1
|
Yang Q, Zhang H, Jin Z, Zhang B, Wang Y. Effects of Valproic Acid Therapy on Rats with Spinal Cord Injury: A Systematic Review and Meta-Analysis. World Neurosurg 2024; 182:12-28. [PMID: 37923014 DOI: 10.1016/j.wneu.2023.10.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To systematically evaluate the efficacy of valproic acid (VPA) in rats with spinal cord injury (SCI) to reduce the risk of clinical conversion and provide a valuable reference for future animal and clinical studies. METHODS We searched scientific databases, including PubMed, Ovid-Embase, Web of Science, and Scopus databases. The relevant literature was searched from the establishment date of the database to June 28, 2023. The search results were screened, data were extracted, and the quality of the literature was evaluated independently by 2 reviewers. RESULTS Among 656 nonduplicated references, 14 articles were included for meta-analysis. The summary results showed that the overall Basso, Beattie and Bresnahan scores of the VPA intervention group were significantly higher than those in the control group at 1-6 weeks after VPA intervention. Subgroup analysis showed that the injury model, administration dose, rat strain, country of study, or follow-up duration had no significant effect on the efficacy of VPA on rats with SCI. In addition, mesh analysis showed that high doses of the VPA group had a better effect on SCI rats, compared with the low dose group and the medium dose group. CONCLUSIONS To date, this is the first systematic evaluation of the potential effects of VPA on motor recovery in rats with SCI. We concluded that VPA can promote motor recovery in rats with SCI, and higher doses of VPA seem to be more effective in rats with SCI. However, the limited quality and sample of included studies reduced the application of this meta-analysis. In the future, more high-quality, direct comparative studies are needed to explore this issue in depth.
Collapse
Affiliation(s)
- Qinglin Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Huaibin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Zhuanmei Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Baolin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yongping Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China; Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Lin J, Zhang K, Cao X, Zhao Y, Ullah Khan N, Liu X, Tang X, Chen M, Zhang H, Shen L. iTRAQ-Based Proteomics Analysis of Rat Cerebral Cortex Exposed to Valproic Acid before Delivery. ACS Chem Neurosci 2022; 13:648-663. [PMID: 35138800 DOI: 10.1021/acschemneuro.1c00800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurological and developmental disorder characterized by social and communication difficulties. Valproic acid (VPA) injection during pregnancy elicits autism-like behavior in the offspring, making it a classic animal model of ASD. However, the mechanisms involved have not yet been determined. In this study, we used iTRAQ (isobaric tags for relative and absolute quantification) proteomics analysis of the cerebral cortex of a VPA rat model (VPA group) and controls (CON group). The results showed that 79 differentially expressed proteins (DEPs) were identified between the VPA group and the CON group. Based on bioinformatics analysis, the DEPs were mainly enriched at synapses, especially glutamatergic synapses and GABAergic synapses. Some DEPs were involved in energy metabolism, thyroid hormone synthesis pathway, and Na+-K+-ATPase. Cytoskeleton and endoplasmic reticulum (ER) stress-related proteins were also involved. Some DEPs matched either the ASD gene database or previous reports on cerebral cortical transcriptome studies in VPA rat models. Dysregulation of these DEPs in the cerebral cortex of VPA rats may be responsible for autism-like behavior in rats. We also found that some DEPs were associated with neuropsychiatric disorders, implying that these diseases share common signaling pathways and mechanisms. Moreover, increased expression of DEPs was associated with energy metabolism in the cerebral cortex of VPA rats, implying that ASD may be a distinct type of mitochondrial dysfunction that requires further investigation.
Collapse
Affiliation(s)
- Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, P. R. China
| | - Kaoyuan Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen 518071, P. R. China
| | - Margy Chen
- Department of Psychology, Emory University, Atlanta, Georgia 30322, United States
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen 518071, P. R. China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| |
Collapse
|
3
|
Wang H, Yuan J, Dang X, Shi Z, Ban W, Ma D. Mettl14-mediated m6A modification modulates neuron apoptosis during the repair of spinal cord injury by regulating the transformation from pri-mir-375 to miR-375. Cell Biosci 2021; 11:52. [PMID: 33706799 PMCID: PMC7953660 DOI: 10.1186/s13578-020-00526-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a disabling disorder, resulting in neurological impairments. This study investigated the mechanism of methyltransferase-like 14 (Mettl14) on apoptosis of spinal cord neurons during SCI repair by mediating pri-microRNA (miR) dependent N6-methyladenosine (m6A) methylation. METHODS The m6A content in total RNA and Mettl14 levels in spinal cord tissues of SCI rats were detected. Mettl14 expression was intervened in SCI rats to examine motor function, neuron apoptosis, and recovery of neurites. The cell model of SCI was established and intervened with Mettl14. miR-375, related to SCI and positively related to Mettl14, was screened out. The expression of miR-375 and pri-miR-375 after Mettl14 intervention was detected. The expression of pri-miR-375 combined with DiGeorge critical region 8 (DGCR8) and that modified by m6A was detected. Furthermore, the possible downstream gene and pathway of miR-375 were analysed. SCI cell model with Mettl14 intervention was combined with Ras-related dexamethasone-induced 1 (RASD1)/miR-375 intervention to observe the apoptosis. RESULTS Mettl14 level and m6A content in spinal cord tissue were significantly increased. After Mettl14 knockdown, the injured motor function was restored and neuron apoptosis was reduced. In vitro, Mettl14 silencing reduced the apoptosis of SCI cells; miR-375 was reduced and pri-miR-375 was increased; miR-375 targeted RASD1. Silencing Mettl14 inactivated the mTOR pathway. The apoptosis in cells treated with silencing Mettl14 + RASD1/miR-375 was inhibited. CONCLUSIONS Mettl14-mediated m6A modification inhibited RASD1 and induced the apoptosis of spinal cord neurons in SCI by promoting the transformation of pri-miR-375 to mature miR-375.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Orthopedics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, Shanxi, People's Republic of China
| | - Jing Yuan
- Xi'an Radio and Television University, Xi'an, 710002, Shanxi, People's Republic of China
| | - Xiaoqian Dang
- Department of Orthopedics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, Shanxi, People's Republic of China
| | - Zhibin Shi
- Department of Orthopedics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, Shanxi, People's Republic of China
| | - Wenrui Ban
- Department of Orthopedics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, Shanxi, People's Republic of China
| | - Dong Ma
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
4
|
Wang D, Wang K, Liu Z, Wang Z, Wu H. Valproic acid-labeled chitosan nanoparticles promote recovery of neuronal injury after spinal cord injury. Aging (Albany NY) 2020; 12:8953-8967. [PMID: 32463791 PMCID: PMC7288920 DOI: 10.18632/aging.103125] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Chitosan nanoparticles have been recognized as a new type of biomaterials for treatment of spinal cord injury (SCI). To develop a novel treatment method targeted delivery injured spinal cord, valproic acid labeled chitosan nanoparticles (VA-CN) were constructed and evaluated in the treatment of SCI. Our results demonstrated that administration of VA-CN significantly promoted the recovery of the function and tissue repair after SCI. Moreover, we found treatment of VA-CN inhibited the reactive astrocytes after SCI. Furthermore, administration of VA-CN enhanced immunoreactions of neuronal related marker NF160, which suggested that VA-CN could promote the neuroprotective function in rats of SCI. The production of IL-1β, IL-6 and TNF-α were significantly decreased following treatment of VA-CN. Meanwhile, administration of VA-CN effectively improved the blood spinal cord barrier (BSCB) disruption after SCI. Administration of VA-CN could enhance the recovery of neuronal injury, suppress the reactive astrocytes and inflammation, and improve the blood spinal cord barrier disruption after SCI in rats. These results provided a novel and promising therapeutic manner for SCI.
Collapse
Affiliation(s)
- Dimin Wang
- School of Medicine, Zhejiang University, Hangzhou, China.,College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zonglin Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Ahmed S, Busetti A, Fotiadou P, Vincy Jose N, Reid S, Georgieva M, Brown S, Dunbar H, Beurket-Ascencio G, Delday MI, Ettorre A, Mulder IE. In vitro Characterization of Gut Microbiota-Derived Bacterial Strains With Neuroprotective Properties. Front Cell Neurosci 2019; 13:402. [PMID: 31619962 PMCID: PMC6763572 DOI: 10.3389/fncel.2019.00402] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases are disabling, incurable, and progressive conditions characterized by neuronal loss and decreased cognitive function. Changes in gut microbiome composition have been linked to a number of neurodegenerative diseases, indicating a role for the gut-brain axis. Here, we show how specific gut-derived bacterial strains can modulate neuroinflammatory and neurodegenerative processes in vitro through the production of specific metabolites and discuss the potential therapeutic implications for neurodegenerative disorders. A panel of fifty gut bacterial strains was screened for their ability to reduce pro-inflammatory IL-6 secretion in U373 glioblastoma astrocytoma cells. Parabacteroides distasonis MRx0005 and Megasphaera massiliensis MRx0029 had the strongest capacity to reduce IL-6 secretion in vitro. Oxidative stress plays a crucial role in neuroinflammation and neurodegeneration, and both bacterial strains displayed intrinsic antioxidant capacity. While MRx0005 showed a general antioxidant activity on different brain cell lines, MRx0029 only protected differentiated SH-SY5Y neuroblastoma cells from chemically induced oxidative stress. MRx0029 also induced a mature phenotype in undifferentiated neuroblastoma cells through upregulation of microtubule-associated protein 2. Interestingly, short-chain fatty acid analysis revealed that MRx0005 mainly produced C1-C3 fatty acids, while MRx0029 produced C4-C6 fatty acids, specifically butyric, valeric and hexanoic acid. None of the short-chain fatty acids tested protected neuroblastoma cells from chemically induced oxidative stress. However, butyrate was able to reduce neuroinflammation in vitro, and the combination of butyrate and valerate induced neuronal maturation, albeit not to the same degree as the complex cell-free supernatant of MRx0029. This observation was confirmed by solvent extraction of cell-free supernatants, where only MRx0029 methanolic fractions containing butyrate and valerate showed an anti-inflammatory activity in U373 cells and retained the ability to differentiate neuroblastoma cells. In summary, our results suggest that the pleiotropic nature of live biotherapeutics, as opposed to isolated metabolites, could be a promising novel drug class in drug discovery for neurodegenerative disorders.
Collapse
Affiliation(s)
- Suaad Ahmed
- 4D Pharma Research Ltd., Aberdeen, United Kingdom
| | | | | | | | - Sarah Reid
- 4D Pharma Research Ltd., Aberdeen, United Kingdom
| | | | | | | | | | - Margaret I Delday
- 4D Pharma Research Ltd., Aberdeen, United Kingdom.,School of Medicine and Dentistry, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, United Kingdom
| | - Anna Ettorre
- 4D Pharma Research Ltd., Aberdeen, United Kingdom
| | | |
Collapse
|
6
|
He W, Tian X, Yuan B, Chu B, Gao F, Wang H. Rosuvastatin improves neurite extension in cortical neurons through the Notch 1/BDNF pathway. Neurol Res 2019; 41:658-664. [PMID: 31023175 DOI: 10.1080/01616412.2019.1610226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Weiliang He
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Xiaochao Tian
- Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Bilin Yuan
- School of Basic Medical, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Bao Chu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Fan Gao
- Department of Neurology, The second hospital of Shijiazhuang, Shijiazhuang, Hebei, PR China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| |
Collapse
|
7
|
Lin YL, Bialer M, Cabrera RM, Finnell RH, Wlodarczyk BJ. Teratogenicity of valproic acid and its constitutional isomer, amide derivative valnoctamide in mice. Birth Defects Res 2018; 111:1013-1023. [PMID: 30325584 DOI: 10.1002/bdr2.1406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The anticonvulsant valproic acid (VPA) has a known teratogenic effect capable of inducing major congenital malformations and developmental disorders. A comparative teratogenicity study of VPA and its analog valnoctamide (VCD), which is a new generation candidate antiepileptic drug, was carried out using Swiss Vancouver (SWV) mice. METHODS Pregnant SWV dams were treated with either a single intraperitoneal injection of VPA (1.8 and 2.7 mmol/kg), VCD (1.8 and 2.7 mmol/kg), or vehicle on E8:12 (gestational day:hour). The numbers of implantation and resorption, viable and dead fetuses, and the presence of gross fetal visceral and skeletal abnormalities were determined (E18). Real-time Polymerase chain reaction (RT-PCR) arrays were used to analyze the expression of 84 genes related to the processes of neurogenesis and neural stem cell differentiation. RESULTS Significant decreases in pregnancy weight gain and the number of live fetuses were observed when VPA was administered at the high dose, whereas the percentage of exencephalic fetuses was significantly increased in VPA treated compared with an equivalent VCD dosage group. There was a dose-related increase in visceral defects in the VPA-exposed fetuses. Missing skull bones and fused vertebrae in fetuses occurred at the high dose of VPA. Three genes (Mtap2, Bmp8b, and Stat3) were significantly upregulated and one (Heyl) was downregulated in samples from VPA-treated dams. CONCLUSIONS The study demonstrates that the teratogenicity of VPA was significantly greater than that of an equimolar dose of VCD. Four genes (Mtap2, Bmp8b, Stat3, and Heyl) represent candidate target genes for the underlying teratogenic mechanism responsible for VPA-induced malformations.
Collapse
Affiliation(s)
- Ying Linda Lin
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Meir Bialer
- Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Robert M Cabrera
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Richard H Finnell
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Bogdan J Wlodarczyk
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
8
|
Abbaszadeh HA, Niknazar S, Darabi S, Ahmady Roozbahany N, Noori-Zadeh A, Ghoreishi SK, Khoramgah MS, Sadeghi Y. Stem cell transplantation and functional recovery after spinal cord injury: a systematic review and meta-analysis. Anat Cell Biol 2018; 51:180-188. [PMID: 30310710 PMCID: PMC6172584 DOI: 10.5115/acb.2018.51.3.180] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/26/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury is a significant cause of motor dysfunctions. There is no definite cure for it, and most of the therapeutic modalities are only symptomatic treatment. In this systematic review and meta-analysis, the effectiveness of stem cell therapy in the treatment of the spinal cord injuries in animal models was studied and evaluated. A systematic search through medical databases by using appropriate keywords was conducted. The relevant reports were reviewed in order to find out cases in which inclusion and exclusion criteria had been fulfilled. Finally, 89 articles have been considered, from which 28 had sufficient data for performing statistical analyses. The findings showed a significant improvement in motor functions after cell therapy. The outcome was strongly related to the number of transplanted cells, site of injury, chronicity of the injury, type of the damage, and the induction of immune-suppression. According to our data, improvements in functional recovery after stem cell therapy in the treatment of spinal cord injury in animal models was noticeable, but its outcome is strongly related to the site of injury, number of transplanted cells, and type of transplanted cells.
Collapse
Affiliation(s)
- Hojjat-Allah Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Medical Center and Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Niknazar
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Navid Ahmady Roozbahany
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,G. Raymond Chang School, Ryerson University, Toronto, Canada
| | - Ali Noori-Zadeh
- Department of Clinical Biochemistry, Faculty of Paramedicine, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Maryam Sadat Khoramgah
- Department of Biotechnology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Sadeghi
- Department of Biotechnology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
He W, Tian X, Lv M, Wang H. Liraglutide Protects Neurite Outgrowth of Cortical Neurons Under Oxidative Stress though Activating the Wnt Pathway. J Stroke Cerebrovasc Dis 2018; 27:2696-2702. [PMID: 30042033 DOI: 10.1016/j.jstrokecerebrovasdis.2018.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/20/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Neurogenesis including neurite outgrowth is important for brain plasticity under physiological conditions and in brain repair after injury. Liraglutide has been found to have neuroprotective action in the risk of central nervous system disease. However, the effect and the potential mechanism of liraglutide-induced neurite outgrowth in primary cortical neurons under oxidative stress remain poorly documented. METHODS In the text, H2O2 was used to mimic ischemia injury in primary cortical neurons. The viability and apoptosis of cell was assessed by Cell Counting Kit-8 and Hoechst 33342. Immunofluorescence method was used to examine the effect of liraglutide on neurite outgrowth in cortical neuron under H2O2 condition. Then, the potential mechanisms involving the Wnt pathway were investigated. The expression of β-catenin, c-myc, and cyclin D1 was determined using quantitative real-time polymerase chain reaction and Western blot. RESULTS Liraglutide significantly increased the viability and alleviated the apoptosis rate of cortical neurons induced by H2O2. Next, liraglutide promoted neurite outgrowth, which could be partially inhibited by the Wnt pathway inhibitor Xav939. Besides, liraglutide induced an increase of β-catenin, c-myc, and cyclin D1 levels, which could also be blocked in the presence of Xav939. CONCLUSIONS These results illustrate that liraglutide exerts neurotrophin-like activity in cortical neurons under oxidative stress condition, partly through activating the Wnt pathway.
Collapse
Affiliation(s)
- Weiliang He
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Xiaochao Tian
- Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Mimi Lv
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, PR China.
| |
Collapse
|
10
|
Kong QJ, Wang Y, Liu Y, Sun JC, Xu XM, Sun XF, Shi JG. Neuroprotective Effects of Valproic Acid in a Rat Model of Cauda Equina Injury. World Neurosurg 2017; 108:128-136. [PMID: 28867325 DOI: 10.1016/j.wneu.2017.08.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Histone deacetylase inhibitors, including valproic acid (VPA), are promising therapeutic interventions in neurological disorders and play an important role in synaptic activity and neuronal function. METHODS A total of 30 rats were randomly allocated to 3 groups: sham, control, and VPA. The rats in the VPA and control groups received laminectomy at the L4 level of the vertebrae and silicone gel implantation into the epidural spaces L5 and L6. Rats in the sham group only received laminectomy at the L4 level of vertebrae without any implantation. VPA (300 mg/kg in saline) was administered 2 hours before the surgery. After the surgery, the VPA group received further VPA injections at 300 mg/kg twice a day for 1 week. The same volume of saline was injected in the control group. Neurobehavioral tests using the Basso, Beattie, Bresnahan scale and the oblique board test were performed for 1 week starting at 2 hours before surgery up to day 7 after surgery. At day 7 after surgery, tissues from the compressed cauda equina (L5-L6) were subjected to hematoxylin and eosin, luxol fast blue, or immunofluorescence staining, whereas the terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick-end label assay staining was performed on the tissue from the dorsal root ganglions and the lumbar segment of the spinal cord proximal to the compressed cauda equina (L5-L6). RESULTS The behavioral results suggested a significant improvement in the lower limb motor function in the VPA group compared with controls (P < 0.05). Furthermore, histologic assessment revealed a significant reduction in nerve fibers showing Wallerian degeneration and demyelinating lesions in the VPA group, in addition to an increased myelination compared with the control group (P < 0.05). The terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick-end label assay staining revealed a significant decrease in the number of apoptotic neurons in the spinal cord anterior horn and dorsal root ganglions in the VPA group compared with controls (P < 0.05). CONCLUSIONS Our data demonstrated that VPA could alleviate cauda equina injury, reduce apoptotic cells, and improve motor recovery, suggesting a neuroprotective effect in acute cauda equina syndrome.
Collapse
Affiliation(s)
- Qing-Jie Kong
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Yuan Wang
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Yang Liu
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Jing-Chuan Sun
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Xi-Ming Xu
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Xiao-Fei Sun
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Jian-Gang Shi
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
11
|
Lee JY, Na WH, Choi HY, Lee KH, Ju BG, Yune TY. Jmjd3 mediates blood-spinal cord barrier disruption after spinal cord injury by regulating MMP-3 and MMP-9 expressions. Neurobiol Dis 2016; 95:66-81. [PMID: 27425890 DOI: 10.1016/j.nbd.2016.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/16/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022] Open
Abstract
The disruption of the blood-spinal cord barrier (BSCB) by matrix metalloprotease (MMP) activation is a detrimental event that leads to blood cell infiltration, inflammation, and apoptosis, thereby contributing to permanent neurological disability after spinal cord injury (SCI). However, the molecular mechanisms underlying Mmp gene regulation have not been fully elucidated. Here, we demonstrated the critical role of histone H3K27 demethylase Jmjd3 in the regulation of Mmp gene expression and BSCB disruption using in vitro cellular and in vivo animal models. We found that Jmjd3 up-regulation, in cooperation with NF-κB, after SCI is required for Mmp-3 and Mmp-9 gene expressions in injured vascular endothelial cells. In addition, Jmjd3 mRNA depletion inhibited Mmp-3 and Mmp-9 gene expressions and significantly attenuated BSCB permeability and the loss of tight junction proteins. These events further led to improved functional recovery, along with decreased hemorrhage, blood cell infiltration, inflammation, and cell death of neurons and oligodendrocytes after SCI. Thus, our findings suggest that Jmjd3 regulation may serve as a potential therapeutic intervention for preserving BSCB integrity following SCI.
Collapse
Affiliation(s)
- Jee Y Lee
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Won H Na
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Hae Y Choi
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kwang H Lee
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Bong G Ju
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea.
| | - Tae Y Yune
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|