1
|
Reiners JC, Leopold L, Hallebach V, Sinske D, Meier P, Amoroso M, Langgartner D, Reber SO, Knöll B. Acute stress modulates the outcome of traumatic brain injury-associated gene expression and behavioral responses. FASEB J 2023; 37:e23218. [PMID: 37779443 DOI: 10.1096/fj.202301035r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Psychological stress and traumatic brain injury (TBI) result in long-lasting emotional and behavioral impairments in patients. So far, the interaction of psychological stress with TBI not only in the brain but also in peripheral organs is poorly understood. Herein, the impact of acute stress (AS) occurring immediately before TBI is investigated. For this, a mouse model of restraint stress and TBI was employed, and their influence on behavior and gene expression in brain regions, the hypothalamic-pituitary-adrenal (HPA) axis, and peripheral organs was analyzed. Results demonstrate that, compared to single AS or TBI exposure, mice treated with AS prior to TBI showed sex-specific alterations in body weight, memory function, and locomotion. The induction of immediate early genes (IEGs, e.g., c-Fos) by TBI was modulated by previous AS in several brain regions. Furthermore, IEG upregulation along the HPA axis (e.g., pituitary, adrenal glands) and other peripheral organs (e.g., heart) was modulated by AS-TBI interaction. Proteomics of plasma samples revealed proteins potentially mediating this interaction. Finally, the deletion of Atf3 diminished the TBI-induced induction of IEGs in peripheral organs but left them largely unaltered in the brain. In summary, AS immediately before brain injury affects the brain and, to a strong degree, also responses in peripheral organs.
Collapse
Affiliation(s)
| | - Laura Leopold
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Vera Hallebach
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Daniela Sinske
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Philip Meier
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Mattia Amoroso
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Bernd Knöll
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
2
|
Tsymbalyuk O, Gerzanich V, Simard JM, Rathinam CV. Traumatic brain injury alters dendritic cell differentiation and distribution in lymphoid and non-lymphoid organs. J Neuroinflammation 2022; 19:238. [PMID: 36183126 PMCID: PMC9526328 DOI: 10.1186/s12974-022-02609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Pathophysiological consequences of traumatic brain injury (TBI) mediated secondary injury remain incompletely understood. In particular, the impact of TBI on the differentiation and maintenance of dendritic cells (DCs), which are regarded as the most professional antigen presenting cells of the immune system, remains completely unknown. Here, we report that DC-differentiation, maintenance and functions are altered on day 3 and day 7 after TBI. Methods Long bones, spleen, peripheral lymph nodes (pLNs), mesenteric lymph nodes (mLNs), liver, lungs, skin and blood were collected from mice with either moderate-level cortical impact (CCI) or sham on day 1, day 3 or day 7 after TBI. Bone marrow cells were isolated from the tibias and femurs of hind limb through flushing. Tissues were digested with Collagenase-D and DNase I. Skin biopsies were digested in the presence of liberase + DNase I. Single cell suspensions were made, red blood cells were lysed with Ammonium chloride (Stem Cell Technology) and subsequently filtered using a 70 μM nylon mesh. DC subsets of the tissues and DC progenitors of the BM were identified through 10-color flow cytometry-based immunophenotyping studies. Intracellular reactive oxygen species (ROS) were identified through H2DCFDA staining. Results Our studies identify that; (1) frequencies and absolute numbers of DCs in the spleen and BM are altered on day 3 and day 7 after TBI; (2) surface expression of key molecules involved in antigen presentation of DCs were affected on day 3 and day 7 after TBI; (3) distribution and functions of tissue-specific DC subsets of both circulatory and lymphatic systems were imbalanced following TBI; (4) early differentiation program of DCs, especially the commitment of hematopoietic stem cells to common DC progenitors (CDPs), were deregulated after TBI; and (5) intracellular ROS levels were reduced in DC progenitors and differentiated DCs on day 3 and day 7 after TBI. Conclusions Our data demonstrate, for the first time, that TBI affects the distribution pattern of DCs and induces an imbalance among DC subsets in both lymphoid and non-lymphoid organs. In addition, the current study demonstrates that TBI results in reduced levels of ROS in DCs on day 3 and day 7 after TBI, which may explain altered DC differentiation paradigm following TBI. A deeper understanding on the molecular mechanisms that contribute to DC defects following TBI would be essential and beneficial in treating infections in patients with acute central nervous system (CNS) injuries, such as TBI, stroke and spinal cord injury.
Collapse
Affiliation(s)
- Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, MD, Baltimore, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, MD, Baltimore, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, MD, Baltimore, USA.,Research Service, Veterans Affairs Maryland Health Care System, MD, Baltimore, USA.,Department of Pathology, University of Maryland School of Medicine, MD, Baltimore, USA.,Department of Physiology, University of Maryland School of Medicine, MD, Baltimore, USA
| | - Chozha Vendan Rathinam
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD, 21201, USA. .,Center for Stem Cell and Regenerative Medicine, University of Maryland School of Medicine, MD, 21201, Baltimore, USA.
| |
Collapse
|
3
|
Khalid F, Yang GL, McGuire JL, Robson MJ, Foreman B, Ngwenya LB, Lorenz JN. Autonomic dysfunction following traumatic brain injury: translational insights. Neurosurg Focus 2019; 47:E8. [DOI: 10.3171/2019.8.focus19517] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/12/2019] [Indexed: 11/06/2022]
Abstract
Although there is a substantial amount of research on the neurological consequences of traumatic brain injury (TBI), there is a knowledge gap regarding the relationship between TBI and the pathophysiology of organ system dysfunction and autonomic dysregulation. In particular, the mechanisms or incidences of renal or cardiac complications after TBI are mostly unknown. Autonomic dysfunction following TBI exacerbates secondary injury and may contribute to nonneurologial complications that prolong hospital length of stay. Gaining insights into the mechanisms of autonomic dysfunction can guide advancements in monitoring and treatment paradigms to improve acute survival and long-term prognosis of TBI patients. In this paper, the authors will review the literature on autonomic dysfunction after TBI and possible mechanisms of paroxysmal sympathetic hyperactivity. Specifically, they will discuss the link among the brain, heart, and kidneys and review data to direct future research on and interventions for TBI-induced autonomic dysfunction.
Collapse
Affiliation(s)
- Fatima Khalid
- Departments of 1Pharmacology and Systems Physiology and
| | | | - Jennifer L. McGuire
- 2Neurosurgery, College of Medicine
- 3Collaborative for Research on Acute Neurological Injuries
| | - Matthew J. Robson
- 3Collaborative for Research on Acute Neurological Injuries
- 4Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy; and
| | - Brandon Foreman
- 2Neurosurgery, College of Medicine
- 3Collaborative for Research on Acute Neurological Injuries
- 5Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Ohio
| | - Laura B. Ngwenya
- 2Neurosurgery, College of Medicine
- 3Collaborative for Research on Acute Neurological Injuries
- 5Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Ohio
| | | |
Collapse
|
4
|
de Castro MRT, Ferreira APDO, Busanello GL, da Silva LRH, da Silveira Junior MEP, Fiorin FDS, Arrifano G, Crespo-López ME, Barcelos RP, Cuevas MJ, Bresciani G, González-Gallego J, Fighera MR, Royes LFF. Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats. J Physiol 2017; 595:6023-6044. [PMID: 28726269 DOI: 10.1113/jp273933] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS An early inflammatory response and oxidative stress are implicated in the signal transduction that alters both hepatic redox status and mitochondrial function after traumatic brain injury (TBI). Peripheral oxidative/inflammatory responses contribute to neuronal dysfunction after TBI Exercise training alters the profile of oxidative-inflammatory status in liver and protects against acute hyperglycaemia and a cerebral inflammatory response after TBI. Approaches such as exercise training, which attenuates neuronal damage after TBI, may have therapeutic potential through modulation of responses by metabolic organs. The vulnerability of the body to oxidative/inflammatory in TBI is significantly enhanced in sedentary compared to physically active counterparts. ABSTRACT Although systemic responses have been described after traumatic brain injury (TBI), little is known regarding potential interactions between brain and peripheral organs after neuronal injury. Accordingly, we aimed to investigate whether a peripheral oxidative/inflammatory response contributes to neuronal dysfunction after TBI, as well as the prophylactic role of exercise training. Animals were submitted to fluid percussion injury after 6 weeks of swimming training. Previous exercise training increased mRNA expression of X receptor alpha and ATP-binding cassette transporter, and decreased inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α and interleukin (IL)-6 expression per se in liver. Interestingly, exercise training protected against hepatic inflammation (COX-2, iNOS, TNF-α and IL-6), oxidative stress (decreases in non-protein sulfhydryl and glutathione, as well as increases in 2',7'-dichlorofluorescein diacetate oxidation and protein carbonyl), which altered hepatic redox status (increases in myeloperoxidase and superoxide dismutase activity, as well as inhibition of catalase activity) mitochondrial function (decreases in methyl-tetrazolium and Δψ, as well as inhibition of citrate synthase activity) and ion gradient homeostasis (inhibition of Na+ ,K+ -ATPase activity inhibition) when analysed 24 h after TBI. Previous exercise training also protected against dysglycaemia, impaired hepatic signalling (increase in phosphorylated c-Jun NH2-terminal kinase, phosphorylated decreases in insulin receptor substrate and phosphorylated AKT expression), high levels of circulating and neuronal cytokines, the opening of the blood-brain barrier, neutrophil infiltration and Na+ ,K+ -ATPase activity inhibition in the ipsilateral cortex after TBI. Moreover, the impairment of protein function, neurobehavioural (neuromotor dysfunction and spatial learning) disability and hippocampal cell damage in sedentary rats suggests that exercise training also modulates peripheral oxidative/inflammatory pathways in TBI, which corroborates the ever increasing evidence regarding health-related outcomes with respect to a physically active lifestyle.
Collapse
Affiliation(s)
- Mauro Robson Torres de Castro
- Programa de Pós-graduação em Educação Física.,Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício
| | | | - Guilherme Lago Busanello
- Programa de Pós-graduação em Educação Física.,Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício
| | | | | | - Fernando da Silva Fiorin
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Gabriela Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Maria Elena Crespo-López
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Rômulo Pillon Barcelos
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - María J Cuevas
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, León, Spain
| | - Guilherme Bresciani
- Escuela de Educación Física, Pontificia Universidad Católica de Valparaiso (PUCV), Valparaiso, Chile
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, León, Spain
| | - Michele Rechia Fighera
- Programa de Pós-graduação em Educação Física.,Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício.,Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Luiz Fernando Freire Royes
- Programa de Pós-graduação em Educação Física.,Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício.,Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
5
|
Hu PJ, Pittet JF, Kerby JD, Bosarge PL, Wagener BM. Acute brain trauma, lung injury, and pneumonia: more than just altered mental status and decreased airway protection. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1-L15. [PMID: 28408366 DOI: 10.1152/ajplung.00485.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/24/2017] [Accepted: 04/07/2017] [Indexed: 01/25/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Even when patients survive the initial insult, there is significant morbidity and mortality secondary to subsequent pulmonary edema, acute lung injury (ALI), and nosocomial pneumonia. Whereas the relationship between TBI and secondary pulmonary complications is recognized, little is known about the mechanistic interplay of the two phenomena. Changes in mental status secondary to acute brain injury certainly impair airway- and lung-protective mechanisms. However, clinical and translational evidence suggests that more specific neuronal and cellular mechanisms contribute to impaired systemic and lung immunity that increases the risk of TBI-mediated lung injury and infection. To better understand the cellular mechanisms of that immune impairment, we review here the current clinical data that support TBI-induced impairment of systemic and lung immunity. Furthermore, we also review the animal models that attempt to reproduce human TBI. Additionally, we examine the possible role of damage-associated molecular patterns, the chlolinergic anti-inflammatory pathway, and sex dimorphism in post-TBI ALI. In the last part of the review, we discuss current treatments and future pharmacological therapies, including fever control, tracheostomy, and corticosteroids, aimed to prevent and treat pulmonary edema, ALI, and nosocomial pneumonia after TBI.
Collapse
Affiliation(s)
- Parker J Hu
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jean-Francois Pittet
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey D Kerby
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Patrick L Bosarge
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
6
|
Mrozek S, Luzi A, Gonzalez L, Kerhuel L, Fourcade O, Geeraerts T. Cerebral and extracerebral vulnerability to hypoxic insults after diffuse traumatic brain injury in rats. Brain Res 2016; 1646:334-341. [PMID: 27302136 DOI: 10.1016/j.brainres.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 11/30/2022]
Abstract
The post-traumatic brain vulnerability suggests that after traumatic brain injury (TBI), the brain may be more susceptible to posttraumatic hypoxic insults. This concept could be extended to 'peripheral' organs, as non-neurologic organ failure is common after TBI. This study aims to characterize and quantify cerebral and extracerebral tissue hypoxia with pimonidazole resulting from a standardized hypoxia-hypotension (HH) phase occurring after a diffuse experimental TBI in rats. Rats were allocated to Sham (n=5), TBI (n=7), HH (n=7) and TBI+HH (n=7) groups. Then, pimonidazole was injected and brain, liver, heart and kidneys were analysed. In the cerebral cortex, post-treatment hypoxia was higher in TBI+HH group than Sham group (p=0.003), HH group (p=0.003) and TBI group (p=0.002). Large trends in thalamus, hippocampus and striatum for the TBI+HH group compared to the other groups were observed. For the heart and liver, the 4 groups were comparable. For the kidneys, post-treatment hypoxia was higher in the TBI group compared to the Sham and HH groups, but not more than TBI+HH group. This study reveals that a posttraumatic hypoxic insult occurring after a severe TBI has major hypoxic consequences on brain structures. However, TBI by itself appears to induce renal hypoxia that is not enhanced by posttraumatic hypoxic insult.
Collapse
Affiliation(s)
- Ségolène Mrozek
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Aymeric Luzi
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Leslie Gonzalez
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Lionel Kerhuel
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Olivier Fourcade
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Thomas Geeraerts
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| |
Collapse
|
7
|
Das M, Mohapatra S, Mohapatra SS. New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammation 2012; 9:236. [PMID: 23061919 PMCID: PMC3526406 DOI: 10.1186/1742-2094-9-236] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/04/2012] [Indexed: 01/14/2023] Open
Abstract
Traumatic injury to the brain (TBI) results in a complex set of responses involving various symptoms and long-term consequences. TBI of any form can cause cognitive, behavioral and immunologic changes in later life, which underscores the problem of underdiagnosis of mild TBI that can cause long-term neurological deficits. TBI disrupts the blood–brain barrier (BBB) leading to infiltration of immune cells into the brain and subsequent inflammation and neurodegeneration. TBI-induced peripheral immune responses can also result in multiorgan damage. Despite worldwide research efforts, the methods of diagnosis, monitoring and treatment for TBI are still relatively ineffective. In this review, we delve into the mechanism of how TBI-induced central and peripheral immune responses affect the disease outcome and discuss recent developments in the continuing effort to combat the consequences of TBI and new ways to enhance repair of the damaged brain.
Collapse
Affiliation(s)
- Mahasweta Das
- Nanomedicine Research Center, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | | | | |
Collapse
|
8
|
Ziaja M, Pyka J, Boczkus B, Plonka BK, Plonka PM. Changes in the nitric oxide level in the rat liver as a response to brain injury. Nitric Oxide 2011; 25:423-30. [DOI: 10.1016/j.niox.2011.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/28/2011] [Accepted: 07/23/2011] [Indexed: 12/21/2022]
|
9
|
Abstract
Traumatic brain injury (TBI) is seen by the insurance industry and many health care providers as an "event." Once treated and provided with a brief period of rehabilitation, the perception exists that patients with a TBI require little further treatment and face no lasting effects on the central nervous system or other organ systems. In fact, TBI is a chronic disease process, one that fits the World Health Organization definition as having one or more of the following characteristics: it is permanent, caused by non-reversible pathological alterations, requires special training of the patient for rehabilitation, and/or may require a long period of observation, supervision, or care. TBI increases long-term mortality and reduces life expectancy. It is associated with increased incidences of seizures, sleep disorders, neurodegenerative diseases, neuroendocrine dysregulation, and psychiatric diseases, as well as non-neurological disorders such as sexual dysfunction, bladder and bowel incontinence, and systemic metabolic dysregulation that may arise and/or persist for months to years post-injury. The purpose of this article is to encourage the classification of TBI as the beginning of an ongoing, perhaps lifelong process, that impacts multiple organ systems and may be disease causative and accelerative. Our intent is not to discourage patients with TBI or their families and caregivers, but rather to emphasize that TBI should be managed as a chronic disease and defined as such by health care and insurance providers. Furthermore, if the chronic nature of TBI is recognized by government and private funding agencies, research can be directed at discovering therapies that may interrupt the disease processes months or even years after the initiating event.
Collapse
Affiliation(s)
- Brent E Masel
- Department of Neurology, Transitional Learning Center at Galveston, The Moody Center for Traumatic Brain & Spinal Cord Injury Research/Mission Connect, The University of Texas Medical Branch, Galveston, Texas 77550, USA.
| | | |
Collapse
|
10
|
Mirzayan MJ, Probst C, Samii M, Krettek C, Gharabaghi A, Pape HC, van Griensven M, Samii A. Histopathological features of the brain, liver, kidney and spleen following an innovative polytrauma model of the mouse. ACTA ACUST UNITED AC 2010; 64:133-9. [PMID: 20688496 DOI: 10.1016/j.etp.2010.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
Abstract
OBJECT Among the various introduced experimental traumatic brain injury models, there is a clear paucity of proper experimental polytrauma models. To overcome this experimental gap we introduced such a polytrauma model in the mouse including traumatic brain injury. Here, we report on the histopathological features of the brain, lung, kidney, spleen and liver. MATERIALS AND METHODS 20 male C57BL mice with a mean weight of 23 g were anesthetized with ketamine and xylazine. The anaesthetized animals were subjected to a controlled cortical impact (CCI) over the left parieto-temporal cortex using rounded-tip impounder for application of a standardized brain injury. Following fracture of the right femur using a guillotine, a volume-controlled hemorrhagic shock was induced. The control groups included animals with CCI only (n=20) and animals with femur fracture plus hemorrhagic shock without CCI (n=20). Subjects were sacrified at 96 h following trauma. Brain, lung, kidney, spleen and liver of the animals underwent histopathological examinations. RESULTS The mortality rate at 96 h was 25% in the polytrauma group versus 10% in the control groups. Within the histopathological investigations, polytraumatized animals differ from those with a single trauma (traumatic brain injury or femur fracture with hemorrhagic shock) with various severity. CONCLUSION The findings of this study show that such a polytrauma model can be standardized resulting in a reproducible damage. This model fulfills the requirements of a standardized animal model. It allows adequate analogies and inferences to the clinical situation of a polytrauma in humans.
Collapse
Affiliation(s)
- M J Mirzayan
- Department of Neurosurgery, Medical School Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|