1
|
Zhou Y, Peskett TR, Landles C, Warner JB, Sathasivam K, Smith EJ, Chen S, Wetzel R, Lashuel HA, Bates GP, Saibil HR. Correlative light and electron microscopy suggests that mutant huntingtin dysregulates the endolysosomal pathway in presymptomatic Huntington's disease. Acta Neuropathol Commun 2021; 9:70. [PMID: 33853668 PMCID: PMC8048291 DOI: 10.1186/s40478-021-01172-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/28/2021] [Indexed: 12/18/2022] Open
Abstract
Huntington's disease (HD) is a late onset, inherited neurodegenerative disorder for which early pathogenic events remain poorly understood. Here we show that mutant exon 1 HTT proteins are recruited to a subset of cytoplasmic aggregates in the cell bodies of neurons in brain sections from presymptomatic HD, but not wild-type, mice. This occurred in a disease stage and polyglutamine-length dependent manner. We successfully adapted a high-resolution correlative light and electron microscopy methodology, originally developed for mammalian and yeast cells, to allow us to correlate light microscopy and electron microscopy images on the same brain section within an accuracy of 100 nm. Using this approach, we identified these recruitment sites as single membrane bound, vesicle-rich endolysosomal organelles, specifically as (1) multivesicular bodies (MVBs), or amphisomes and (2) autolysosomes or residual bodies. The organelles were often found in close-proximity to phagophore-like structures. Immunogold labeling localized mutant HTT to non-fibrillar, electron lucent structures within the lumen of these organelles. In presymptomatic HD, the recruitment organelles were predominantly MVBs/amphisomes, whereas in late-stage HD, there were more autolysosomes or residual bodies. Electron tomograms indicated the fusion of small vesicles with the vacuole within the lumen, suggesting that MVBs develop into residual bodies. We found that markers of MVB-related exocytosis were depleted in presymptomatic mice and throughout the disease course. This suggests that endolysosomal homeostasis has moved away from exocytosis toward lysosome fusion and degradation, in response to the need to clear the chronically aggregating mutant HTT protein, and that this occurs at an early stage in HD pathogenesis.
Collapse
Affiliation(s)
- Ya Zhou
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, UK
| | - Thomas R. Peskett
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX UK
- Present Address: Department of Biology, Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Christian Landles
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, UK
| | - John B. Warner
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kirupa Sathasivam
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, UK
| | - Edward J. Smith
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, UK
| | - Shu Chen
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX UK
| | - Ronald Wetzel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gillian P. Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, UK
| | - Helen R. Saibil
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX UK
| |
Collapse
|
2
|
Effects of maternal protein restriction during pregnancy and lactation on milk composition and offspring development. Br J Nutr 2019; 122:141-151. [PMID: 31345278 DOI: 10.1017/s0007114519001120] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Before weaning, breast milk is the physiological form of neonatal nutrition, providing pups with all nutrient requirements. Maternal low-protein diet (LPD) during pregnancy and lactation induces adverse changes in key maternal organs, which have negative effects on pup development. We studied the effects of maternal LPD on liver weight, mammary gland (MG) cell differentiation, milk composition and production and pup development throughout lactation. We fed rats with control (C) or LPD (R) during pregnancy and lactation. At 7 d early, 14 d mid and 21 d late lactation stages, maternal biochemical parameters, body, liver and MG weights were analysed. MG cell differentiation was analysed by haematoxylin and eosin staining; milk nutrient composition and production were studied; pup body, liver and brain weights, hippocampal arachidonic acid (AA) and DHA were quantified. Results showed lower body and liver weights, minor MG cell differentiation and lower serum insulin and TAG in R compared with C. R milk contained less protein and higher AA at early and mid stages compared with C. R pup milk and fat intake were lower at all stages. R protein intake at early and mid stages and DHA intake at mid and late stages were lower compared with C. In R pups, lower body, liver and brain weights were associated with decreased hippocampal AA and DHA. We conclude that maternal LPD impairs liver and MG function and induces significant changes in maternal milk composition, pup milk intake and organ development.
Collapse
|
3
|
García‐García MC, del Río Celestino M, Gil‐Izquierdo Á, Egea‐Gilabert C, Galano JM, Durand T, Oger C, Fernández JA, Ferreres F, Domínguez‐Perles R. The Value of Legume Foods as a Dietary Source of Phytoprostanes and Phytofurans Is Dependent on Species, Variety, and Growing Conditions. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800484] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- María C. García‐García
- Center IFAPA La Mojonera, CAPDER, Junta de AndalucíaCamino San Nicolás 104745 AlmeríaSpain
| | | | - Ángel Gil‐Izquierdo
- Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS‐CSIC), University Campus Edif25, 30100 EspinardoSpain
| | | | - Jean M. Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM34093 MontpellierFrance
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM34093 MontpellierFrance
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM34093 MontpellierFrance
| | - Juan A. Fernández
- Technical University of CartagenaPaseo Alfonso XIII 4830203 CartagenaSpain
| | - Federico Ferreres
- Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS‐CSIC), University Campus Edif25, 30100 EspinardoSpain
| | - Raúl Domínguez‐Perles
- Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS‐CSIC), University Campus Edif25, 30100 EspinardoSpain
| |
Collapse
|
4
|
Reyes-Castro LA, Padilla-Gómez E, Parga-Martínez NJ, Castro-Rodríguez DC, Quirarte GL, Díaz-Cintra S, Nathanielsz PW, Zambrano E. Hippocampal mechanisms in impaired spatial learning and memory in male offspring of rats fed a low-protein isocaloric diet in pregnancy and/or lactation. Hippocampus 2017; 28:18-30. [PMID: 28843045 DOI: 10.1002/hipo.22798] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
Maternal nutritional challenges during fetal and neonatal development result in developmental programming of multiple offspring organ systems including brain maturation and function. A maternal low-protein diet during pregnancy and lactation impairs associative learning and motivation. We evaluated effects of a maternal low-protein diet during gestation and/or lactation on male offspring spatial learning and hippocampal neural structure. Control mothers (C) ate 20% casein and restricted mothers (R) 10% casein, providing four groups: CC, RR, CR, and RC (first letter pregnancy, second lactation diet). We evaluated the behavior of young adult male offspring around postnatal day 110. Corticosterone and ACTH were measured. Males were tested for 2 days in the Morris water maze (MWM). Stratum lucidum mossy fiber (MF) area, total and spine type in basal dendrites of stratum oriens in the hippocampal CA3 field were measured. Corticosterone and ACTH were higher in RR vs. CC. In the MWM acquisition test CC offspring required two, RC three, and CR seven sessions to learn the maze. RR did not learn in eight trials. In a retention test 24 h later, RR, CR, and RC spent more time locating the platform and performed fewer target zone entries than CC. RR and RC offspring spent less time in the target zone than CC. MF area, total, and thin spines were lower in RR, CR, and RC than CC. Mushroom spines were lower in RR and RC than CC. Stubby spines were higher in RR, CR, and RC than CC. We conclude that maternal low-protein diet impairs spatial acquisition and memory retention in male offspring, and that alterations in hippocampal presynaptic (MF), postsynaptic (spines) elements and higher glucocorticoid levels are potential mechanisms to explain these learning and memory deficits.
Collapse
Affiliation(s)
- L A Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| | - E Padilla-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - N J Parga-Martínez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - D C Castro-Rodríguez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| | - G L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - S Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - P W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, Wyoming 82071-3684
| | - E Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| |
Collapse
|