1
|
Supuran CT. Multi- and polypharmacology of carbonic anhydrase inhibitors. Pharmacol Rev 2025; 77:100004. [PMID: 39952696 DOI: 10.1124/pharmrev.124.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) have been described in organisms overall in the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons and are involved in pH regulation, chemosensing, and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic, or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension, and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or Alzheimer/Parkinson disease management. CAs from pathogenic bacteria, fungi, protozoans, and nematodes have started to be considered as drug targets in recent years, with notable advances being registered. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future due to the emergence of drug design approaches that afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, [iso]coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed because drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide, and high-ceiling diuretics) show effective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. SIGNIFICANCE STATEMENT: CAIs have multiple pharmacologic applications, such as diuretics, antiglaucoma, antiepileptic, antiobesity, antiacute mountain sickness, anti-idiopathic intracranial hypertension, and antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations has started to be investigated recently. Parasite carbonic anhydrases are also drug targets for anti-infectives with novel mechanisms of action that can bypass drug resistance to commonly used agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
2
|
Martinković F, Popović M, Smolec O, Mrljak V, Eckersall PD, Horvatić A. Data Independent Acquisition Reveals In-Depth Serum Proteome Changes in Canine Leishmaniosis. Metabolites 2023; 13:metabo13030365. [PMID: 36984805 PMCID: PMC10059658 DOI: 10.3390/metabo13030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Comprehensive profiling of serum proteome provides valuable clues of health status and pathophysiological processes, making it the main strategy in biomarker discovery. However, the high dynamic range significantly decreases the number of detectable proteins, obstructing the insights into the underlying biological processes. To circumvent various serum enrichment methods, obtain high-quality proteome wide information using the next-generation proteomic, and study host response in canine leishmaniosis, we applied data-independent acquisition mass spectrometry (DIA-MS) for deep proteomic profiling of clinical samples. The non-depleted serum samples of healthy and naturally Leishmania-infected dogs were analyzed using the label-free 60-min gradient sequential window acquisition of all theoretical mass spectra (SWATH-MS) method. As a result, we identified 554 proteins, 140 of which differed significantly in abundance. Those were included in lipid metabolism, hematological abnormalities, immune response, and oxidative stress, providing valuable information about the complex molecular basis of the clinical and pathological landscape in canine leishmaniosis. Our results show that DIA-MS is a method of choice for understanding complex pathophysiological processes in serum and serum biomarker development.
Collapse
Affiliation(s)
- Franjo Martinković
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
| | - Marin Popović
- Department of Safety and Protection, Karlovac University of Applied Sciences, Trg Josipa Juraja Strossmayera 9, HR-47000 Karlovac, Croatia
| | - Ozren Smolec
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
| | - Vladimir Mrljak
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
| | - Peter David Eckersall
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, UK
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, University of Murcia, 30100 Murcia, Spain
| | - Anita Horvatić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
3
|
Shi XQ, Yue SJ, Tang YP, Chen YY, Zhou GS, Zhang J, Zhu ZH, Liu P, Duan JA. A network pharmacology approach to investigate the blood enriching mechanism of Danggui buxue Decoction. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:227-242. [PMID: 30703496 DOI: 10.1016/j.jep.2019.01.027] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui buxue Decoction (DBD) has been frequently used to treat with blood deficiency, which consisted of Danggui (DG) and Huangqi (HQ) at a ratio of 1:5. Accumulating evidence showed that blood deficiency in traditional Chinese medicine (TCM) was similar to anemia in modern medicine. AIM OF THE STUDY The purpose of this study was to explore its therapeutic mechanism of with network pharmacology approach. MATERIALS AND METHODS We explored the chemical compounds of DBD and used compound ADME screening to identify the potential compounds. Targets for the therapeutic actions of DBD were obtained from the PharmMapper, Swiss, SEA and STITCH. GO analysis and pathway enrichment analysis was performed using the DAVID webserver. Cytoscape was used to visualize the compound-target-pathway network for DBD. The pharmacodynamics and crucial targets were also validated. RESULTS Thirty-six potential active components in DBD and 49 targets which the active components acted on were identified. 47 KEGG pathways which DBD acted on were also come to light. And then, according to KEGG pathway annotation analysis, only 16 pathways seemed to be related to the blood nourishing effect of DBD, such as PI3K-AKT pathway, and so on. Only 32 targets participated in these 16 pathways and they were acted on by 29 of the 36 active compounds. Whole pharmacodynamic experiments showed that DBD had significant effects to blood loss rats. Furthermore, DBD could promote the up-regulation of hematopoietic and immune related targets and the down-regulation of inflammatory related targets. Significantly, with the results of effective rate, molecular docking and experimental validation, we predicted astragaloside IV in HQ, senkyunolide A and senkyunolide K in DG might be the major contributing compounds to DBD's blood enriching effect. CONCLUSION In this study, a systematical network pharmacology approach was built. Our results provided a basis for the future study of senkyunolide A and senkyunolide K as the blood enriching compounds in DBD. Furthermore, combined network pharmacology with validation experimental results, the nourishing blood effect of DBD might be manifested by the dual mechanism of enhancing immunity and promoting hematopoiesis.
Collapse
Affiliation(s)
- Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Shi-Jun Yue
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China.
| | - Yan-Yan Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Jing Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
4
|
Mentese A, Erkut N, Demir S, Yaman SO, Sumer A, Erdem M, Alver A, Sonmez M. Serum carbonic anhydrase I and II autoantibodies in patients with chronic lymphocytic leukaemia. Cent Eur J Immunol 2018; 43:276-280. [PMID: 30588172 PMCID: PMC6305617 DOI: 10.5114/ceji.2018.80046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/18/2016] [Indexed: 01/09/2023] Open
Abstract
Cancer is the second most important cause of mortality, and millions of people either have or have had the disease. Leukaemia is one of the most common forms of cancer. Autoantibodies that have developed against the organism's self-antigens are detected in the sera of subjects with cancer. In recent years carbonic anhydrase (CA) autoantibodies have been determined in some autoimmune diseases and carcinomas, but the mechanisms underlying this immune response have not yet been fully explained. The purpose of this study was to determine CA I and II autoantibodies in subjects with chronic lymphocytic leukaemia (CLL) and to provide a novel perspective regarding the autoimmune basis of the disease. Autoantibody levels were investigated using enzyme-linked immunosorbent assay (ELISA) in serum samples from 37 patients with CLL and 37 healthy peers. Anti-CA I titres in the CLL group were significantly higher compared with the control group (p = 0.0001). However, there was no significant difference between CLL and control groups in terms of anti-CA II titres (p = 0.278). The prevalences of CA I and II autoantibodies in patients with CLL in this study were 27% and 24.3%, respectively. Our results suggest that these autoantibodies may be involved in the pathogenesis of CLL. More extensive studies are now needed to reveal the entire mechanism.
Collapse
Affiliation(s)
- Ahmet Mentese
- Program of Medical Laboratory Techniques, Vocational School of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Nergiz Erkut
- Department of Haematology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Serap Ozer Yaman
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Aysegul Sumer
- Department of Nursing, School of Health Services, Recep Tayyip Erdog¡an University, Rize, Turkey
| | - Mehmet Erdem
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mehmet Sonmez
- Department of Haematology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
5
|
Menteşe A, Erkut N, Demir S, Özer Yaman S, Sümer A, Doğramacı Ş, Alver A, Sönmez M. Autoantibodies Against Carbonic Anhydrase I and II in Patients with Acute Myeloid Leukemia. Turk J Haematol 2017; 34:307-313. [PMID: 28270370 PMCID: PMC5774362 DOI: 10.4274/tjh.2016.0341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Cancer, one of the principal causes of death, is a global social health problem. Autoantibodies developed against the organism's self-antigens are detected in the sera of subjects with cancer. In recent years carbonic anhydrase (CA) I and II autoantibodies have been shown in some autoimmune diseases and carcinomas, but the mechanisms underlying this immune response have not yet been explained. The aim of this study was to evaluate CA I and II autoantibodies in patients with acute myeloid leukemia (AML) and to provide a novel perspective regarding the autoimmune basis of the disease. MATERIALS AND METHODS Anti-CA I and II antibody levels were investigated using ELISA in serum samples from 30 patients with AML and 30 healthy peers. RESULTS Anti-CA I and II antibody titers in the AML group were significantly higher compared with the control group (p=0.0001 and 0.018, respectively). A strong positive correlation was also determined between titers of anti-CA I and II antibodies (r=0.613, p=0.0001). CONCLUSION Our results suggest that these autoantibodies may be involved in the pathogenesis of AML. More extensive studies are now needed to reveal the entire mechanism.
Collapse
Affiliation(s)
- Ahmet Menteşe
- Karadeniz Technical University Vocational School of Health Sciences, Program of Medical Laboratory Techniques, Trabzon, Turkey
| | - Nergiz Erkut
- Karadeniz Technical University Faculty of Medicine, Department of Hematology, Trabzon, Turkey
| | - Selim Demir
- Karadeniz Technical University Faculty of Health Sciences, Department of Nutrition and Dietetics, Trabzon, Turkey
| | - Serap Özer Yaman
- Karadeniz Technical University Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey
| | - Ayşegül Sümer
- Recep Tayyip Erdoğan University Faculty of Health Services, Department of Nursing, Rize, Turkey
| | - Şeniz Doğramacı
- Karadeniz Technical University Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey
| | - Ahmet Alver
- Karadeniz Technical University Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey.,Recep Tayyip Erdoğan University Faculty of Medicine, Department of Medical Biochemistry, Rize, Turkey
| | - Mehmet Sönmez
- Karadeniz Technical University Faculty of Medicine, Department of Hematology, Trabzon, Turkey
| |
Collapse
|