1
|
Lithium Preparations in Psychiatry, Addiction Medicine and Neurology. Part II. Biochemical Mechanisms of Its Action. ACTA BIOMEDICA SCIENTIFICA 2019. [DOI: 10.29413/abs.2019-4.2.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lithium is the first and the lightest in the series of alkali metals, to which, in addition to lithium, two very biologically important elements – sodium and potassium, as well as trace elements rubidium and cesium, belong. Despite its formal affiliation to the group of alkali metals, lithium, like many other chemical elements of the «atypical» second period of the periodic table (for example, boron), is more similar in its chemical properties not to its counterparts in the group, but to its «diagonal brother» – magnesium. As we will show in this article, the diagonal chemical similarity between lithium and magnesium is of great importance for understanding the mechanisms of its intracellular biochemical action. At the same time, the intragroup chemical similarity of lithium with sodium and potassium is more important for understanding the mechanisms of its absorption, its distribution in the body and its excretion. Despite the 70 years that have passed since John Cade’s discovery of the antimanic effect of lithium, the mechanisms of its therapeutic action are still not completely understood. In the end, it turns out that the mechanism of the therapeutic action of lithium is extremely complex, multicomponent, unique and not imitable. Certain aspects of the mechanism of its action may be compatible with the mechanisms of action of other mood stabilizers, or with the mechanisms of action of so-called «lithium-mimetics», such as ebselen. However, no other drug to date failed to fully reproduce the biochemical effect of lithium on the body.
Collapse
|
2
|
Chaves C, Remiao F, Cisternino S, Decleves X. Opioids and the Blood-Brain Barrier: A Dynamic Interaction with Consequences on Drug Disposition in Brain. Curr Neuropharmacol 2018; 15:1156-1173. [PMID: 28474563 PMCID: PMC5725546 DOI: 10.2174/1570159x15666170504095823] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/04/2017] [Accepted: 04/25/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Opioids are widely used in pain management, acting via opioid receptors and/or Toll-like receptors (TLR) present at the central nervous system (CNS). At the blood-brain barrier (BBB), several influx and efflux transporters, such as the ATP-binding cassette (ABC) P-glycoprotein (P-gp, ABCB1), Breast Cancer Resistance Protein (BCRP, ABCG2) and multidrug resistance-associated proteins (MRP, ABCC) transporters, and solute carrier transporters (SLC), are responsible for the transport of xenobiotics from the brain into the bloodstream or vice versa. Objective: ABC transporters export several clinically employed opioids, altering their neuro- pharmacokinetics and CNS effects. In this review, we explore the interactions between opioids and ABC transporters, and decipher the molecular mechanisms by which opioids can modify their expression at the BBB. Results: P-gp is largely implicated in the brain-to-blood efflux of opioids, namely morphine and oxycodone. Long-term ex-posure to morphine and oxycodone has proven to up-regulate the expression of ABC transporters, such as P-gp, BCRP and MRPs, at the BBB, which may lead to increased tolerance to the antinociceptive effects of such drugs. Recent studies uncov-er two mechanisms by which morphine may up-regulate P-gp and BCRP at the BBB: 1) via a glutamate, NMDA-receptor and COX-2 signaling cascade, and 2) via TLR4 activation, subsequent development of neuro- inflammation, and activation of NF-κB, presumably via glial cells. Conclusion: The BBB-opioid interaction can culminate in bilateral consequences, since ABC transporters condition the brain disposition of opioids, while opioids also affect the expression of ABC transporters at the BBB, which may result in increased CNS drug pharmacoresistance.
Collapse
Affiliation(s)
- Catarina Chaves
- Variabilite de Reponse Aux Psychotropes, INSERM, U1144, 75006 Paris, France.,Universite Paris Descartes, UMR-S 1144, Paris, F-75006, France.,Universite Paris Diderot, UMR-S 1144, Paris, F-75013, France.,REQUIMTE, Laboratorio de Toxicologia, Departamento de Ciencias Biologicas, Faculdade de Farmacia, Universidade do Porto, Porto, Portugal
| | - Fernando Remiao
- REQUIMTE, Laboratorio de Toxicologia, Departamento de Ciencias Biologicas, Faculdade de Farmacia, Universidade do Porto, Porto, Portugal
| | - Salvatore Cisternino
- Variabilite de Reponse Aux Psychotropes, INSERM, U1144, 75006 Paris, France.,Universite Paris Descartes, UMR-S 1144, Paris, F-75006, France.,Universite Paris Diderot, UMR-S 1144, Paris, F-75013, France.,Assistance Publique Hopitaux de Paris, AP-HP, Paris, France
| | - Xavier Decleves
- Variabilite de Reponse Aux Psychotropes, INSERM, U1144, 75006 Paris, France.,Universite Paris Descartes, UMR-S 1144, Paris, F-75006, France.,Universite Paris Diderot, UMR-S 1144, Paris, F-75013, France.,Assistance Publique Hopitaux de Paris, AP-HP, Paris, France
| |
Collapse
|
3
|
Luna-Munguia H, Salvamoser JD, Pascher B, Pieper T, Getzinger T, Kudernatsch M, Kluger G, Potschka H. Glutamate-mediated upregulation of the multidrug resistance protein 2 in porcine and human brain capillaries. J Pharmacol Exp Ther 2015; 352:368-78. [PMID: 25503388 DOI: 10.1124/jpet.114.218180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
As a member of the multidrug-resistance associated protein (MRP) family, MRP2 affects the brain entry of different endogenous and exogenous compounds. Considering the role of this transporter at the blood-brain barrier, the regulation is of particular interest. However, there is limited knowledge regarding the factors that regulate MRP2 in neurologic disease states. Thus, we addressed the hypothesis that MRP2 might be affected by a glutamate-induced signaling pathway that we previously identified as one key mechanism in the regulation of P-glycoprotein. Studies in isolated porcine brain capillaries confirmed that glutamate and N-methyl-d-aspartic acid (NMDA) exposure upregulates expression and function of MPR2. The involvement of the NMDA receptor was further suggested by the fact that the NMDA receptor antagonist MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine], as well as the NMDA receptor glycine binding site antagonist L-701,324 [7-chloro-4-hydroxy-3-(3-phenoxy)phenyl-2(1H)-quinolinone], prevented the impact of glutamate. A role of cyclooxygenase-2 was indicated by coincubation with the cyclooxygenase-2 inhibitor celecoxib and the cyclooxygenase-1/-2 inhibitor indomethacin, which both efficaciously abolished a glutamate-induced upregulation of MRP2. Translational studies in human capillaries from surgical specimen demonstrated a relevant MRP2 efflux function and indicated an effect of glutamate exposure as well as its prevention by cyclooxygenase-2 inhibition. Taken together the findings provide first evidence for a role of a glutamate-induced NMDA receptor/cyclooxygenase-2 signaling pathway in the regulation of MRP2 expression and function. The response to excessive glutamate concentrations might contribute to overexpression of MRP2, which has been reported in neurologic diseases including epilepsy. The overexpression might have implications for brain access of various compounds including therapeutic drugs.
Collapse
Affiliation(s)
- Hiram Luna-Munguia
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Josephine D Salvamoser
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Bettina Pascher
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Tom Pieper
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Thekla Getzinger
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Manfred Kudernatsch
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Gerhard Kluger
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| |
Collapse
|