhibiting KYNU suppressed LUAD cells proliferation, invasiveness, and migration in vitro. Conclusions The DR-based scoring system that we developed enabled accurate prognostic stratification of LUAD patients and provides important insights into the molecular mechanisms and treatment strategies for LUAD.
Collapse
Affiliation(s)
- Yuzhi Wang
- Department of Laboratory Medicine, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Yunfei Xu
- Department of Laboratory Medicine, Chengdu Women’s and Children’s Central Hospital, Chengdu, Sichuan, China
| | - Chunyang Liu
- Department of Ultrasound, The First People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Chengliang Yuan
- Department of Laboratory Medicine, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Yi Zhang
- Department of Blood Transfusion, Deyang People’s Hospital, Deyang, Sichuan, China
| |
Collapse
|
9
|
Zhang Y, Rabinovsky R, Wei Z, El Fatimy R, Deforzh E, Luan B, Peshkin L, Uhlmann EJ, Krichevsky AM. Secreted PGK1 and IGFBP2 contribute to the bystander effect of miR-10b gene editing in glioma. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:265-275. [PMID: 36700043 PMCID: PMC9852814 DOI: 10.1016/j.omtn.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
MicroRNA-10b (miR-10b) is an essential glioma driver and one of the top candidates for targeted therapies for glioblastoma and other cancers. This unique miRNA controls glioma cell cycle and viability via an array of established conventional and unconventional mechanisms. Previously reported CRISPR-Cas9-mediated miR-10b gene editing of glioma cells in vitro and established orthotopic glioblastoma in mouse models demonstrated the efficacy of this approach and its promise for therapy development. However, therapeutic gene editing in patients' brain tumors may be hampered, among other factors, by the imperfect delivery and distribution of targeting vectors. Here, we demonstrate that miR-10b gene editing in glioma cells triggers a potent bystander effect that leads to the selective cell death of the unedited glioma cells without affecting the normal neuroglial cells. The effect is mediated by the secreted miR-10b targets phosphoglycerate kinase 1 (PGK1) and insulin-like growth factor binding protein 2 (IGFBP2) that block cell-cycle progression and induce glioma cell death. These findings further support the feasibility of therapeutic miR-10b editing without the need to target every cell of the tumor.
Collapse
Affiliation(s)
- Yanhong Zhang
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Rachid El Fatimy
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Evgeny Deforzh
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Bai Luan
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Erik J. Uhlmann
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Anna M. Krichevsky
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| |
Collapse
|
10
|
Zhao S, Wang L, Ding W, Ye B, Cheng C, Shao J, Liu J, Zhou H. Crosstalk of disulfidptosis-related subtypes, establishment of a prognostic signature and immune infiltration characteristics in bladder cancer based on a machine learning survival framework. Front Endocrinol (Lausanne) 2023; 14:1180404. [PMID: 37152941 PMCID: PMC10154596 DOI: 10.3389/fendo.2023.1180404] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Background Bladder cancer (BLCA) is the most common malignancy of the urinary tract. On the other hand, disulfidptosis, a mechanism of disulfide stress-induced cell death, is closely associated with tumorigenesis and progression. Here, we investigated the impact of disulfidptosis-related genes (DRGs) on the prognosis of BLCA, identified various DRG clusters, and developed a risk model to assess patient prognosis, immunological profile, and treatment response. Methods The expression and mutational characteristics of four DRGs were first analyzed in bulk RNA-Seq and single-cell RNA sequencing data, IHC staining identified the role of DRGs in BLCA progression, and two DRG clusters were identified by consensus clustering. Using the differentially expressed genes (DEGs) from these two clusters, we transformed ten machine learning algorithms into more than 80 combinations and finally selected the best algorithm to construct a disulfidptosis-related prognostic signature (DRPS). We based this selection on the mean C-index of three BLCA cohorts. Furthermore, we explored the differences in clinical characteristics, mutational landscape, immune cell infiltration, and predicted efficacy of immunotherapy between high and low-risk groups. To visually depict the clinical value of DRPS, we employed nomograms. Additionally, we verified whether DRPS predicts response to immunotherapy in BLCA patients by utilizing the Tumour Immune Dysfunction and Rejection (TIDE) and IMvigor 210 cohorts. Results In the integrated cohort, we identified several DRG clusters and DRG gene clusters that differed significantly in overall survival (OS) and tumor microenvironment. After the integration of clinicopathological features, DRPS showed robust predictive power. Based on the median risk score associated with disulfidptosis, BLCA patients were divided into low-risk (LR) and high-risk (HR) groups, with patients in the LR group having a better prognosis, a higher tumor mutational load and being more sensitive to immunotherapy and chemotherapy. Conclusion Our study, therefore, provides a valuable tool to further guide clinical management and tailor the treatment of BLCA patients, offering new insights into individualized treatment.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Urology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Lanyu Wang
- Department of Urology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wei Ding
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bicheng Ye
- School of Clinical Medicine, Yangzhou Polytechnic College, Yangzhou, China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jianfeng Shao
- Department of Urology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
- *Correspondence: Jianfeng Shao, ; Jinhui Liu, ; Hongyi Zhou,
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jianfeng Shao, ; Jinhui Liu, ; Hongyi Zhou,
| | - Hongyi Zhou
- Department of Urology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
- *Correspondence: Jianfeng Shao, ; Jinhui Liu, ; Hongyi Zhou,
| |
Collapse
|
11
|
Smardz P, Sieradzan AK, Krupa P. Mechanical Stability of Ribonuclease A Heavily Depends on the Redox Environment. J Phys Chem B 2022; 126:6240-6249. [PMID: 35975925 PMCID: PMC9421896 DOI: 10.1021/acs.jpcb.2c04718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Disulfide bonds are covalent bonds that connect nonlocal fragments of proteins, and they are unique post-translational modifications of proteins. They require the oxidizing environment to be stable, which occurs for example during oxidative stress; however, in a cell the reductive environment is maintained, lowering their stability. Despite many years of research on disulfide bonds, their role in the protein life cycle is not fully understood and seems to strictly depend on a system or process in which they are involved. In this article, coarse-grained UNited RESidue (UNRES), and all-atom Assisted Model Building with Energy Refinement (AMBER) force fields were applied to run a series of steered molecular dynamics (SMD) simulations of one of the most studied, but still not fully understood, proteins─ribonuclease A (RNase A). SMD simulations were performed to study the mechanical stability of RNase A in different oxidative-reductive environments. As disulfide bonds (and any other covalent bonds) cannot break/form in any classical all-atom force field, we applied additional restraints between sulfur atoms of reduced cysteines which were able to mimic the breaking of the disulfide bonds. On the other hand, the coarse-grained UNRES force field enables us to study the breaking/formation of the disulfide bonds and control the reducing/oxidizing environment owing to the presence of the designed distance/orientation-dependent potential. This study reveals that disulfide bonds have a strong influence on the mechanical stability of RNase A only in a highly oxidative environment. However, the local stability of the secondary structure seems to play a major factor in the overall stability of the protein. Both our thermal unfolding and mechanical stretching studies show that the most stable disulfide bond is Cys65-Cys72. The breaking of disulfide bonds Cys26-Cys84 and Cys58-Cys110 is associated with large force peaks. They are structural bridges, which are mostly responsible for stabilizing the RNase A conformation, while the presence of the remaining two bonds (Cys65-Cys72 and Cys40-Cys95) is most likely connected with the enzymatic activity rather than the structural stability of RNase A in the cytoplasm. Our results prove that disulfide bonds are indeed stabilizing fragments of the proteins, but their role is strongly redox environment-dependent.
Collapse
Affiliation(s)
- Pamela Smardz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Paweł Krupa
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
12
|
Simien JM, Haglund E. Topological Twists in Nature. Trends Biochem Sci 2021; 46:461-471. [PMID: 33419636 DOI: 10.1016/j.tibs.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022]
Abstract
The first entangled protein was observed about 30 years ago, resulting in an increased interest for uncovering the biological functions and biophysical properties of these complex topologies. Recently, the Pierced Lasso Topology (PLT) was discovered in which a covalent bond forms an intramolecular loop, leaving one or both termini free to pierce the loop. This topology is related to knots and other entanglements. PLTs exist in many well-researched systems where the PLTs have previously been unnoticed. PLTs represents 18% of all disulfide containing proteins across all kingdoms of life. In this review, we investigate the biological implications of this specific topology in which the PLT-forming disulfide may act as a molecular switch for protein function and consequently human health.
Collapse
Affiliation(s)
| | - Ellinor Haglund
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
13
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Kemmerling U, Cáceres AJ, Michels PA, Concepción JL, Quiñones W. Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biol 2020; 10:200302. [PMID: 33234025 PMCID: PMC7729029 DOI: 10.1098/rsob.200302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphoglycerate kinase (PGK) is a glycolytic enzyme that is well conserved among the three domains of life. PGK is usually a monomeric enzyme of about 45 kDa that catalyses one of the two ATP-producing reactions in the glycolytic pathway, through the conversion of 1,3-bisphosphoglycerate (1,3BPGA) to 3-phosphoglycerate (3PGA). It also participates in gluconeogenesis, catalysing the opposite reaction to produce 1,3BPGA and ADP. Like most other glycolytic enzymes, PGK has also been catalogued as a moonlighting protein, due to its involvement in different functions not associated with energy metabolism, which include pathogenesis, interaction with nucleic acids, tumorigenesis progression, cell death and viral replication. In this review, we have highlighted the overall aspects of this enzyme, such as its structure, reaction kinetics, activity regulation and possible moonlighting functions in different protistan organisms, especially both free-living and parasitic Kinetoplastea. Our analysis of the genomes of different kinetoplastids revealed the presence of open-reading frames (ORFs) for multiple PGK isoforms in several species. Some of these ORFs code for unusually large PGKs. The products appear to contain additional structural domains fused to the PGK domain. A striking aspect is that some of these PGK isoforms are predicted to be catalytically inactive enzymes or ‘dead’ enzymes. The roles of PGKs in kinetoplastid parasites are analysed, and the apparent significance of the PGK gene duplication that gave rise to the different isoforms and their expression in Trypanosoma cruzi is discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile 8380453, Santigo de Chile
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Paul A Michels
- Centre for Immunity, Infection and Evolution, The King's Buildings, Edinburgh EH9 3FL, UK.,Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| |
Collapse
|
14
|
Context-dependent monoclonal antibodies against protein carbamidomethyl-cysteine. PLoS One 2020; 15:e0242376. [PMID: 33232360 PMCID: PMC7685443 DOI: 10.1371/journal.pone.0242376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023] Open
Abstract
Protein sulfhydryl residues participate in key structural and biochemical functions. Alterations in sulfhydryl status, regulated by either reversible redox reactions or by permanent covalent capping, may be challenging to identify. To advance the detection of protein sulfhydryl groups, we describe the production of new Rabbit monoclonal antibodies that react with carbamidomethyl-cysteine (CAM-cys), a product of iodoacetamide (IAM) labeling of protein sulfhydryl residues. These antibodies bind to proteins labeled with IAM (but not N-ethylmaleimide (NEM) or acrylamide) and identify multiple protein bands when applied to Western blots of cell lysates treated with IAM. The monoclonal antibodies label a subset of CAM-cys modified peptide sequences and purified proteins (human von Willebrand Factor (gene:vWF), Jagged 1 (gene:JAG1), Laminin subunit alpha 2 (gene:LAMA2), Thrombospondin-2 (gene:TSP2), and Collagen IV (gene:COL4)) but do not recognize specific proteins such as Bovine serum albumin (gene:BSA) and human Thrombospondin-1 (gene:TSP1), Biglycan (gene:BGN) and Decorin (gene:DCN). Scanning mutants of the peptide sequence used to generate the CAM-cys antibodies elucidated residues required for context dependent reactivity. In addition to recognition of in vitro labeled proteins, the antibodies were used to identify selected sulfhydryl-containing proteins from living cells that were pulse labeled with IAM. Further development of novel CAM-cys monoclonal antibodies in conjunction with other biochemical tools may complement current methods for sulfhydryl detection within specific proteins. Moreover, CAM-cys reactive reagents may be useful when there is a need to label subpopulations of proteins.
Collapse
|
15
|
Fedoseev SV, Belikov MY, Ershov OV, Tafeenko VA. Reductive alkylation of disulfides. Synthesis of 2-(alkylsulfanyl)-1H-pyrrole-3-carbonitriles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428016120125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Bromfield EG, McLaughlin EA, Aitken RJ, Nixon B. Heat Shock Protein member A2 forms a stable complex with angiotensin converting enzyme and protein disulfide isomerase A6 in human spermatozoa. Mol Hum Reprod 2015; 22:93-109. [DOI: 10.1093/molehr/gav073] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/03/2015] [Indexed: 12/18/2022] Open
|
17
|
Ren C, Chen T, Jiang X, Luo X, Wang Y, Hu C. The first echinoderm gamma-interferon-inducible lysosomal thiol reductase (GILT) identified from sea cucumber (Stichopus monotuberculatus). FISH & SHELLFISH IMMUNOLOGY 2015; 42:41-49. [PMID: 25449705 DOI: 10.1016/j.fsi.2014.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/23/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
Gamma-interferon-inducible lysosomal thiol reductase (GILT) has been described as a key enzyme that facilitating the processing and presentation of major histocompatibility complex class II-restricted antigen in mammals. In this study, the first echinoderm GILT named StmGILT was identified from sea cucumber (Stichopus monotuberculatus). The StmGILT cDNA is 1529 bp in length, containing a 5'-untranslated region (UTR) of 87 bp, a 3'-UTR of 674 bp and an open reading frame (ORF) of 768 bp that encoding a protein of 255 amino acids with a deduced molecular weight of 27.82 kDa and a predicted isoelectric point of 4.73. The putative StmGILT protein possesses all the main characteristics of known GILT proteins, including a signature sequence, a reductase active site CXXC, twelve conserved cysteines, and two potential N-linked glycosylation sites. For the gene structure, StmGILT contains four exons separated by three introns. In the promoter region of StmGILT gene, an NF-κB binding site and an IFN-γ activation site were found. The thiol reductase activity of recombinant StmGILT protein was also demonstrated in this study. In addition, the highest level of mRNA expression was noticed in coelomocytes of S. monotuberculatus. In in vitro experiments performed in coelomocytes, the expression of StmGILT mRNA was significantly up-regulated by lipopolysaccharides (LPS), inactivated bacteria or polyriboinosinic polyribocytidylic acid [poly (I:C)] challenge, suggested that the sea cucumber GILT might play critical roles in the innate immune defending against bacterial and viral infections.
Collapse
Affiliation(s)
- Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| | - Xing Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| | - Yanhong Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| |
Collapse
|
18
|
Dun MD, Aitken RJ, Nixon B. The role of molecular chaperones in spermatogenesis and the post-testicular maturation of mammalian spermatozoa. Hum Reprod Update 2012; 18:420-35. [DOI: 10.1093/humupd/dms009] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
19
|
Aitken RJ, Carey AJ, Beagley KW. Dual purpose contraceptives: targeting fertility and sexually transmitted disease. J Reprod Immunol 2011; 88:228-32. [PMID: 21247637 DOI: 10.1016/j.jri.2010.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/08/2010] [Indexed: 11/19/2022]
Abstract
There have been no radically new forms of contraception since the pill was introduced 1960 and even this form of fertility regulation can be traced back to endocrine advances that were made in the 1920s. Whatever new forms of fertility control we introduce for the future, they should exploit the significant advances that have been made in our understanding of the reproductive system in recent years and be tailored to the needs of the 21st century. In this context, there is an urgent need to develop novel, safe, effective, dual-purpose contraceptive agents that combine the prevention of pregnancy with protection against sexually transmitted diseases (STDs). To achieve this aim we have researched a class of a topical contraceptive agent that selectively and instantaneously immobilizes millions of spermatozoa, while suppressing the infectivity of pathogenic microbes, such as Chlamydia, in the ejaculate. This approach is based upon the ability of small molecular mass organic compounds to selectively and covalently adduct key proteins in spermatozoa and pathogenic organisms and disrupt their biological function. We have also successfully developed strategies for the preparation of latent formulations that would only become activated on contact with seminal plasma. The further development and refinement of these molecules should permit a radical rethink in the way that safe, effective topical protection is provided to control both fertility and the world-wide spread of STDs.
Collapse
Affiliation(s)
- R J Aitken
- Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | | | | |
Collapse
|
20
|
Wang Z, Zhou Z, Guo ZY, Chi CW. Snapshot of the interaction between HIV envelope glycoprotein 120 and protein disulfide isomerase. Acta Biochim Biophys Sin (Shanghai) 2010; 42:358-62. [PMID: 20458450 DOI: 10.1093/abbs/gmq024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human immunodeficiency virus-1 (HIV-1) envelope glycoprotein 120 (gp120) binds to cell surface receptors and mediates HIV entry. Previous studies suggest the cell surface protein disulfide isomerase (PDI) might interact with disulfide bond(s) of gp120 and thus facilitate HIV-1 entry. In the present study, a kinetic trapping approach was used to capture the disulfide cross-linking intermediate between gp120 and PDI. Active site mutant PDIs were prepared in which the C-terminal cysteine at the active site was replaced by a serine. The active site mutant PDIs were able to covalently cross-link with gp120 through a mixed disulfide bond in vitro. The cross-linking efficiency was enhanced by CD4 protein (primary receptor of HIV-1) and was inhibited both by bacitracin (a PDI inhibitor) and by catalytically inactive PDI. The present results suggested the cell surface PDI might play a role in HIV entry in vivo.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Institute of Protein Research, College of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | | | | | | |
Collapse
|
21
|
Iwasaki K, Kamauchi S, Wadahama H, Ishimoto M, Kawada T, Urade R. Molecular cloning and characterization of soybean protein disulfide isomerase family proteins with nonclassic active center motifs. FEBS J 2009; 276:4130-41. [PMID: 19583593 DOI: 10.1111/j.1742-4658.2009.07123.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Protein disulfide isomerase (PDI) and other PDI family proteins are members of the thioredoxin superfamily and are thought to play important roles in disulfide bond formation and isomerization in the endoplasmic reticulum (ER). The exact functions of PDI family proteins in plants remain unknown. In this study, we cloned two novel PDI family genes from soybean leaf (Glycine max L. Merrill cv. Jack). The cDNAs encode proteins of 520 and 523 amino acids, and have been denoted GmPDIL-3a and GmPDIL-3b, respectively. GmPDIL-3a and GmPDIL-3b are the first plant ER PDI family proteins reported to contain the nonclassic redox center motif CXXS/C, and both proteins are ubiquitously expressed in the plant body. However, recombinant GmPDIL-3a and GmPDIL-3b did not function as oxidoreductases or as molecular chaperones in vitro, although a proportion of each protein formed complexes in both thiol-dependent and thiol-independent ways in the ER. Expression of GmPDIL-3a and GmPDIL-3b in the cotyledon increased during seed maturation when synthesis of storage proteins was initiated. These results suggest that GmPDIL-3a and GmPDIL-3b may play important roles in the maturation of the cotyledon by mechanisms distinct from those of other PDI family proteins.
Collapse
Affiliation(s)
- Kensuke Iwasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Chanakira A, Chikwana E, Peyton DH, Simoyi RH. Oxyhalogen-sulfur chemistry Kinetics and mechanism of the oxidation of cysteamine by acidic iodate and iodine. CAN J CHEM 2006. [DOI: 10.1139/v05-263] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The oxidation of cysteamine by iodate and aqueous iodine has been studied in neutral to mildly acidic conditions. The reaction is relatively slow and is heavily dependent on acid concentration. The reaction dynamics are complex and display clock behavior, transient iodine production, and even oligooscillatory production of iodine, depending upon initial conditions. The oxidation product was the cysteamine dimer (cystamine), with no further oxidation observed past this product. The stoichiometry of the reaction was deduced to be IO3+ 6H2NCH2CH2SH → I+ 3H2NCH2CH2S-SCH2CH2NH2+ 3H2O in excess cysteamine conditions, whereas in excess iodate the stoichiometry of the reaction is 2IO3+ 10H2NCH2CH2SH → I2+ 5H2NCH2CH2S-SCH2CH2NH2+ 6H2O. The stoichiometry of the oxidation of cysteamine by aqueous iodine was deduced to be I2+ 2H2NCH2CH2SH → 2I+ H2NCH2CH2S-SCH2CH2NH2+ 2H+. The bimolecular rate constant for the oxidation of cysteamine by iodine was experimentally evaluated as 2.7 (mol L1)1s1. The whole reaction scheme was satisfactorily modeled by a network of 14 elementary reactions.Key words: cysteamine, cystamine, Dushman reaction, oligooscillations.
Collapse
|
23
|
Raftery MJ. Selective detection of thiosulfate-containing peptides using tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:674-682. [PMID: 15700231 DOI: 10.1002/rcm.1840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Incubation of proteins or peptides containing disulfide bonds (S-S) with sodium sulfite (Na(2)SO(3)) cleaves S-S bonds producing approximately equimolar amounts of free thiols (-SH) and thiosulfates (-S-SO(3)H), a process known as sulfitolysis. Proteins and peptides containing thiosulfates were separated by reverse-phase high-performance liquid chromatography (RP-HPLC) and characterized by mass spectrometry (MS) and peptide mapping. The mass of the thiosulfate-containing peptide formed from oxidized insulin B chain was 3478.02 Da, 80 Da greater than the reduced peptide and corresponding precisely to addition of sulfur trioxide (SO(3)). Disulfide bond cleavage was also observed using RP-HPLC and MS after incubation of the intramolecular homodimer of mouse S100A8 (mass 20614 Da). The mass of HPLC-separated A8-SH was 10308 Da, and 10388 Da for A8-S-SO(3)H. Loss of SO(3) from multiply charged precursor ions was generally observed at elevated declustering potentials in the source region or within q(2) at relatively low collision energies (approximately 20 V). The characteristic loss of SO(3) at low collision energies preceded peptide backbone fragmentations at higher collision energies. Accurate mass measurement and charge-state discrimination, using a hybrid quadrupole time-of-flight mass spectrometer, allowed specific detection of thiosulfate-containing peptides. An information-dependent acquisition method, where the switch criterion was loss of m/z 79.9568, specifically identified 11 thiosulfate-containing peptides using nano-LC/MS from a tryptic digest of bovine serum albumin (BSA).
Collapse
Affiliation(s)
- Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, School of Medical Sciences, University of New South Wales, Kensington, New South Wales 2052, Australia.
| |
Collapse
|
24
|
Daly EB, Wind T, Jiang XM, Sun L, Hogg PJ. Secretion of phosphoglycerate kinase from tumour cells is controlled by oxygen-sensing hydroxylases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1691:17-22. [PMID: 15053920 DOI: 10.1016/j.bbamcr.2003.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 11/12/2003] [Accepted: 11/12/2003] [Indexed: 01/16/2023]
Abstract
Solid tumour cells employ glycolytic enzymes including phosphoglycerate kinase (PGK) to make ATP when their supply of oxygen is limiting. PGK is also secreted by tumour cells and facilitates cleavage of disulfide bonds in plasmin, which triggers proteolytic release of the angiogenesis inhibitor, angiostatin. Although PGK production by tumour cells was enhanced by hypoxia, its secretion was inhibited. Inhibition of secretion correlated with decrease in angiostatin formation by the tumour cells. In contrast, hypoxia did not inhibit the secretion of the angiogenesis activator, vascular endothelial cell growth factor (VEGF). PGK secretion was reversed by normoxia and was under control of the oxygen-sensing protein hydroxylases, as inhibitors of this class of enzymes mimicked the effect of hypoxia on PGK secretion. Direct hydroxylation of PGK was not the mechanism by which the protein hydroxylases controlled its secretion. These findings show that production and secretion of PGK are regulated separately and indicate that oxygen and the protein hydroxylases can control not only gene expression but also protein secretion.
Collapse
Affiliation(s)
- Elise B Daly
- Centre for and Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2031, Australia
| | | | | | | | | |
Collapse
|
25
|
Shian SG, Kao YR, Wu FYH, Wu CW. Inhibition of invasion and angiogenesis by zinc-chelating agent disulfiram. Mol Pharmacol 2003; 64:1076-84. [PMID: 14573756 DOI: 10.1124/mol.64.5.1076] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell invasion and angiogenesis are crucial processes in cancer metastasis that require extracellular matrix (ECM) degradation. Proteolytic degradation of the ECM components is a central event of invasion and angiogenesis processes. During these processes, matrix metalloproteinases (MMPs) seem to be primarily responsible for much of the ECM degradation. Disulfiram is frequently used in the treatment of alcoholism and has been reported to possess antiretroviral activity and can eject intrinsic zinc out of human immunodeficiency virus (HIV) nucleocapsid protein. In this report, we show that disulfiram inhibited invasion and angiogenesis in both tumor and endothelial cells at nontoxic concentrations. The 3H-labeled type IV collagen degradation assay suggested that disulfiram has type IV collagenase inhibitory activity, and this inhibition was responsible for blocking invasion and angiogenesis through cell-mediated and non-cell-mediated pathways. However, the mechanisms underlying cell-mediated signal pathways are not fully characterized. Our data demonstrate that the non-cell-mediated pathway is dominant. Thus, disulfiram could directly interact with MMP-2 and MMP-9 and inhibit their proteolytic activity through a zincchelating mechanism. Addition of zinc could reverse the inhibition of invasiveness and collagenase inhibition through disulfiram treatment. This finding implies that MMP-2 and MMP-9 may be the inhibitory targets for a potential disulfiram treatment. These observations raise the possibility clinical therapeutic applications for disulfiram used as a potential inhibitor of metastatic cell invasion and angiogenesis.
Collapse
|