1
|
Ortiz R, Perazzoli G, Cabeza L, Jiménez-Luna C, Luque R, Prados J, Melguizo C. Temozolomide: An Updated Overview of Resistance Mechanisms, Nanotechnology Advances and Clinical Applications. Curr Neuropharmacol 2021; 19:513-537. [PMID: 32589560 PMCID: PMC8206461 DOI: 10.2174/1570159x18666200626204005] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/22/2022] Open
Abstract
Temozolomide (TMZ), an oral alkylating prodrug which delivers a methyl group to purine bases of DNA (O6-guanine; N7-guanine and N3-adenine), is frequently used together with radiotherapy as part of the first-line treatment of high-grade gliomas. The main advantages are its high oral bioavailability (almost 100% although the concentration found in the cerebrospinal fluid was approximately 20% of the plasma concentration of TMZ), its lipophilic properties, and small size that confer the ability to cross the blood-brain barrier. Furthermore, this agent has demonstrated activity not only in brain tumors but also in a variety of solid tumors. However, conventional therapy using surgery, radiation, and TMZ in glioblastoma results in a median patient survival of 14.6 months. Treatment failure has been associated with tumor drug resistance. This phenomenon has been linked to the expression of O6-methylguanine-DNA methyltransferase, but the mismatch repair system and the presence of cancer stem-like cells in tumors have also been related to TMZ resistance. The understanding of these mechanisms is essential for the development of new therapeutic strategies in the clinical use of TMZ, including the use of nanomaterial delivery systems and the association with other chemotherapy agents. The aim of this review is to summarize the resistance mechanisms of TMZ and the current advances to improve its clinical use.
Collapse
Affiliation(s)
- Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| | | | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| | - Cristina Jiménez-Luna
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges 1066, Switzerland
| | - Raquel Luque
- Medical Oncology Service, Virgen de las Nieves Hospital, Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| |
Collapse
|
2
|
Qiu X, Tan G, Wen H, Lian L, Xiao S. Forkhead box O1 targeting replication factor C subunit 2 expression promotes glioma temozolomide resistance and survival. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:692. [PMID: 33987390 PMCID: PMC8105996 DOI: 10.21037/atm-21-1523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Additional mechanisms of temozolomide (TMZ) resistance in gliomas remain uncertain. The aim of this study was to identify another DNA repair mechanism involving forkhead box O1 (FoxO1) and replicator C2 (RFC2) in gliomas. Methods We established glioma cells against TMZ, U87R, by exposure to TMZ. Proliferation rate Cell counting kit-8 (CCK8) was used, and epithelial-mesenchymal transition (EMT)-related markers were detected by western blot. The association between FoxO1 and RFC2 was analyzed by heat maps and scatter plot, and Real-time reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to detect the effect of FoxO1 on the expression of RFC2. The regulation effect of FoxO1 on RFC2 expression was analyzed by luciferase reporter gene assay. Knockdown of FoxO1/RFC2 was achieved via short hairpin RNA (shRNA), the effect of knockdown on the proliferation was determined by CCK8 assay and colony formation assay, and apoptosis was examined by flow cytometry and immunoblotting. Results The TMZ-resistant glioma cell line, U87R, was established. The FoxO1 and RFC2 proteins increased significantly in U87R. The expression of FoxO1 and RFC2 were positively related in glioma tissues. We found that FoxO1 contributes to TMZ resistance and cell survival via regulating the expression of RFC2. Moreover, FoxO1 functions as a transcriptional activator to RFC2 by binding to the promoter of RFC2. Furthermore, knockdown of FoxO1/RFC2 suppressed cell proliferation, TMZ resistance, and induced apoptosis in U87R. Conclusions The FoxO1/RFC2 signaling pathway promotes glioma cell proliferation and TMZ resistance, suggesting that the FoxO1/RFC2 pathway may be a potential target for TMZ-resistant glioma therapy.
Collapse
Affiliation(s)
- Xingsheng Qiu
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guifeng Tan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Wen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lian Lian
- Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Lee HH, Lin CH, Lin HY, Kuei CH, Zheng JQ, Wang YH, Lu LS, Lee FP, Hu CJ, Wu D, Lin YF. Histone 2A Family Member J Drives Mesenchymal Transition and Temozolomide Resistance in Glioblastoma Multiforme. Cancers (Basel) 2019; 12:cancers12010098. [PMID: 31906036 PMCID: PMC7016639 DOI: 10.3390/cancers12010098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor and has a poor prognosis and is poorly sensitive to radiotherapy or temozolomide (TMZ) chemotherapy. Therefore, identifying new biomarkers to predict therapeutic responses of GBM is urgently needed. By using The Cancer Genome Atlas (TCGA) database, we found that the upregulation of histone 2A family member J (H2AFJ), but not other H2AFs, is extensively detected in the therapeutic-insensitive mesenchymal, IDH wildtype, MGMT unmethylated, or non-G-CIMP GBM and is associated with poor TMZ responsiveness independent of radiation. Similar views were also found in GBM cell lines. Whereas H2AFJ knockdown diminished TMZ resistance, H2AFJ overexpression promoted TMZ resistance in a panel of GBM cell lines. Gene set enrichment analysis (GSEA) revealed that H2AFJ upregulation accompanied by the activation of TNF-α/NF-κB and IL-6/STAT3-related pathways is highly predicted. Luciferase-based promoter activity assay further validated that the activities of NF-κB and STAT3 are causally affected by H2AFJ expression in GBM cells. Moreover, we found that therapeutic targeting HADC3 by tacedinaline or NF-κB by ML029 is likely able to overcome the TMZ resistance in GBM cells with H2AFJ upregulation. Significantly, the GBM cohorts harboring a high-level H2AFJ transcript combined with high-level expression of TNF-α/NF-κB geneset, IL-6/STAT3 geneset or HADC3 were associated with a shorter time to tumor repopulation after initial treatment with TMZ. These findings not only provide H2AFJ as a biomarker to predict TMZ therapeutic effectiveness but also suggest a new strategy to combat TMZ-insensitive GBM by targeting the interaction network constructed by TNF-α/NF-κB, IL-6/STAT3, HDAC3, and H2AFJ.
Collapse
Affiliation(s)
- Hsun-Hua Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-H.L.); (H.-Y.L.); (C.-H.K.); (J.-Q.Z.); (Y.-H.W.); (C.-J.H.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Dizziness and Balance Disorder Center, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Che-Hsuan Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Hui-Yu Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-H.L.); (H.-Y.L.); (C.-H.K.); (J.-Q.Z.); (Y.-H.W.); (C.-J.H.)
- Breast Center, Department of General Surgery, Cardinal Tien Hospital, Xindian District, New Taipei City 231, Taiwan
| | - Chia-Hao Kuei
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-H.L.); (H.-Y.L.); (C.-H.K.); (J.-Q.Z.); (Y.-H.W.); (C.-J.H.)
- Urology, Division of Surgery, Cardinal Tien Hospital, Xindian District, New Taipei City 231, Taiwan
| | - Jing-Quan Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-H.L.); (H.-Y.L.); (C.-H.K.); (J.-Q.Z.); (Y.-H.W.); (C.-J.H.)
- Department of Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-H.L.); (H.-Y.L.); (C.-H.K.); (J.-Q.Z.); (Y.-H.W.); (C.-J.H.)
- Department of Medical Research, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Long-Sheng Lu
- Department of Radiation Oncology, TMU Hospital, Taipei Medical University, Taipei 11031, Taiwan;
| | - Fei-Peng Lee
- Department of Otolaryngology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chaur-Jong Hu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-H.L.); (H.-Y.L.); (C.-H.K.); (J.-Q.Z.); (Y.-H.W.); (C.-J.H.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Dean Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-H.L.); (H.-Y.L.); (C.-H.K.); (J.-Q.Z.); (Y.-H.W.); (C.-J.H.)
- Dizziness and Balance Disorder Center, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 23561, Taiwan
- Sleep Center, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: (D.W.); (Y.-F.L.); Tel.: +886-2-22490088 (ext. 8112) (D.W.); +886-2-2736-1661 (ext. 3106) (Y.-F.L.); Fax: +886-2-22490088 (D.W.); +886-2-2739-0500 (Y.-F.L.)
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-H.L.); (H.-Y.L.); (C.-H.K.); (J.-Q.Z.); (Y.-H.W.); (C.-J.H.)
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Correspondence: (D.W.); (Y.-F.L.); Tel.: +886-2-22490088 (ext. 8112) (D.W.); +886-2-2736-1661 (ext. 3106) (Y.-F.L.); Fax: +886-2-22490088 (D.W.); +886-2-2739-0500 (Y.-F.L.)
| |
Collapse
|
4
|
Shi F, Zhang J, Liu H, Wu L, Jiang H, Wu Q, Liu T, Lou M, Wu H. The dual PI3K/mTOR inhibitor dactolisib elicits anti-tumor activity in vitro and in vivo. Oncotarget 2018; 9:706-717. [PMID: 29416647 PMCID: PMC5787502 DOI: 10.18632/oncotarget.23091] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/01/2017] [Indexed: 11/25/2022] Open
Abstract
Glioblastomas (GBMs) are among the most malignant of all human tumors and have poor prognosis. The current standard of care (SOC) includes maximal surgical tumor resection followed by adjuvant temozolomide (TMZ) and concomitant radiotherapy (RT). However, even with this treatment, the 5-year survival rate is less than 10%, and thus, follow-up treatment is required to improve efficacy. In GBMs as well as many other solid cancers, PI3K/mTOR signaling is overactivated. Therefore, multiple tumor-based PI3K inhibitors have been studied in various cancers. In the current study, we investigated the effect of the dual PI3K/mTOR inhibitor dactolisib on TMZ+RT treatment in three human GBM cell lines and a orthotopic xenograft model. Dactolisib alone induced cytotoxicity and pro-apoptotic effects, which act as antitumor factors. Combined with SOC treatment, dactolisib inhibited cell viability, induced enhanced pro-apoptotic effect, and attenuated migration/invasion in all three cell lines, thereby enhancing the SOC therapeutic effect. Protein microarray analysis showed that A172 cells treated with TMZ+RT+dactolisib had higher p27 and lower Bcl-2 expression than other groups. Moreover, in the xenograft model, oral dactolisib combined with TMZ+RT inhibited tumor growth and prolonged survival. Thus, SOC combined with dactolisib shows potent anti-tumor activity and has promising potential for solid tumor treatment.
Collapse
Affiliation(s)
- Fei Shi
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Jinying Zhang
- Institute of Basic Medicine Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongyu Liu
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Liangliang Wu
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongyu Jiang
- Department of Anesthesiology, Wuxi Third People’s Hospital, Wuxi, Jiangsu 214000, China
| | - Qiyan Wu
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Tianyi Liu
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
5
|
Bergamin LS, Figueiró F, Dietrich F, Manica FDM, Filippi-Chiela EC, Mendes FB, Jandrey EHF, Lopes DV, Oliveira FH, Nascimento IC, Ulrich H, Battastini AMO. Interference of ursolic acid treatment with glioma growth: An in vitro and in vivo study. Eur J Pharmacol 2017; 811:268-275. [PMID: 28663034 DOI: 10.1016/j.ejphar.2017.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme is the most devastating tumor in the brain. Ursolic acid (UA) is found in a variety of plants, and exhibits several pharmacological activities. In this study, we investigated the effects of UA in vitro, clarifying the mechanisms that mediate its toxicity and the long-lasting actions of UA in C6 glioma cells. We also evaluated the antitumor activity of UA in an in vivo orthotopic glioma model. Cell numbers were assessed using the Trypan blue exclusion test, and the cell cycle was characterized by flow cytometry using propidium iodide staining. Apoptosis was analyzed using an Annexin V kit and by examining caspase-3. Akt immunocontent was verified by Western blot and the long-lasting actions of UA were measured by cumulative population doubling (CPD). In vivo experiments were performed in rats to measure the effects on tumor size, malignant features and toxicological parameters. In vitro results showed that UA decreased glioma cell numbers, increased the sub-G1 fraction and induced apoptotic death, accompanied by increased active caspase-3 protein levels. Akt phosphorylation/activation in cells was also diminished by UA. With regard to CPD, cell proliferation was almost completely restored upon single UA treatments, but when the UA was added again, the majority of cells died, demonstrating the importance of re-treatment cycles with chemotherapeutic agents for abolishing tumor growth. In vivo, ursolic acid slightly reduced glioma tumor size but did not decrease malignant features. Ursolic acid may be a potential candidate as an adjuvant for glioblastoma therapy.
Collapse
Affiliation(s)
- Letícia Scussel Bergamin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Fabrícia Dietrich
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Fabiana de Mattos Manica
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Eduardo C Filippi-Chiela
- Programa de Pós-Graduação em Gastroenterologia e Hepatologia, Faculdade de Medicina, UFRGS, Porto Alegre, RS, Brazil
| | - Franciane Brackman Mendes
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | | | | | - Francine H Oliveira
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, RS, Brazil
| | - Isis C Nascimento
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Tang JH, Huang GH, Mou KJ, Zhang EE, Li N, Du L, Zhu XP, Chen L, Yang H, Zhang KB, Lv SQ. Pyrrolidine dithiocarbamate sensitizes U251 brain glioma cells to temozolomide via downregulation of MGMT and BCL-XL. Oncol Lett 2017; 14:5135-5144. [PMID: 29098021 PMCID: PMC5652242 DOI: 10.3892/ol.2017.6849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 12/16/2016] [Indexed: 12/18/2022] Open
Abstract
The current study investigated the effect of pyrrolidine dithiocarbamate (PDTC) on the proliferation, apoptosis, cell cycle and sensitivity to temozolomide (TMZ) of the U251 glioma cell line. Proliferation, apoptosis and cell cycle analysis of U251 cells following treatment with PDTC and TMZ was determined by an MTT assay and flow cytometry, respectively. The mRNA and protein expression levels of O-6-methylguanine-DNA methyltransferase (MGMT), B-cell lymphoma extra-large (BCL-XL) and survivin were further determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting analysis. The results revealed that treatment with TMZ, PDTC and TMZ + PDTC significantly inhibited cell proliferation, induced apoptosis and contributed to cell cycle arrest in U251 cells. A combination of PDTC and TMZ induced the highest rates of proliferation inhibition and apoptosis. PDTC treatment markedly reduced the expression levels of MGMT, BCL-XL and survivin. The expression levels of MGMT and BCL-XL, were significantly upregulated by TMZ but not by combination treatment of TMZ and PDTC. The results of the present study suggest that treatment with PDTC inhibits cell proliferation, induces apoptosis and cell cycle arrest, and enhances sensitivity to TMZ in U251 cells, which is partly induced by downregulation of MGMT and BCL-XL.
Collapse
Affiliation(s)
- Jun-Hai Tang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Guo-Hao Huang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Ke-Jie Mou
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing 102206, P.R. China
| | - Ningning Li
- Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Lei Du
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xiao-Peng Zhu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Ling Chen
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Ke-Bin Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
7
|
Cheng J, Ye F, Dan G, Zhao Y, Zhao J, Zou Z. Formation and degradation of nitrogen mustard-induced MGMT-DNA crosslinking in 16HBE cells. Toxicology 2017; 389:67-73. [PMID: 28720507 DOI: 10.1016/j.tox.2017.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/30/2017] [Accepted: 07/12/2017] [Indexed: 11/29/2022]
Abstract
N-methyl-2,2-di(chloroethyl)amine (HN2) is a kind of bifunctional alkyltating agent, which can react with nucleophilic groups in DNA and/or protein to form HN2-bridged crosslinking of target molecules, such as DNA-protein crosslinkings (DPC). O6-methylguanine-DNA methyltransferase (MGMT) is a DNA damage repair enzyme which solely repairs alkyl adduct on DNA directly. However, MGMT was detected to act as a protein cross-linked with DNA via alkylation in presence of HN2, and unexpectedly turned into a DNA damage enhancer in the form of MGMT-DNA cross-link (mDPC). Present study aimed to explore the possible ways to lessen the incorporation of MGMT into DPC as well as to save it for DNA repair. To find out the influencing factors of mDPC formation and cleavage, human bronchial epithelial cell line 16HBE was exposed to HN2 and the factors related with MGMT expression and degradation were investigated. When c-Myc, a negative transcriptional factor of MGMT was inhibited by 10058-F4, MGMT expression and mDPC formation were increased, and more γ-H2AX was also detected. Sustained treatment with O6BG, a specific exogenous substrate and depleter of MGMT, could reduce the level of MGMT and mDPC formation. In contrast, a transient 1h pre-treatment of O6GB before HN2 exposure would cause a high MGMT and mDPC level. MGMT was increasingly ubiquitinated after HN2 exposure in a time-dependent manner. At the same time, MGMT was also SUMOylated with a downward time-dependent manner compared to its ubiquitination. Inhibitors of E1, E2 or E3 ligases of ubiqutination all led to the accumulation of mDPC and total-DPC (tDPC) with the difference as that mDPC was sensitive to E1 inhibitor while tDPC more sensitive to E2 and E3 inhibitor. Our results demonstrated the control of mDPC level could be realized through transcription inhibitory effect of c-Myc, O6GB application, and the acceleration of mDPC ubiquitination and subsequent degradation.
Collapse
Affiliation(s)
- Jin Cheng
- Institute of Toxicology, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Feng Ye
- Institute of Toxicology, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Guorong Dan
- Institute of Toxicology, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Yuanpeng Zhao
- Institute of Toxicology, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jiqing Zhao
- Institute of Toxicology, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Zhongmin Zou
- Institute of Toxicology, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China.
| |
Collapse
|
8
|
Kitange GJ, Mladek AC, Schroeder MA, Pokorny JC, Carlson BL, Zhang Y, Nair AA, Lee JH, Yan H, Decker PA, Zhang Z, Sarkaria JN. Retinoblastoma Binding Protein 4 Modulates Temozolomide Sensitivity in Glioblastoma by Regulating DNA Repair Proteins. Cell Rep 2016; 14:2587-98. [PMID: 26972001 DOI: 10.1016/j.celrep.2016.02.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 12/22/2015] [Accepted: 02/04/2016] [Indexed: 01/18/2023] Open
Abstract
Here we provide evidence that RBBP4 modulates temozolomide (TMZ) sensitivity through coordinate regulation of two key DNA repair genes critical for recovery from TMZ-induced DNA damage: methylguanine-DNA-methyltransferase (MGMT) and RAD51. Disruption of RBBP4 enhanced TMZ sensitivity, induced synthetic lethality to PARP inhibition, and increased DNA damage signaling in response to TMZ. Moreover, RBBP4 silencing enhanced TMZ-induced H2AX phosphorylation and apoptosis in GBM cells. Intriguingly, RBBP4 knockdown suppressed the expression of MGMT, RAD51, and other genes in association with decreased promoter H3K9 acetylation (H3K9Ac) and increased H3K9 tri-methylation (H3K9me3). Consistent with these data, RBBP4 interacts with CBP/p300 to form a chromatin-modifying complex that binds within the promoter of MGMT, RAD51, and perhaps other genes. Globally, RBBP4 positively and negatively regulates genes involved in critical cellular functions including tumorigenesis. The RBBP4/CBP/p300 complex may provide an interesting target for developing therapy-sensitizing strategies for GBM and other tumors.
Collapse
Affiliation(s)
- Gaspar J Kitange
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Ann C Mladek
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark A Schroeder
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jenny C Pokorny
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuji Zhang
- Department of Biostatistics and Bioinformatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Asha A Nair
- Department of Biostatistics and Bioinformatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeong-Heon Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Huihuang Yan
- Department of Biostatistics and Bioinformatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Paul A Decker
- Department of Biostatistics and Bioinformatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
D'Alimonte I, Nargi E, Zuccarini M, Lanuti P, Di Iorio P, Giuliani P, Ricci-Vitiani L, Pallini R, Caciagli F, Ciccarelli R. Potentiation of temozolomide antitumor effect by purine receptor ligands able to restrain the in vitro growth of human glioblastoma stem cells. Purinergic Signal 2015; 11:331-46. [PMID: 25976165 DOI: 10.1007/s11302-015-9454-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/06/2015] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common and aggressive brain tumor in humans, comprises a population of stem-like cells (GSCs) that are currently investigated as potential target for GBM therapy. Here, we used GSCs isolated from three different GBM surgical specimens to examine the antitumor activity of purines. Cultured GSCs expressed either metabotropic adenosine P1 and ATP P2Y receptors or ionotropic P2X7 receptors. GSC exposure for 48 h to 10-150 μM ATP, P2R ligand, or to ADPβS or MRS2365, P2Y1R agonists, enhanced cell expansion. This effect was counteracted by the PY1R antagonist MRS2500. In contrast, 48-h treatment with higher doses of ATP or UTP, which binds to P2Y2/4R, or 2'(3')-O-(4-benzoylbenzoyl)-ATP (Bz-ATP), P2X7R agonist, decreased GSC proliferation. Such a reduction was due to apoptotic or necrotic cell death but mostly to growth arrest. Accordingly, cell regrowth and secondary neurosphere formation were observed 2 weeks after the end of treatment. Suramin, nonselective P2R antagonist, MRS1220 or AZ11645373, selective A3R or P2X7R antagonists, respectively, counteracted ATP antiproliferative effects. AZ11645373 also abolished the inhibitory effect of Bz-ATP low doses on GSC growth. These findings provide important clues on the anticancer potential of ligands for A3R, P2Y1R, and P2X7R, which are involved in the GSC growth control. Interestingly, ATP and BzATP potentiated the cytotoxicity of temozolomide (TMZ), currently used for GBM therapy, enabling it to cause a greater and long-lasting inhibitory effect on GSC duplication when readded to cells previously treated with purine nucleotides plus TMZ. These are the first findings identifying purine nucleotides as able to enhance TMZ antitumor efficacy and might have an immediate translational impact.
Collapse
Affiliation(s)
- Iolanda D'Alimonte
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100, Chieti, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Desai A, Gerson S. Exo1 independent DNA mismatch repair involves multiple compensatory nucleases. DNA Repair (Amst) 2014; 21:55-64. [PMID: 25037770 PMCID: PMC5944346 DOI: 10.1016/j.dnarep.2014.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 05/07/2014] [Accepted: 06/11/2014] [Indexed: 11/18/2022]
Abstract
Functional DNA mismatch repair (MMR) is essential for maintaining the fidelity of DNA replication and genetic stability. In hematopoiesis, loss of MMR results in methylating agent resistance and a hematopoietic stem cell (HSC) repopulation defect. Additionally MMR failure is associated with a variety of human malignancies, notably Lynch syndrome. We focus on the 5'→3' exonuclease Exo1, the primary enzyme excising the nicked strand during MMR, preceding polymerase synthesis. We found that nuclease dead Exo1 mutant cells are sensitive to the O6-methylguanine alkylating agent temozolomide when given with the MGMT inactivator, O6benzylguanine (BG). Additionally we used an MMR reporter plasmid to verify that Exo1(mut) MEFs were able to repair G:T base mismatches in vitro. We showed that unlike other MMR deficient mouse models, Exo1(mut) mouse HSC did not gain a competitive survival advantage post temozolomide/BG treatment in vivo. To determine potential nucleases implicated in MMR in the absence of Exo1 nuclease activity, but in the presence of the inactive protein, we performed gene expression analyses of several mammalian nucleases in WT and Exo1(mut) MEFs before and after temozolomide treatment and identified upregulation of Artemis, Fan1, and Mre11. Partial shRNA mediated silencing of each of these in Exo1(mut) cells resulted in decreased MMR capacity and increased resistance to temozolomide/BG. We propose that nuclease function is required for fully functional MMR, but a portfolio of nucleases is able to compensate for loss of Exo1 nuclease activity to maintain proficiency.
Collapse
Affiliation(s)
- Amar Desai
- Department of Pharmacology, University Hospitals Seidman Cancer Center and Case Western Reserve University, United States; Division of Hematology/Oncology, Center of Stem Cell and Regenerative Medicine, University Hospitals Seidman Cancer Center and Case Western Reserve University, United States
| | - Stanton Gerson
- Department of Pharmacology, University Hospitals Seidman Cancer Center and Case Western Reserve University, United States; Division of Hematology/Oncology, Center of Stem Cell and Regenerative Medicine, University Hospitals Seidman Cancer Center and Case Western Reserve University, United States; Case Comprehensive Cancer Center, University Hospitals Seidman Cancer Center and Case Western Reserve University, United States.
| |
Collapse
|