1
|
Kingma H, Hougaard DD, van de Berg R. Subconscious vibrotactile stimulation improves mobility and balance in patients with bilateral vestibulopathy: adherence over 2 years. Front Neurol 2024; 15:1491195. [PMID: 39440249 PMCID: PMC11494678 DOI: 10.3389/fneur.2024.1491195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Objective To investigate the effect of daily use of subconscious vibrotactile stimulation in bilateral vestibulopathy (BVP) patients, who judged the effect of vestibular rehabilitation as insufficient. Methods BVP patients were asked to wear a subconscious vibrotactile stimulation belt for 2 h. Patients who reported benefit after 2 h of use, were instructed to wear a subconscious vibrotactile stimulation belt in daily life, for up to more than 2 years. Follow-up consultations (mostly by telephone calls) were scheduled after 2 weeks, 2 months, 1 year, and 2 years of use. During these consultations, adherence and the self-reported overall Balance and Mobility Score (BMS) were evaluated. Results One hundred twenty-one BVP patients were included. Regarding adherence, 74% of patients (n = 89) wanted to proceed with daily use at home after 2 h of try out. Of these patients, 90% (n = 80) was still wearing the belt daily after 2 months, and at least 81% (n = 72) after 1 year and 73% (n = 65) after 2 years. It should be noted that lack of adherence after 1 and 2 years resulted from a loss to follow-up. All patients responding to telephone consultations in the 2 years follow up were wearing a subconscious vibrotactile stimulation belt daily. The median BMS score significantly improved within 2 h of use, from 4 to 6 points (p < 0.0001). Compared to baseline, the median BMS score significantly improved with >=3 points after 2 weeks, 2 months, 1 year, and 2 years of daily use (p < 0.0001). Long-term adherence was high in patients who experienced an increase of two or more points on the BMS, after 2 weeks of daily use. Conclusion The Subconscious vibrotactile stimulation improves self-reported balance and mobility in a subgroup of motivated BVP patients in which vestibular rehabilitation is insufficient.
Collapse
Affiliation(s)
- Herman Kingma
- Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
- Balance and Dizziness Centre, Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Dan Dupont Hougaard
- Balance and Dizziness Centre, Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Raymond van de Berg
- Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
2
|
Martin EC, Leue C, Delespaul P, Peeters F, Janssen AML, Lousberg R, Erdkamp A, van de Weijer S, Widdershoven J, Blom H, Bruintjes T, Zwergal A, Grill E, Guinand N, Perez-Fornos A, van de Berg MR, Stultiens JJA, Kingma H, van de Berg R. Introducing the DizzyQuest: an app-based diary for vestibular disorders. J Neurol 2020; 267:3-14. [PMID: 32712867 PMCID: PMC7718207 DOI: 10.1007/s00415-020-10092-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 01/10/2023]
Abstract
Background Most questionnaires currently used for assessing symptomatology of vestibular disorders are retrospective, inducing recall bias and lowering ecological validity. An app-based diary, administered multiple times in daily life, could increase the accuracy and ecological validity of symptom measurement. The objective of this study was to introduce a new experience sampling method (ESM) based vestibular diary app (DizzyQuest), evaluate response rates, and to provide examples of DizzyQuest outcome measures which can be used in future research. Methods Sixty-three patients diagnosed with a vestibular disorder were included. The DizzyQuest consisted of four questionnaires. The morning- and evening-questionnaires were administered once each day, the within-day-questionnaire 10 times a day using a semi-random time schedule, and the attack questionnaire could be completed after the occurrence of a vertigo or dizziness attack. Data were collected for 4 weeks. Response rates and loss-to-follow-up were determined. Reported symptoms in the within-day-questionnaire were compared within and between patients and subgroups of patients with different vestibular disorders. Results Fifty-one patients completed the study period. Average response rates were significantly higher than the desired response rate of > 50% (p < 0.001). The attack-questionnaire was used 159 times. A variety of neuro-otological symptoms and different disease profiles were demonstrated between patients and subgroups of patients with different vestibular disorders. Conclusion The DizzyQuest is able to capture vestibular symptoms within their psychosocial context in daily life, with little recall bias and high ecological validity. The DizzyQuest reached the desired response rates and showed different disease profiles between subgroups of patients with different vestibular disorders. This is the first time ESM was used to assess daily symptoms and quality of life in vestibular disorders, showing that it might be a useful tool in this population. Electronic supplementary material The online version of this article (10.1007/s00415-020-10092-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E C Martin
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - C Leue
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - P Delespaul
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - F Peeters
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - A M L Janssen
- Department of ENT/Audiology, School for Mental Health and Neuroscience (MHENS), Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Methodology and Statistics, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - R Lousberg
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - A Erdkamp
- Department of Psychiatry and Psychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - S van de Weijer
- Department of Psychiatry and Psychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J Widdershoven
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - H Blom
- Department of ENT, HagaZiekenhuis, The Hague, The Netherlands
| | - T Bruintjes
- Apeldoorns duizeligheidscentrum, Gelre ziekenhuizen, Apeldoorn, The Netherlands
| | - A Zwergal
- Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - E Grill
- Department of Medical Informatics, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - N Guinand
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - A Perez-Fornos
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - M R van de Berg
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J J A Stultiens
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - H Kingma
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands.,Faculty of Physics, Tomsk State Research University, Tomsk, Russia
| | - R van de Berg
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands. .,Faculty of Physics, Tomsk State Research University, Tomsk, Russia.
| |
Collapse
|
3
|
Manrique-Huarte R, Zulueta-Santos C, Garaycochea O, Alvarez Linera-Alperi M, Manrique M. Correlation between High-Resolution Computed Tomography Scan Findings and Histological Findings in Human Vestibular End Organs and Surgical Implications. Audiol Neurootol 2020; 25:42-49. [PMID: 31910409 DOI: 10.1159/000504594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/05/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Histological study of vestibular end organs has been challenging due to the difficulty in preserving their structures for histological analysis and due to their complex geometry. Recently, radiology advances have allowed to deepen the study of the membranous labyrinth. SUMMARY A review and analysis of surgical implications related to the anatomy of the vestibular end organ is performed. Radiological advances are key in the advancement of the knowledge of the anatomy and pathology of the vestibule. Thus, application of such knowledge in the development or improvement of surgical procedures may facilitate the development of novel techniques. Key Messages: During the last few decades, the knowledge of the anatomy of the auditory system through histology and radiology had improved. Technological advances in this field may lead to a better diagnosis and therapeutic approach of most common and important diseases affecting the inner ear.
Collapse
Affiliation(s)
| | | | - Octavio Garaycochea
- Otorhinolaryngology Department, University of Navarra Clinic, Pamplona, Spain
| | | | - Manuel Manrique
- Otorhinolaryngology Department, University of Navarra Clinic, Pamplona, Spain
| |
Collapse
|
4
|
Vestibular implant: does it really work? A systematic review. Braz J Otorhinolaryngol 2019; 85:788-798. [PMID: 31606334 PMCID: PMC9443005 DOI: 10.1016/j.bjorl.2019.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/11/2019] [Accepted: 07/29/2019] [Indexed: 11/25/2022] Open
Abstract
Introduction People with vestibular loss present a deficit in the vestibular system, which is primarily responsible for promoting postural control, gaze stabilization, and spatial orientation while the head moves. There is no effective treatment for a bilateral loss of vestibular function. Recently, a vestibular implant was developed for people with bilateral loss of vestibular function to improve this function and, consequently, the quality of life of these patients. Objective To identify in the scientific literature evidence that vestibular implants in people with vestibular deficit improves vestibular function. Methods One hundred and forty six articles were found from five databases and 323 articles from the gray literature mentioning the relationship between vestibular implant and vestibular function in humans. The PICOS strategy (Population, Intervention, Comparison and Outcome) was used to define the eligibility criteria. The studies that met the inclusion criteria for this second step were included in a qualitative synthesis, and each type of study was analyzed according to the bias risk assessment of the Joanna Briggs Institute through the critical assessment checklist Joanna Briggs institute for quasi-experimental studies and the Joanna Briggs institute critical assessment checklist for case reports. Results Of the 21 articles included in reading the full text, 10 studies were selected for the qualitative analysis in the present systematic review. All ten articles analyzed through the critical assessment checklist Joanna Briggs institute showed a low risk of bias. The total number of samples in the evaluated articles was 18 patients with vestibular implants. Conclusions Taken together, these findings support the feasibility of vestibular implant for restoration of the vestibulo-ocular reflex in a broad frequency range and illustrate new challenges for the development of this technology.
Collapse
|
5
|
Sluydts M, Curthoys I, Vanspauwen R, Papsin BC, Cushing SL, Ramos A, Ramos de Miguel A, Borkoski Barreiro S, Barbara M, Manrique M, Zarowski A. Electrical Vestibular Stimulation in Humans: A Narrative Review. Audiol Neurootol 2019; 25:6-24. [PMID: 31533097 DOI: 10.1159/000502407] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In patients with bilateral vestibulopathy, the regular treatment options, such as medication, surgery, and/or vestibular rehabilitation, do not always suffice. Therefore, the focus in this field of vestibular research shifted to electrical vestibular stimulation (EVS) and the development of a system capable of artificially restoring the vestibular function. Key Message: Currently, three approaches are being investigated: vestibular co-stimulation with a cochlear implant (CI), EVS with a vestibular implant (VI), and galvanic vestibular stimulation (GVS). All three applications show promising results but due to conceptual differences and the experimental state, a consensus on which application is the most ideal for which type of patient is still missing. SUMMARY Vestibular co-stimulation with a CI is based on "spread of excitation," which is a phenomenon that occurs when the currents from the CI spread to the surrounding structures and stimulate them. It has been shown that CI activation can indeed result in stimulation of the vestibular structures. Therefore, the question was raised whether vestibular co-stimulation can be functionally used in patients with bilateral vestibulopathy. A more direct vestibular stimulation method can be accomplished by implantation and activation of a VI. The concept of the VI is based on the technology and principles of the CI. Different VI prototypes are currently being evaluated regarding feasibility and functionality. So far, all of them were capable of activating different types of vestibular reflexes. A third stimulation method is GVS, which requires the use of surface electrodes instead of an implanted electrode array. However, as the currents are sent through the skull from one mastoid to the other, GVS is rather unspecific. It should be mentioned though, that the reported spread of excitation in both CI and VI use also seems to induce a more unspecific stimulation. Although all three applications of EVS were shown to be effective, it has yet to be defined which option is more desirable based on applicability and efficiency. It is possible and even likely that there is a place for all three approaches, given the diversity of the patient population who serves to gain from such technologies.
Collapse
Affiliation(s)
- Morgana Sluydts
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium,
| | - Ian Curthoys
- Vestibular Research Laboratory, University of Sydney, Sydney, New South Wales, Australia
| | - Robby Vanspauwen
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium
| | - Blake Croll Papsin
- Department of Otolaryngology - Head and Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sharon Lynn Cushing
- Department of Otolaryngology - Head and Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angel Ramos
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | - Angel Ramos de Miguel
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | - Silvia Borkoski Barreiro
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | | | - Manuel Manrique
- Otorhinolaryngology Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Andrzej Zarowski
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium
| |
Collapse
|
6
|
Virtual Rhesus Labyrinth Model Predicts Responses to Electrical Stimulation Delivered by a Vestibular Prosthesis. J Assoc Res Otolaryngol 2019; 20:313-339. [PMID: 31165284 DOI: 10.1007/s10162-019-00725-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 05/08/2019] [Indexed: 10/26/2022] Open
Abstract
To better understand the spread of prosthetic current in the inner ear and to facilitate design of electrode arrays and stimulation protocols for a vestibular implant system intended to restore sensation after loss of vestibular hair cell function, we created a model of the primate labyrinth. Because the geometry of the implanted ear is complex, accurately modeling effects of prosthetic stimuli on vestibular afferent activity required a detailed representation of labyrinthine anatomy. Model geometry was therefore generated from three-dimensional (3D) reconstructions of a normal rhesus temporal bone imaged using micro-MRI and micro-CT. For systematically varied combinations of active and return electrode location, the extracellular potential field during a biphasic current pulse was computed using finite element methods. Potential field values served as inputs to stochastic, nonlinear dynamic models for each of 2415 vestibular afferent axons, each with unique origin on the neuroepithelium and spiking dynamics based on a modified Smith and Goldberg model. We tested the model by comparing predicted and actual 3D vestibulo-ocular reflex (VOR) responses for eye rotation elicited by prosthetic stimuli. The model was individualized for each implanted animal by placing model electrodes in the standard labyrinth geometry based on CT localization of actual implanted electrodes. Eye rotation 3D axes were predicted from relative proportions of model axons excited within each of the three ampullary nerves, and predictions were compared to archival eye movement response data measured in three alert rhesus monkeys using 3D scleral coil oculography. Multiple empirically observed features emerged as properties of the model, including effects of changing active and return electrode position. The model predicts improved prosthesis performance when the reference electrode is in the labyrinth's common crus (CC) rather than outside the temporal bone, especially if the reference electrode is inserted nearly to the junction of the CC with the vestibule. Extension of the model to human anatomy should facilitate optimal design of electrode arrays for clinical application.
Collapse
|
7
|
Interfacing with the nervous system: a review of current bioelectric technologies. Neurosurg Rev 2017; 42:227-241. [PMID: 29063229 DOI: 10.1007/s10143-017-0920-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/15/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
Abstract
The aim of this study is to discuss the state of the art with regard to established or promising bioelectric therapies meant to alter or control neurologic function. We present recent reports on bioelectric technologies that interface with the nervous system at three potential sites-(1) the end organ, (2) the peripheral nervous system, and (3) the central nervous system-while exploring practical and clinical considerations. A literature search was executed on PubMed, IEEE, and Web of Science databases. A review of the current literature was conducted to examine functional and histomorphological effects of neuroprosthetic interfaces with a focus on end-organ, peripheral, and central nervous system interfaces. Innovations in bioelectric technologies are providing increasing selectivity in stimulating distinct nerve fiber populations in order to activate discrete muscles. Significant advances in electrode array design focus on increasing selectivity, stability, and functionality of implantable neuroprosthetics. The application of neuroprosthetics to paretic nerves or even directly stimulating or recording from the central nervous system holds great potential in advancing the field of nerve and tissue bioelectric engineering and contributing to clinical care. Although current physiotherapeutic and surgical treatments seek to restore function, structure, or comfort, they bear significant limitations in enabling cosmetic or functional recovery. Instead, the introduction of bioelectric technology may play a role in the restoration of function in patients with neurologic deficits.
Collapse
|
8
|
DiGiovanna J, Nguyen TAK, Guinand N, Pérez-Fornos A, Micera S. Neural Network Model of Vestibular Nuclei Reaction to Onset of Vestibular Prosthetic Stimulation. Front Bioeng Biotechnol 2016; 4:34. [PMID: 27148528 PMCID: PMC4837148 DOI: 10.3389/fbioe.2016.00034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/30/2016] [Indexed: 11/24/2022] Open
Abstract
The vestibular system incorporates multiple sensory pathways to provide crucial information about head and body motion. Damage to the semicircular canals, the peripheral vestibular organs that sense rotational velocities of the head, can severely degrade the ability to perform activities of daily life. Vestibular prosthetics address this problem by using stimulating electrodes that can trigger primary vestibular afferents to modulate their firing rates, thus encoding head movement. These prostheses have been demonstrated chronically in multiple animal models and acutely tested in short-duration trials within the clinic in humans. However, mainly, due to limited opportunities to fully characterize stimulation parameters, there is a lack of understanding of “optimal” stimulation configurations for humans. Here, we model possible adaptive plasticity in the vestibular pathway. Specifically, this model highlights the influence of adaptation of synaptic strengths and offsets in the vestibular nuclei to compensate for the initial activation of the prosthetic. By changing the synaptic strengths, the model is able to replicate the clinical observation that erroneous eye movements are attenuated within 30 minutes without any change to the prosthetic stimulation rate. Although our model was only built to match this time point, we further examined how it affected subsequent pulse rate modulation (PRM) and pulse amplitude modulation (PAM). PAM was more effective than PRM for nearly all stimulation configurations during these acute tests. Two non-intuitive relationships highlighted by our model explain this performance discrepancy. Specifically, the attenuation of synaptic strengths for afferents stimulated during baseline adaptation and the discontinuity between baseline and residual firing rates both disproportionally boost PAM. Comodulation of pulse rate and amplitude has been experimentally shown to induce both excitatory and inhibitory eye movements even at high baseline stimulation rates. We also modeled comodulation and found synergistic combinations of stimulation parameters to achieve equivalent output to only amplitude modulation. This may be an important strategy to reduce current spread and misalignment. The model outputs reflected observed trends in clinical testing and aspects of existing vestibular prosthetic literature. Importantly, the model provided insight to efficiently explore the stimulation parameter space, which was helpful, given limited available patient time.
Collapse
Affiliation(s)
- Jack DiGiovanna
- Center for Neuroprosthetics, Bertarelli Foundation Chair in Translational Neuroengineering, École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - T A K Nguyen
- Center for Neuroprosthetics, Bertarelli Foundation Chair in Translational Neuroengineering, École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Nils Guinand
- Cochlear Implant Center for French Speaking Switzerland, Service of Otorhinolaryngology - Head and Neck Surgery, Geneva University Hospitals , Geneva , Switzerland
| | - Angelica Pérez-Fornos
- Cochlear Implant Center for French Speaking Switzerland, Service of Otorhinolaryngology - Head and Neck Surgery, Geneva University Hospitals , Geneva , Switzerland
| | - Silvestro Micera
- Center for Neuroprosthetics, Bertarelli Foundation Chair in Translational Neuroengineering, École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| |
Collapse
|
9
|
Abstract
Many medical doctors consider vertigo and dizziness as the major, almost obligatory complaints in patients with vestibular disorders. In this chapter, we will explain that vestibular disorders result in much more diverse and complex complaints. Many of these other complaints are unfortunately often misinterpreted and incorrectly classified as psychogenic. When we really understand the function of the vestibular system, it becomes quite obvious why patients with vestibular disorders complain about a loss of visual acuity, imbalance, fear of falling, cognitive and attentional problems, fatigue that persists even when the vertigo attacks and dizziness decreases or even disappears. Another interesting new aspect in this chapter is that we explain why the function of the otolith system is so important, and that it is a mistake to focus on the function of the semicircular canals only, especially when we want to understand why some patients seem to suffer more than others from the loss of canal function as objectified by reduced caloric responses.
Collapse
|
10
|
Abstract
The leading symptoms of bilateral vestibulopathy (BVP) are postural imbalance and unsteadiness of gait that worsens in darkness and on uneven ground. There are typically no symptoms while sitting or lying under static conditions. A minority of patients also have movement-induced oscillopsia, in particular while walking. The diagnosis of BVP is based on a bilaterally reduced or absent function of the vestibulo-ocular reflex (VOR). This deficit is diagnosed for the high-frequency range of the angular VOR by a bilaterally pathologic bedside head impulse test (HIT) and for the low-frequency range by a bilaterally reduced or absent caloric response. If the results of the bedside HIT are unclear, angular VOR function should be quantified by a video-oculography system (vHIT). An additional test supporting the diagnosis is dynamic visual acuity. Cervical and ocular vestibular-evoked myogenic potentials (c/oVEMP) may also be reduced or absent, indicating impaired otolith function. There are different subtypes of BVP depending on the affected anatomic structure and frequency range of the VOR deficit: impaired canal function in the low- and/or high-frequency VOR range only and/or otolith function only; the latter is very rare. The etiology of BVP remains unclear in more than 50% of patients: in these cases neurodegeneration is assumed. Frequent known causes are ototoxicity mainly due to gentamicin, bilateral Menière's disease, autoimmune diseases, meningitis and bilateral vestibular schwannoma, as well as an association with cerebellar degeneration (cerebellar ataxia, neuropathy, vestibular areflexia syndrome=CANVAS). In general, in the long term there is no improvement of vestibular function. There are four treatment options: first, detailed patient counseling to explain the cause, etiology, and consequences, as well as the course of the disease; second, daily vestibular exercises and balance training; third, if possible, treatment of the underlying cause, as in bilateral Menière's disease, meningitis, or autoimmune diseases; fourth, if possible, prevention, i.e., being very restrictive with the use of ototoxic substances, such as aminoglycosides. In the future vestibular implants may also be an option.
Collapse
Affiliation(s)
- M Strupp
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Campus Grosshadern, Munich, Germany; Department of Neurology, University Hospital Munich, Campus Grosshadern, Munich, Germany.
| | - K Feil
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Campus Grosshadern, Munich, Germany; Department of Neurology, University Hospital Munich, Campus Grosshadern, Munich, Germany
| | - M Dieterich
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Campus Grosshadern, Munich, Germany; Department of Neurology, University Hospital Munich, Campus Grosshadern, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians University, Munich, Germany
| | - T Brandt
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Campus Grosshadern, Munich, Germany; Institute for Clinical Neurosciences, University Hospital Munich, Campus Grosshadern, Munich, Germany
| |
Collapse
|
11
|
Loss of Afferent Vestibular Input Produces Central Adaptation and Increased Gain of Vestibular Prosthetic Stimulation. J Assoc Res Otolaryngol 2015; 17:19-35. [PMID: 26438271 DOI: 10.1007/s10162-015-0544-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 09/14/2015] [Indexed: 11/29/2022] Open
Abstract
Implanted vestibular neurostimulators are effective in driving slow phase eye movements in monkeys and humans. Furthermore, increases in slow phase velocity and electrically evoked compound action potential (vECAP) amplitudes occur with increasing current amplitude of electrical stimulation. In intact monkeys, protracted intermittent stimulation continues to produce robust behavioral responses and preserved vECAPs. In lesioned monkeys, shorter duration studies show preserved but with somewhat lower or higher velocity behavioral responses. It has been proposed that such changes are due to central adaptive changes in the electrically elicited vestibulo-ocular reflex (VOR). It is equally possible that these differences are due to changes in the vestibular periphery in response to activation of the vestibular efferent system. In order to investigate the site of adaptive change in response to electrical stimulation, we performed transtympanic gentamicin perfusions to induce rapid changes in vestibular input in monkeys with long-standing stably functioning vestibular neurostimulators, disambiguating the effects of implantation from the effects of ototoxic lesion. Gentamicin injection was effective in producing a large reduction in natural VOR only when it was performed in the non-implanted ear, suggesting that the implanted ear contributed little to the natural rotational response before injection. Injection of the implanted ear produced a reduction in the vECAP responses in that ear, suggesting that the intact hair cells in the non-functional ipsilateral ear were successfully lesioned by gentamicin, reducing the efficacy of stimulation in that ear. Despite this, injection of both ears produced central plastic changes that resulted in a dramatically increased slow phase velocity nystagmus elicited by electrical stimulation. These results suggest that loss of vestibular afferent activity, and a concurrent loss of electrically elicited vestibular input, produces an increase in the efficacy of a vestibular neurostimulator by eliciting centrally adapted behavioral responses without concurrent adaptive increase of galvanic afferent activation in the periphery.
Collapse
|
12
|
Fernández L, Breinbauer HA, Delano PH. Vertigo and Dizziness in the Elderly. Front Neurol 2015; 6:144. [PMID: 26167157 PMCID: PMC4481149 DOI: 10.3389/fneur.2015.00144] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/12/2015] [Indexed: 11/13/2022] Open
Abstract
The prevalence of vertigo and dizziness in people aged more than 60 years reaches 30%, and due to aging of world population, the number of patients is rapidly increasing. The presence of dizziness in the elderly is a strong predictor of falls, which is the leading cause of accidental death in people older than 65 years. Balance disorders in the elderly constitute a major public health problem, and require an adequate diagnosis and management by trained physicians. In the elderly, common causes of vertigo may manifest differently, as patients tend to report less rotatory vertigo and more non-specific dizziness and instability than younger patients, making diagnosis more complex. In this mini review, age-related degenerative processes that affect balance are presented. Diagnostic and therapeutic approaches oriented to the specific impaired system, including visual, proprioceptive, and vestibular pathways, are proposed. In addition, presbystasis – the loss of vestibular and balance functions associated with aging – benign paroxysmal positional vertigo, and stroke (in acute syndromes) should always be considered.
Collapse
Affiliation(s)
- Lara Fernández
- Otolaryngology Department, Clinical Hospital of the University of Chile , Santiago , Chile
| | - Hayo A Breinbauer
- Otolaryngology Department, San Juan de Dios Hospital, University of Chile , Santiago , Chile ; Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo , Santiago , Chile
| | - Paul Hinckley Delano
- Otolaryngology Department, Clinical Hospital of the University of Chile , Santiago , Chile ; Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Medicine Faculty, University of Chile , Santiago , Chile
| |
Collapse
|
13
|
Park JJH, Shen A, Westhofen M. Promontory electrical stimulation to elicit vestibular evoked myogenic potentials (VEMPs). Acta Otolaryngol 2015; 135:239-45. [PMID: 25649883 DOI: 10.3109/00016489.2014.973530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Vestibular evoked myogenic potentials (VEMPs) provoked electrically at the promontory provide a feasible method to record vestibular responses in awake patients. OBJECTIVES Electrically evoked VEMP testing has been performed by galvanic stimulation at the mastoid so far. The present study examined an electrical stimulation mode close to the otolith organs at the promontory. METHODS Fourteen cochlear implant candidates who were planned for clinical routine promontory stimulation testing (PST) to assess auditory nerve function underwent promontory VEMP testing. After testing the cochlear nerve function during PST promontory cervical VEMPs (p-c-VEMPs) and promontory ocular VEMPs (p-o-VEMPs) were recorded during subsequent transtympanic electrical stimulation at the promontory. RESULTS Promontory VEMP testing was well tolerated by the patients. Mean latencies for p-c-VEMPs were 10.30 ± 2.23 ms (p1) and 17.86 ± 3.83 ms (n1). Mean latencies for p-o-VEMPs were 7.64 ± 1.24 ms (n1) and 11.2 ± 1.81 ms (p1). The stimulation threshold level was measured at 0.15 ± 0.07 mA for p-c-VEMPs and at 0.19 ± 0.11 mA for p-o-VEMPs. The discomfort level was found to be at 0.78 ± 0.29 mA for p-c-VEMPs and at 0.69 ± 0.25 mA for p-oVEMPs. Mean p1-n1 amplitude in p-c-VEMPs was 124.78 ± 56.55 µV and p-o-VEMPs showed a mean n1-p1 amplitude of 30.94 ± 18.98 µV.
Collapse
Affiliation(s)
- Jonas J-H Park
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Aachen, RWTH Aachen University , Aachen , Germany
| | | | | |
Collapse
|
14
|
|