1
|
Pandey AN, Yadav PK, Premkumar KV, Tiwari M, Pandey AK, Chaube SK. Reactive oxygen species signalling in the deterioration of quality of mammalian oocytes cultured in vitro: Protective effect of antioxidants. Cell Signal 2024; 117:111103. [PMID: 38367792 DOI: 10.1016/j.cellsig.2024.111103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
The in vitro fertilization (IVF) is the first choice of infertile couples worldwide to plan for conception. Besides having a significant advancement in IVF procedure, the success rate is still poor. Although several approaches have been tested to improve IVF protocol, minor changes in culture conditions, physical factors and/or drug treatment generate reactive oxygen species (ROS) in oocytes. Due to large size and huge number of mitochondria, oocyte is more susceptible towards ROS-mediated signalling under in vitro culture conditions. Elevation of ROS levels destabilize maturation promoting factor (MPF) that results in meiotic exit from diplotene as well as metaphase-II (M-II) arrest in vitro. Once meiotic exit occurs, these oocytes get further arrested at metaphase-I (M-I) stage or metaphase-III (M-III)-like stage under in vitro culture conditions. The M-I as well as M-III arrested oocytes are not fit for fertilization and limits IVF outcome. Further, the generation of excess levels of ROS cause oxidative stress (OS) that initiate downstream signalling to initiate various death pathways such as apoptosis, autophagy, necroptosis and deteriorates oocyte quality under in vitro culture conditions. The increase of cellular enzymatic antioxidants and/or supplementation of exogenous antioxidants in culture medium protect ROS-induced deterioration of oocyte quality in vitro. Although a growing body of evidence suggests the ROS and OS-mediated deterioration of oocyte quality in vitro, their downstream signalling and related mechanisms remain poorly understood. Hence, this review article summarizes the existing evidences concerning ROS and OS-mediated downstream signalling during deterioration of oocyte quality in vitro. The use of various antioxidants against ROS and OS-mediated impairment of oocyte quality in vitro has also been explored in order to increase the success rate of IVF during assisted reproductive health management.
Collapse
Affiliation(s)
- Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Karuppanan V Premkumar
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Jiang D, Niu C, Mo G, Wang X, Sun Q, An X, Ji C, Ling W, Li L, Zhao H, Han C, Liu H, Hu J, Kang B. Ferritin heavy chain participated in ameliorating 3-nitropropionic acid-induced oxidative stress and apoptosis of goose follicular granulosa cells. Poult Sci 2023; 102:102606. [PMID: 36940654 PMCID: PMC10033315 DOI: 10.1016/j.psj.2023.102606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Oxidative stress is the major culprits responsible for ovarian dysfunction by damaging granulosa cells (GCs). Ferritin heavy chain (FHC) may participate in the regulation of ovarian function by mediating GCs apoptosis. However, the specific regulatory function of FHC in follicular GCs remains unclear. Here, 3-nitropropionic acid (3-NPA) was utilized to establish an oxidative stress model of follicular GCs of Sichuan white geese. To explore the regulatory effects of FHC on oxidative stress and apoptosis of primary GCs in geese by interfering or overexpressing FHC gene. After transfection of siRNA-FHC to GCs for 60 h, the expressions of FHC gene and protein decreased significantly (P < 0.05). After FHC overexpression for 72 h, the expressions of FHC mRNA and protein upregulated considerably (P < 0.05). The activity of GCs was impaired after interfering with FHC and 3-NPA coincubated (P < 0.05). When overexpression of FHC combined with 3-NPA treatment, the activity of GCs was remarkably enhanced (P < 0.05). After interference FHC and 3-NPA treatment, NF-κB and NRF2 gene expression decreased (P < 0.05), the intracellular reactive oxygen species (ROS) level increased greatly (P < 0.05), BCL-2 expression reduced, BAX/BCL-2 ratio intensified (P < 0.05), the mitochondrial membrane potential decreased notably (P < 0.05), and the apoptosis rate of GCs aggravated (P < 0.05). While overexpression of FHC combined with 3-NPA treatment could promote BCL-2 protein expression and reduce BAX/BCL-2 ratio, indicating that FHC regulated the mitochondrial membrane potential and apoptosis of GCs by mediating the expression of BCL-2. Taken together, our research manifested that FHC alleviated the inhibitory effect of 3-NPA on the activity of GCs. FHC knockdown could suppress the expression of NRF2 and NF-κB genes, reduce BCL-2 expression and augment BAX/BCL-2 ratio, contributing to the accumulation of ROS and jeopardizing mitochondrial membrane potential, as well as exacerbating GCs apoptosis.
Collapse
Affiliation(s)
- Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Chunyang Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Guilin Mo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Xin Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Qian Sun
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Xiaoguang An
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Chengweng Ji
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Weikang Ling
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Liang Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, PR China
| | - Chunchun Han
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Hehe Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Jiwei Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
3
|
Cui W. Oocyte Spontaneous Activation: An Overlooked Cellular Event That Impairs Female Fertility in Mammals. Front Cell Dev Biol 2021; 9:648057. [PMID: 33763428 PMCID: PMC7982476 DOI: 10.3389/fcell.2021.648057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/08/2021] [Indexed: 01/14/2023] Open
Abstract
In mammals, including humans, mature oocytes are ovulated into the oviduct for fertilization. Normally, these oocytes are arrested at metaphase of the second meiosis (MII), and this arrest can be maintained for a certain period, which is essential for fertilization in vivo and oocyte manipulations in vitro, such as assisted reproduction in clinics and nuclear/spindle transfer in laboratories. However, in some species and under certain circumstances, exit from MII occurs spontaneously without any obvious stimulation or morphological signs, which is so-called oocyte spontaneous activation (OSA). This mini-review summarizes two types of OSA. In the first type (e.g., most rat strains), oocytes can maintain MII arrest in vivo, but once removed out, oocytes undergo OSA with sister chromatids separated and eventually scattered in the cytoplasm. Because the stimulation is minimal (oocyte collection itself), this OSA is incomplete and cannot force oocytes into interphase. Notably, once re-activated by sperm or chemicals, those scattered chromatids will form multiple pronuclei (MPN), which may recapitulate certain MPN and aneuploidy cases observed in fertility clinics. The second type of OSA occurs in ovarian oocytes (e.g., certain mouse strains and dromedary camel). Without ovulation or fertilization, these OSA-oocytes can initiate intrafollicular development, but these parthenotes cannot develop to term due to aberrant genomic imprinting. Instead, they either degrade or give rise to ovarian teratomas, which have also been reported in female patients. Last but not the least, genetic models displaying OSA phenotypes and the lessons we can learn from animal OSA for human reproduction are also discussed.
Collapse
Affiliation(s)
- Wei Cui
- Department of Veterinary and Animal Sciences, Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
4
|
Niu YJ, Zhou D, Cui XS. S-nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos. Cell Prolif 2021; 54:e12990. [PMID: 33458941 PMCID: PMC7941228 DOI: 10.1111/cpr.12990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES S-nitrosoglutathione reductase (GSNOR), a protein denitrosylase, protects the mitochondria from mitochondrial nitrosative stress. Mammalian preimplantation embryos are mitochondria-rich, but the effects of GSNOR on mitochondrial function in preimplantation embryos are not well-studied. In the present study, we investigate whether GSNOR plays a role in mitochondrial regulation during porcine preimplantation embryo development. MATERIALS AND METHODS GSNOR dsRNA was employed to knock down the expression of GSNOR, and Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME), a pan-NOS inhibitor, was used to prevent protein S-nitrosylation. Mitochondrial amount and function in embryo development were assessed by performing immunofluorescence staining, Western blot, fluorescent probe and real-time reverse transcription PCR. RESULTS GSNOR knock-down significantly impaired blastocyst formation and quality and markedly induced the increase in protein S-nitrosylation. Notably, GSNOR knock-down-induced overproduction of S-nitrosylation caused mitochondrial dysfunction, including mitochondrial membrane potential depolarization, mitochondria-derived reactive oxygen species (ROS) increase and ATP deficiency. Interestingly, GSNOR knock-down-induced total mitochondrial amount increase, but the ratio of active mitochondria reduction, suggesting that the damaged mitochondria were accumulated and mitochondrial clearance was inhibited. In addition, damaged mitochondria produced more ROS, and caused DNA damage and apoptosis. Importantly, supplementation with L-NAME reverses the increase in S-nitrosylation, accumulation of damaged mitochondria, and oxidative stress-induced cell death. Interestingly, autophagy was downregulated after GSNOR knock-down, but reversed by L-NAME treatment. Thus, GSNOR maintains mitochondrial homeostasis by promoting autophagy and the clearing of damaged mitochondria in porcine preimplantation embryos.
Collapse
Affiliation(s)
- Ying-Jie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
5
|
Yang L, Chen Y, Liu Y, Xing Y, Miao C, Zhao Y, Chang X, Zhang Q. The Role of Oxidative Stress and Natural Antioxidants in Ovarian Aging. Front Pharmacol 2021; 11:617843. [PMID: 33569007 PMCID: PMC7869110 DOI: 10.3389/fphar.2020.617843] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
The ovarian system comprises vital organs in females and is of great significance for the maintenance of reproductive potential and endocrine stability. Although complex pathogenesis undoubtedly contributes to ovarian aging, increasing attention is being paid to the extensive influence of oxidative stress. However, the role of oxidative stress in ovarian aging is yet to be fully elucidated. Exploring oxidative stress-related processes might be a promising strategy against ovarian aging. In this review, compelling evidence is shown that oxidative stress plays a role in the etiology of ovarian aging and promotes the development of other ovarian aging-related etiologies, including telomere shortening, mitochondrial dysfunction, apoptosis, and inflammation. In addition, some natural antioxidants such as quercetin, resveratrol, and curcumin have a protective role in the ovaries through multiple mechanisms. These findings raise the prospect of oxidative stress modulator-natural antioxidants as therapeutic interventions for delaying ovarian aging.
Collapse
Affiliation(s)
- Liuqing Yang
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Chen
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Liu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Xing
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chenyun Miao
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qin Zhang
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Onder GO, Balcioglu E, Baran M, Ceyhan A, Cengiz O, Suna PA, Yıldız OG, Yay A. The different doses of radiation therapy-induced damage to the ovarian environment in rats. Int J Radiat Biol 2021; 97:367-375. [PMID: 33320730 DOI: 10.1080/09553002.2021.1864497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The sequelae of premature loss of ovarian function can undoubtedly have undesirable effects for a woman although radiotherapy is one of the most relevant treatment modalities for various types of malignancies. The aim of this study was to determine the effect of different doses of radiation on ovarian folliculogenesis, inflammation, and apoptotic markers. MATERIALS AND METHODS For this purpose, 40 healthy Wistar albino female rats divided into four groups: 1) Control group; 2) those that were exposed to total body 1 Gy of gamma rays; 3) those that were exposed to the total body 5 Gy of gamma rays, and 4) those that were exposed to total body 10 Gy of gamma rays. External irradiation to the total body was given with gamma irradiation delivered by the Co60 teletherapy machine. The day after radiation application the rats were sacrificed and the ovaries were removed in all groups. Histopathologic examination, follicle counting, and classification were performed in the ovarian tissues. The expression of AMH, TNF-α, IL1-β, Bax, and Bcl-2 was detected. The stained sections were examined for caspase 3 positive apoptotic cell numbers. RESULTS The recorded results revealed that increased radiation dose induced obvious ovarian injuries that were indicated by histopathological, and immunohistochemical alterations, including elevation of ovarian injury markers. A significantly lower number of total and primordial follicles was detected with increasing radiation dose compared with the control group. According to our immunohistochemical results, 10 Gy of gamma rays group had the lowest AMH expression levels, while had the highest TNF-α, IL1-β expression level compared to the control group. When the groups were evaluated in terms of apoptosis, it was seen that the number of caspase 3 positive cells and Bax immunoreactivity intensity increased with radiation dose. In contrast, Bcl-2 immunoreactivity intensity decreased with increasing radiation dose compared with the control group. CONCLUSIONS We demonstrate here that dose rate plays an important role when estimating the relation between exposure to an increased dose of ionizing radiation and the risk of ovarian disease. According to these results, certain factors have to be optimized before introducing them into clinics.
Collapse
Affiliation(s)
- Gozde Ozge Onder
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Esra Balcioglu
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Munevver Baran
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ayse Ceyhan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ozge Cengiz
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Pinar Alisan Suna
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Oguz Galip Yıldız
- Department of Radiation Oncology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| |
Collapse
|
7
|
Chaudhary GR, Yadav PK, Yadav AK, Tiwari M, Gupta A, Sharma A, Pandey AN, Pandey AK, Chaube SK. Necroptosis in stressed ovary. J Biomed Sci 2019; 26:11. [PMID: 30665407 PMCID: PMC6340166 DOI: 10.1186/s12929-019-0504-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/14/2019] [Indexed: 12/15/2022] Open
Abstract
Stress is deeply rooted in the modern society due to limited resources and large competition to achieve the desired goal. Women are more frequently exposed to several stressors during their reproductive age that trigger generation of reactive oxygen species (ROS). Accumulation of ROS in the body causes oxidative stress (OS) and adversely affects ovarian functions. The increased OS triggers various cell death pathways in the ovary. Beside apoptosis and autophagy, OS trigger necroptosis in granulosa cell as well as in follicular oocyte. The OS could activate receptor interacting protein kinase-1(RIPK1), receptor interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL) to trigger necroptosis in mammalian ovary. The granulosa cell necroptosis may deprive follicular oocyte from nutrients, growth factors and survival factors. Under these conditions, oocyte becomes more susceptible towards OS-mediated necroptosis in the follicular oocytes. Induction of necroptosis in encircling granulosa cell and oocyte may lead to follicular atresia. Indeed, follicular atresia is one of the major events responsible for the elimination of majority of germ cells from cohort of ovary. Thus, the inhibition of necroptosis could prevent precautious germ cell depletion from ovary that may cause reproductive senescence and early menopause in several mammalian species including human.
Collapse
Affiliation(s)
- Govind R Chaudhary
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Anil K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, 221005, Varanasi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
8
|
Mantawy EM, Said RS, Abdel-Aziz AK. Mechanistic approach of the inhibitory effect of chrysin on inflammatory and apoptotic events implicated in radiation-induced premature ovarian failure: Emphasis on TGF-β/MAPKs signaling pathway. Biomed Pharmacother 2018; 109:293-303. [PMID: 30396087 DOI: 10.1016/j.biopha.2018.10.092] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022] Open
Abstract
Radiotherapy is one of the most relevant treatment modalities for various types of malignancies. However, it causes premature ovarian failure (POF) and subsequent infertility in women of reproductive age; hence urging the development of effective radioprotective agents. Chrysin, a natural flavone, possesses several pharmacological activities owing to its antioxidant, anti-inflammatory and anti-apoptotic properties. Therefore, the aim of this study was to investigate the efficacy of chrysin in limiting γ-radiation-mediated POF and to elucidate the underlying molecular mechanisms. Immature female Sprague-Dawley rats were subjected to a single dose of γ-radiation (3.2 Gy) and/or treated with chrysin (50 mg/kg) once daily for two weeks before and three days post-irradiation. Chrysin prevented the radiation-induced ovarian dysfunction by restoring estradiol levels, preserving the normal ovarian histoarchitecture and combating the follicular loss. Eelectron microscopic analysis showed that the disruption of ultrastructure components due to radiation exposure was hampered by chrysin administration. Mechanistically, chrsyin was able to reduce the levels of the inflammatory markers NF-κB, TNF-α, iNOS and COX-2 in radiation-induced ovarian damage. Chrysin also exhibited potent anti-apoptotic effects against radiation-induced cell death by downregulating the expression of cytochrome c and caspase 3. Radiation obviously induced upregulation of TGF-β protein with subsequent phospholyration and hence activation of downstream mitogen-activated protein kinases (MAPKs); p38 and JNK. Notably, administration of chrysin successfully counteracted these effects. These findings revealed that chrysin may be beneficial in ameliorating radiation-induced POF, predominantly via downregulating TGF-β/MAPK signaling pathways leading subsequently to hindering inflammatory and apoptotic signal transduction pathways implicated in POF.
Collapse
Affiliation(s)
- Eman M Mantawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Riham S Said
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt.
| | - Amal Kamal Abdel-Aziz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
9
|
Nevoral J, Zalmanova T, Hoskova K, Stiavnicka M, Hosek P, Petelak A, Petr J. Involvement of K +ATP and Ca 2+ channels in hydrogen sulfide-suppressed ageing of porcine oocytes. Biol Res 2018; 51:38. [PMID: 30290763 PMCID: PMC6172760 DOI: 10.1186/s40659-018-0187-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/27/2018] [Indexed: 02/05/2023] Open
Abstract
Background Hydrogen sulfide has been shown to improve the quality of oocytes destined for in vitro fertilization. Although hydrogen sulfide is capable of modulating ion channel activity in somatic cells, the role of hydrogen sulfide in gametes and embryos remains unknown. Our observations confirmed the hypothesis that the KATP and L-type Ca2+ ion channels play roles in porcine oocyte ageing and revealed a plausible contribution of hydrogen sulfide to the modulation of ion channel activity. Results We confirmed the benefits of the activation and suppression of the KATP and L-type Ca2+ ion channels, respectively, for the preservation of oocyte quality. Conclusions Our experiments identified hydrogen sulfide as promoting the desired ion channel activity, with the capacity to protect porcine oocytes against cell death. Further experiments are needed to determine the exact mechanism of hydrogen sulfide in gametes and embryos.
Collapse
Affiliation(s)
- Jan Nevoral
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic. .,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | - Tereza Zalmanova
- Institute of Animal Science, Uhrineves, Prague 10, Czech Republic
| | - Kristyna Hoskova
- Institute of Animal Science, Uhrineves, Prague 10, Czech Republic
| | - Miriam Stiavnicka
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
| | - Petr Hosek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
| | - Ales Petelak
- Institute of Animal Science, Uhrineves, Prague 10, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Jaroslav Petr
- Institute of Animal Science, Uhrineves, Prague 10, Czech Republic
| |
Collapse
|
10
|
Yadav PK, Tiwari M, Gupta A, Sharma A, Prasad S, Pandey AN, Chaube SK. Germ cell depletion from mammalian ovary: possible involvement of apoptosis and autophagy. J Biomed Sci 2018; 25:36. [PMID: 29681242 PMCID: PMC5911955 DOI: 10.1186/s12929-018-0438-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/17/2018] [Indexed: 12/19/2022] Open
Abstract
Mammalian ovary contains millions of germ cells during embryonic life but only few of them are culminated into oocytes that achieve meiotic competency just prior to ovulation. The majority of germ cells are depleted from ovary through several pathways. Follicular atresia is one of the major events that eliminate germ cells from ovary by engaging apoptotic as well as non-apoptotic pathways of programmed cell death. Apoptosis is characterized by several morphological changes that include cell shrinkage, nuclear condensation, membrane blebbing and cytoplasmic fragmentation by both mitochondria- as well as death receptor-mediated pathways in encircling granulosa cells and oocyte. Although necroapoptosis have been implicated in germ cell depletion, autophagy seems to play an active role in the life and death decisions of ovarian follicles. Autophagy is morphologically characterized by intracellular reorganization of membranes and increased number of autophagic vesicles that engulf bulk cytoplasm as well as organelles. Autophagy begins with the encapsulation of cytoplasmic constituents in a membrane sac known as autophagosomes. The autophagic vesicles are then destroyed by the lysosomal enzymes such as hydrolases that results in follicular atresia. It seems that apoptosis as well as autophagy could play active roles in germ cells depletion from ovary. Hence, it is important to prevent these two pathways in order to retain the germ cells in ovary of several mammalian species that are either threatened or at the verge of extinction. The involvement of apoptosis and autophagy in germ cell depletion from mammalian ovary is reviewed and possible pathways have been proposed.
Collapse
Affiliation(s)
- Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Shilpa Prasad
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
11
|
Tiwari M, Chaube SK. Human Chorionic Gonadotropin Mediated Generation of Reactive Oxygen Species Is Sufficient to Induce Meiotic Exit but Not Apoptosis in Rat Oocytes. Biores Open Access 2017; 6:110-122. [PMID: 29098117 PMCID: PMC5655844 DOI: 10.1089/biores.2017.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Generation of reactive oxygen species (ROS) is associated with final stages of follicular development and ovulation in mammals. The human chorionic gonadotropin (hCG) mimics the action of luteinizing hormone and triggers follicular development and ovulation. However, it remains unclear whether hCG induces generation of ROS, if yes, whether hCG-mediated increased level of ROS could induce meiotic exit and/or apoptosis in rat oocytes. For this purpose, cumulus–oocyte complexes (COCs) were collected from ovary of experimental rats injected with 20 IU pregnant mare's serum gonadotropin for 48 h followed by 20 IU hCG for 0, 7, 14, and 21 h. The morphological changes in COCs, meiotic status of oocyte, total ROS, hydrogen peroxide (H2O2), inducible nitric oxide synthase (iNOS), nitric oxide (NO), Bax, Bcl-2, cytochrome c, telomerase reverse transcriptase (TERT) expression levels, and DNA fragmentation were analyzed in COCs. Our data suggest that hCG surge increased total ROS as well as H2O2 levels but decreased iNOS expression and total NO level in oocytes. The hCG-mediated increased level of ROS was sufficient to induce meiotic cell cycle resumption in majority of oocytes as evidenced by meiotic exit from diplotene as well as metaphase-II (M-II) arrest and their meiotic status. However, increase of ROS level due to hCG surge was not sufficient to trigger Bax and cytochrome c expression levels and DNA fragmentation in COCs. In addition, increased TERT activity was observed in oocytes collected 21 h post-hCG surge showing onset of oocyte aging. Taken together, these results suggest that hCG induces generation of ROS sufficient to trigger meiotic exit from diplotene, as well as M-II arrest, but not good enough to induce apoptosis in rat oocytes.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
12
|
Tiwari M, Chaube SK. Maturation promoting factor destabilization mediates human chorionic gonadotropin induced meiotic resumption in rat oocytes. Dev Growth Differ 2017; 59:603-614. [PMID: 28815566 DOI: 10.1111/dgd.12387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 12/13/2022]
Abstract
Human chorionic gonadotropin (hCG) mimics the action of luteinizing hormone (LH) and triggers meiotic maturation and ovulation in mammals. The mechanism by which hCG triggers meiotic resumption in mammalian oocytes remains poorly understood. We aimed to find out the impact of hCG surge on morphological changes, adenosine 3',5'-cyclic monophosphate (cAMP), guanosine 3',5'-cyclic monophosphate (cGMP), cell division cycle 25B (Cdc25B), Wee1, early mitotic inhibitor 2 (Emi2), anaphase-promoting complex/cyclosome (APC/C), meiotic arrest deficient protein 2 (MAD2), phosphorylation status of cyclin-dependent kinase 1 (Cdk1), its activity and cyclin B1 expression levels during meiotic resumption from diplotene as well as metaphase-II (M-II) arrest in cumulus oocyte complexes (COCs). Our data suggest that hCG surge increased cyclic nucleotides level in encircling granulosa cells but decreased their level in oocyte. The reduced intraoocyte cyclic nucleotides level is associated with the decrease of Cdc25B, Thr161 phosphorylated Cdk1 and Emi2 expression levels. On the other hand, hCG surge increased Wee1, Thr14/Tyr15 phosphorylated Cdk1, APC/C as well as MAD2 expression levels. The elevated APC/C activity reduced cyclin B1 level. The changes in phosphorylation status of Cdk1 and reduced cyclin B1 level might have resulted in maturation promoting factor (MPF) destabilization. The destabilized MPF finally triggered resumption of meiosis from diplotene as well as M-II arrest in rat oocytes.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P., India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P., India
| |
Collapse
|
13
|
Tiwari M, Gupta A, Sharma A, Prasad S, Pandey AN, Yadav PK, Pandey AK, Shrivastav TG, Chaube SK. Role of Mitogen Activated Protein Kinase and Maturation Promoting Factor During the Achievement of Meiotic Competency in Mammalian Oocytes. J Cell Biochem 2017; 119:123-129. [DOI: 10.1002/jcb.26184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Anumegha Gupta
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Alka Sharma
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Shilpa Prasad
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Ashutosh N. Pandey
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Pramod K. Yadav
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Ajai K. Pandey
- Faculty of AyurvedaDepartment of KayachikitsaBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Tulsidas G. Shrivastav
- Department of Reproductive BiomedicineNational Institute of Health and Family WelfareBaba Gang Nath MargMunirkaNew Delhi 110067India
| | - Shail K. Chaube
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| |
Collapse
|
14
|
Abolaji AO, Adedara IA, Abajingin AO, Fatunmibi OJ, Ladipo EO, Farombi EO. Evidence of oxidative damage and reproductive dysfunction accompanying 4-vinylcyclohexene diepoxide exposure in female Wistar rats. Reprod Toxicol 2016; 66:10-19. [DOI: 10.1016/j.reprotox.2016.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022]
|
15
|
Tiwari M, Prasad S, Shrivastav TG, Chaube SK. Calcium Signaling During Meiotic Cell Cycle Regulation and Apoptosis in Mammalian Oocytes. J Cell Physiol 2016; 232:976-981. [PMID: 27791263 DOI: 10.1002/jcp.25670] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/27/2016] [Indexed: 01/07/2023]
Abstract
Calcium (Ca++ ) is one of the major signal molecules that regulate various aspects of cell functions including cell cycle progression, arrest, and apoptosis in wide variety of cells. This review summarizes current knowledge on the differential roles of Ca++ in meiotic cell cycle resumption, arrest, and apoptosis in mammalian oocytes. Release of Ca++ from internal stores and/or Ca++ influx from extracellular medium causes moderate increase of intracellular Ca++ ([Ca++ ]i) level and reactive oxygen species (ROS). Increase of Ca++ as well as ROS levels under physiological range trigger maturation promoting factor (MPF) destabilization, thereby meiotic resumption from diplotene as well as metaphase-II (M-II) arrest in oocytes. A sustained increase of [Ca++ ]i level beyond physiological range induces generation of ROS sufficient enough to cause oxidative stress (OS) in aging oocytes. The increased [Ca++ ]i triggers Fas ligand-mediated oocyte apoptosis. Further, OS triggers mitochondria-mediated oocyte apoptosis in several mammalian species. Thus, Ca++ exerts differential roles on oocyte physiology depending upon its intracellular concentration. A moderate increase of [Ca++ ]i as well as ROS mediate spontaneous resumption of meiosis from diplotene as well as M-II arrest, while their high levels cause meiotic cell cycle arrest and apoptosis by operating both mitochondria- as well as Fas ligand-mediated apoptotic pathways. Indeed, Ca++ regulates cellular physiology by modulating meiotic cell cycle and apoptosis in mammalian oocytes. J. Cell. Physiol. 232: 976-981, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shilpa Prasad
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tulsidas G Shrivastav
- Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
16
|
Prasad S, Chaube SK. S-nitroso-N-acetyl penicillamine inhibits spontaneous exit from metaphase-II arrest in rat eggs cultured in vitro. Biomed Pharmacother 2016; 84:680-686. [PMID: 27701050 DOI: 10.1016/j.biopha.2016.09.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Present study was designed to investigate the in vitro effects of nitric oxide (NO) donor such as S-nitroso-N-acetyl penicillamine (SNAP) on spontaneous exit from metaphase-II arrest (SEM-II) in rat eggs cultured in vitro. METHODS Ovulated eggs were denuded and then exposed to various concentrations (0.0, 0.01, 0.1 and 1.0mM) of SNAP for 3h under in vitro culture conditions. The percentage of SEM-II, specific and total phosphorylated cyclin-dependent kinase-1 (Cdk1), cyclin B1 and anaphase promoting complex/cyclosome (APC/C) levels as well as Cdk1 activity were analyzed. RESULTS The SEM-II was associated with a decrease of Thr-161 phosphorylated Cdk1 as well as cyclin B1 levels and increase of Thr-14/Tyr-15 phosphorylated Cdk1, APC/C levels and Cdk1 activity in aged eggs cultured in vitro. On the other hand, SNAP treatment prevented a decrease of Thr-161 phosphorylated Cdk1 as well as cyclin B1 levels and increase of Thr-14/Tyr-15 phosphorylated Cdk1, Cdk1 activity that finally prevented SEM-II in a concentration-dependent manner. However, APC/C level was not affected by SNAP during the course of treatment in vitro. CONCLUSIONS Present data suggest that SNAP prevented SEM-II possibly by increasing high level of NO and thereby maturation promoting factor (MPF) stabilization in rat eggs cultured in vitro. Hence, SNAP could be used to prevent SEM-II that reduces reproductive outcome in several mammalian species.
Collapse
Affiliation(s)
- Shilpa Prasad
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P., India
| | - Shail K Chaube
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P., India.
| |
Collapse
|
17
|
Prasad S, Koch B, Chaube SK. Involvement of Cyclin-Dependent Kinase 1 during Postovulatory Aging-Mediated Abortive Spontaneous Egg Activation in Rat Eggs Cultured In Vitro. Cell Reprogram 2016; 18:96-107. [PMID: 26982431 DOI: 10.1089/cell.2015.0068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Freshly ovulated rat eggs do not remain arrested at metaphase II (MII) and undergo exit from MII arrest with initiation of extrusion of the second polar body (PBII), a characteristic feature of abortive spontaneous egg activation (SEA). The biochemical and molecular changes during postovulatory aging-mediated abortive SEA remain poorly understood. We investigated the morphological, cellular, and molecular changes during postovulatory aging-mediated abortive SEA in eggs cultured in vitro. Our results suggest that postovulatory egg aging in vitro induced initiation of PBII extrusion in a time-dependent manner. Postovulatory aging increased Wee1 kinase and Thr-14/Tyr-15 phosphorylated cyclin-dependent kinase 1 (Cdk1) levels, whereas Thr-161 phosphorylated Cdk1 and cyclin B1 levels were significantly decreased in eggs cultured in vitro. The early mitotic inhibitor 2 (Emi2) level was significantly reduced, but anaphase promoting complex/cyclosome (APC/C) and mitotic arrest deficient protein (MAD2) levels were increased initially and then reduced during a later period of in vitro culture. These results suggest that an increased Wee1 kinase level modulated the specific phosphorylation status of Cdk1, increased Cdk1 activity, and decreased the cyclin B1 level. Furthermore, the decreased Emi2 level was associated with an increased level of APC/C and decreased level of cyclin B1, which resulted in maturation promoting factor (MPF) destabilization and finally led to postovulatory aging-mediated abortive SEA in rat eggs cultured in vitro.
Collapse
Affiliation(s)
- Shilpa Prasad
- 1 Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi-221005, Uttar Pradesh, India
| | - Biplob Koch
- 2 Genotoxicology and Cancer Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi-221005, Uttar Pradesh, India
| | - Shail K Chaube
- 1 Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
18
|
Tiwari M, Chaube SK. Moderate increase of reactive oxygen species triggers meiotic resumption in rat follicular oocytes. J Obstet Gynaecol Res 2016; 42:536-46. [PMID: 26913578 DOI: 10.1111/jog.12938] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/16/2015] [Accepted: 11/29/2015] [Indexed: 01/03/2023]
Abstract
AIM The mammalian ovary generates reactive oxygen species (ROS) on an extraordinary scale; however, the role of ROS during meiotic cell cycle progression in follicular oocytes remains poorly understood. The present study was aimed to determine whether a moderate increase of ROS level in the ovary is beneficial for meiotic resumption from diplotene arrest in follicular oocytes. METHODS Cumulus oocyte complexes were collected from the ovaries of female rats that had been treated with either: (i) pregnant mare's serum gonadotrophin; or (ii) pregnant mare's serum gonadotrophin + human chorionic gonadotrophin. We analyzed morphological changes, ROS and hydrogen peroxide levels, catalase activity, 3',5'-cyclic adenosine monophosphate and 3',5'-cyclic guanosine monophosphate levels, Thr14/Tyr15, Th-161, total cyclin-dependent kinase 1 (Cdk1) and cyclin B1 levels. RESULTS Human chorionic gonadotrophin treatment induced meiotic resumption from diplotene arrest and extrusion of first polar body in cumulus oocyte complexes collected from ovaries and cultured for 3 h in vitro. Meiotic resumption from diplotene arrest was associated with increased ROS and hydrogen peroxide levels but decreased 3',5'-cyclic adenosine monophosphate as well as 3',5'-cyclic guanosine monophosphate levels. The reduced cyclic nucleotide levels were associated with decreased Thr161 phosphorylated Cdk1 and cyclin B1 level but increased Thr14/Tyr15 phosphorylated Cdk1 level leading to maturation promoting factor destabilization. Destabilized maturation-promoting factor triggered meiotic resumption from diplotene arrest and progression to metaphase-I as well as metaphase-II stage in follicular oocytes. CONCLUSION Our findings suggest that a moderate increase of ROS in the ovary is beneficial for meiotic resumption from diplotene arrest and extrusion of first polar body in follicular oocytes.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Banaras Hindu University, Varanasi, UP, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Banaras Hindu University, Varanasi, UP, India
| |
Collapse
|
19
|
Premkumar KV, Chaube SK. Increased level of reactive oxygen species persuades postovulatory aging-mediated spontaneous egg activation in rat eggs cultured in vitro. In Vitro Cell Dev Biol Anim 2016; 52:576-88. [PMID: 26896066 DOI: 10.1007/s11626-016-0007-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/25/2016] [Indexed: 11/29/2022]
Abstract
The present study was aimed to find out whether increased level of reactive oxygen species (ROS) particularity hydrogen peroxide (H2O2) could persuade postovulatory aging-mediated abortive spontaneous egg activation (SEA) in rat eggs cultured in vitro. For this purpose, ROS and H2O2 levels, mitochondria distribution and its membrane potential, p286-CaMK-II, Emi2, Thr-161 phophorylated cyclin-dependent protein kinase1 (Cdk1) as well as cyclin B1 levels, in vitro effects of 3-tert-butyl-4 hydroxy anisole (BHA), pentoxifylline and dibutyryl-adenosine 3',5'-cyclic monophosphate (db-cAMP) were analyzed during postovulatory aging-induced abortive SEA in vitro. Data of the present study suggest that postovulatory aging increased H2O2 levels, disturbed mitochondrial distribution pattern and mitochondrial membrane potential (MMP) in eggs. There was an significant increase of p286-CaMK-II level, while Emi2 level reduced significantly during egg aging in vitro. The reduced Emi2 level was associated with decreased Thr-161 phosphorylated cyclin-dependent kinase-1 (Cdk1) as well as cyclin B1 level in aged eggs that underwent abortive SEA. Further, supplementation of pentoxifylline, db-cAMP, and BHA protected postovulatory aging-mediated abortive SEA in concentration-dependent manner. These data suggest that postovulatory aging increased H2O2 levels, reduced MMP, and increased p286-CaMK-II. The increased p286-CaMK-II was associated with reduced Emi2 level and maturation-promoting factor levels during postovulatory aging-mediated abortive SEA. Drugs that elevate cAMP directly or indirectly and BHA protected postovulatory aging-mediated abortive SEA possibly by reducing ROS level in rat eggs cultured in vitro.
Collapse
Affiliation(s)
- Karuppanan V Premkumar
- Cell Physiology Laboratory, Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
20
|
A 12-Crown-4 Ether Containing Dipeptide Boc-12-Crown-4-l-DOPA-Gly-OMe Induces Cell Cycle Arrest and Apoptosis in Rat Eggs Cultured In Vitro. Int J Pept Res Ther 2015. [DOI: 10.1007/s10989-015-9484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|