1
|
Bobot M, Guedj E, Resseguier N, Faraut J, Garrigue P, Nail V, Hache G, Gonzalez S, McKay N, Vial R, Bouchouareb D, Lano G, Jourde-Chiche N, Duval-Sabatier A, Guilaume F, Guillet B, Burtey S. Increased Blood-Brain Barrier Permeability and Cognitive Impairment in Patients With ESKD. Kidney Int Rep 2024; 9:2988-2995. [PMID: 39430169 PMCID: PMC11489453 DOI: 10.1016/j.ekir.2024.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/15/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Chronic kidney disease (CKD) is associated with an increased risk of cognitive impairment. This cognitive impairment is associated with an increased permeability of blood-brain barrier (BBB) in rodents with CKD, linked to activation of aryl hydrocarbon receptor (AhR) by indoxyl sulphate (IS). The objective of the BREIN study was to confirm the increased BBB permeability in humans with CKD. Method The BREIN comparative study (NCT04328415) prospectively included patients with end-stage kidney disease (ESKD) and controls healthy volunteers matched in age, sex, and level of education to a patient. In all participants, BBB permeability was quantified by brain 99mTc-DTPA SPECT/CT as a percentage of injected activity (% IA). A battery of neurocognitive tests was performed, and serum uremic toxins accumulation and AhR activation were assessed. Results Fifteen patients with ESKD and 14 healthy volunteers were analyzed. Patients with ESKD had higher BBB permeability compared to controls: 0.29 ± 0.07 versus 0.14 ± 0.06 %IA, P = 0.002. Patients with ESKD displayed lower Montreal Cognitive Assessment test (MoCA) score: 22.0 ± 5.0 versus 27.3 ± 2.8, P = 0.008; impaired short-term memory (doors test): 12.5 ± 3.4 versus 16.5 ± 3.4, P = 0.005; higher Beck depression score 8.1 ± 9.1 versus 2.7 ± 3.4, P = 0.046; and slightly more daily cognitive complaints: 42.5 ± 29.3 versus 29.8 ± 14.0 P = 0.060. Patients with ESKD displayed higher IS levels (86.1 ± 48.4 vs. 3.2 ± 1.7 μmol/l, P = 0.001) and AhR activating potential (37.7 ± 17.8% vs. 24.7 ± 10.4%, P = 0.027). BBB permeability was inversely correlated with MoCA score (r = -0.60, 95% confidence interval [-0.772 to -0.339], P = 0.001) in the overall population. Conclusion Patients with ESKD display an increased BBB permeability compared to matched healthy volunteers. Association with uremic toxins and cognitive impairment needs to be assessed in larger cohorts of patients.
Collapse
Affiliation(s)
- Mickaël Bobot
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Marseille, France
- Aix Marseille Université, INSERM 1263, INRAE 1260, C2VN, Marseille, France
- CERIMED, Aix-Marseille Université, Marseille, France
| | - Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille Université, Marseille, France
| | - Noémie Resseguier
- CEReSS/UR 3279 - Health Services and Quality of Life Research, Aix Marseille University, Marseille, France
- Methodological Support Unit for Clinical and Epidemiological Research, University Hospital of Marseille, Marseille, France
| | - Julien Faraut
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Marseille, France
| | - Philippe Garrigue
- Aix Marseille Université, INSERM 1263, INRAE 1260, C2VN, Marseille, France
- CERIMED, Aix-Marseille Université, Marseille, France
- Radiopharmacie, Marseille, France
| | - Vincent Nail
- Aix Marseille Université, INSERM 1263, INRAE 1260, C2VN, Marseille, France
- CERIMED, Aix-Marseille Université, Marseille, France
- Radiopharmacie, Marseille, France
| | - Guillaume Hache
- Aix Marseille Université, INSERM 1263, INRAE 1260, C2VN, Marseille, France
- CERIMED, Aix-Marseille Université, Marseille, France
- Pharmacie, Hôpital de la Timone, Marseille, France
| | - Sandra Gonzalez
- CERIMED, Aix-Marseille Université, Marseille, France
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille Université, Marseille, France
| | - Nathalie McKay
- Aix Marseille Université, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Romain Vial
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Marseille, France
| | - Dammar Bouchouareb
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Marseille, France
| | - Guillaume Lano
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Marseille, France
- Aix Marseille Université, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Noémie Jourde-Chiche
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Marseille, France
- Aix Marseille Université, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Ariane Duval-Sabatier
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Marseille, France
- Association des Dialysés Provence et Corse, Marseille, France
| | - Fabrice Guilaume
- Centre de Recherche en Psychologie et Neuroscience, CNRS, UMR7077, Aix-Marseille Université, Marseille, France
| | - Benjamin Guillet
- Aix Marseille Université, INSERM 1263, INRAE 1260, C2VN, Marseille, France
- CERIMED, Aix-Marseille Université, Marseille, France
- Radiopharmacie, Marseille, France
| | - Stéphane Burtey
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Marseille, France
- Aix Marseille Université, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| |
Collapse
|
2
|
Harris WJ, Asselin MC, Hinz R, Parkes LM, Allan S, Schiessl I, Boutin H, Dickie BR. In vivo methods for imaging blood-brain barrier function and dysfunction. Eur J Nucl Med Mol Imaging 2023; 50:1051-1083. [PMID: 36437425 PMCID: PMC9931809 DOI: 10.1007/s00259-022-05997-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier (BBB) is the interface between the central nervous system and systemic circulation. It tightly regulates what enters and is removed from the brain parenchyma and is fundamental in maintaining brain homeostasis. Increasingly, the BBB is recognised as having a significant role in numerous neurological disorders, ranging from acute disorders (traumatic brain injury, stroke, seizures) to chronic neurodegeneration (Alzheimer's disease, vascular dementia, small vessel disease). Numerous approaches have been developed to study the BBB in vitro, in vivo, and ex vivo. The complex multicellular structure and effects of disease are difficult to recreate accurately in vitro, and functional aspects of the BBB cannot be easily studied ex vivo. As such, the value of in vivo methods to study the intact BBB cannot be overstated. This review discusses the structure and function of the BBB and how these are affected in diseases. It then discusses in depth several established and novel methods for imaging the BBB in vivo, with a focus on MRI, nuclear imaging, and high-resolution intravital fluorescence microscopy.
Collapse
Affiliation(s)
- William James Harris
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Marie-Claude Asselin
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Laura Michelle Parkes
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Herve Boutin
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
| | - Ben Robert Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Pandey V, Shukla D, Nirmal S, Devi BI, Christopher R. Biomarkers in Traumatic Brain Injuries: Narrative Review. INDIAN JOURNAL OF NEUROTRAUMA 2022. [DOI: 10.1055/s-0042-1759853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractTraumatic brain injury (TBI) is a multistep interaction of brain antigens, cytokine-mediated humeral, and cellular immune reactions. Because of the limitations of clinical and radiological evaluation in TBI, there has been a considerable advancement toward the need for developing biomarkers that can predict the severity of TBI. Blood-based brain biomarkers hold the potential to predict the absence of intracranial injury and thus decrease unnecessary brain computed tomographic scanning. Various biomarkers have been studied that detects neuronal, axonal, and blood–brain barrier integrity. Biomarkers are still under investigation and hold promise in the future evaluation of TBI patients. They can be used for grading as well as a prognostication of head injury.
Collapse
Affiliation(s)
- Vishram Pandey
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, NIMHANS, Bangalore, Karnataka, India
| | - Dhaval Shukla
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, NIMHANS, Bangalore, Karnataka, India
| | - Shubham Nirmal
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, NIMHANS, Bangalore, Karnataka, India
| | - Bhagavatula Indira Devi
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, NIMHANS, Bangalore, Karnataka, India
| | - Rita Christopher
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, NIMHANS, Bangalore, Karnataka, India
| |
Collapse
|
4
|
Ware JB, Sinha S, Morrison J, Walter AE, Gugger JJ, Schneider ALC, Dabrowski C, Zamore H, Wesley L, Magdamo B, Petrov D, Kim JJ, Diaz-Arrastia R, Sandsmark DK. Dynamic contrast enhanced MRI for characterization of blood-brain-barrier dysfunction after traumatic brain injury. Neuroimage Clin 2022; 36:103236. [PMID: 36274377 PMCID: PMC9668646 DOI: 10.1016/j.nicl.2022.103236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND PURPOSE Dysfunction of the blood-brain-barrier (BBB) is a recognized pathological consequence of traumatic brain injury (TBI) which may play an important role in chronic TBI pathophysiology. We hypothesized that BBB disruption can be detected with dynamic contrast-enhanced (DCE) MRI not only in association with focal traumatic lesions but also in normal-appearing brain tissue of TBI patients, reflecting microscopic microvascular injury. We further hypothesized that BBB integrity would improve but not completely normalize months after TBI. MATERIALS AND METHODS DCE MRI was performed in 40 adult patients a median of 23 days after hospitalized TBI and in 21 healthy controls. DCE data was analyzed using Patlak and linear models, and derived metrics of BBB leakage including the volume transfer constant (Ktrans) and the normalized permeability index (NPI) were compared between groups. BBB metrics were compared with focal lesion distribution as well as with contemporaneous measures of symptomatology and cognitive function in TBI patients. Finally, BBB metrics were examined longitudinally among 18 TBI patients who returned for a second MRI a median of 204 days postinjury. RESULTS TBI patients exhibited higher mean Ktrans (p = 0.0028) and proportion of suprathreshold NPI voxels (p = 0.001) relative to controls. Tissue-based analysis confirmed greatest TBI-related BBB disruption in association with focal lesions, however elevated Ktrans was also observed in perilesional (p = 0.011) and nonlesional (p = 0.044) regions. BBB disruption showed inverse correlation with quality of life (rho = -0.51, corrected p = 0.016). Among the subset of TBI patients who underwent a second MRI several months after the initial evaluation, metrics of BBB disruption did not differ significantly at the group level, though variable longitudinal changes were observed at the individual subject level. CONCLUSIONS This pilot investigation suggests that TBI-related BBB disruption is detectable in the early post-injury period in association with focal and diffuse brain injury.
Collapse
Affiliation(s)
- Jeffrey B Ware
- Division of Neuroradiology, Department of Radiology, Hospital of University of Pennsylvania, Perelman School of Medicine of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Saurabh Sinha
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Justin Morrison
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Alexa E Walter
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - James J Gugger
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Andrea L C Schneider
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Cian Dabrowski
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Hannah Zamore
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Leroy Wesley
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Brigid Magdamo
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Dmitriy Petrov
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Junghoon J Kim
- Department of Molecular, Cellular, and Biomedical Sciences, CUNY School of Medicine at The City College of New York, Townsend Harris Hall, 160 Convent Avenue, New York, NY 10031, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Danielle K Sandsmark
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Diaz-Pacheco V, Vargas-Medrano J, Tran E, Nicolas M, Price D, Patel R, Tonarelli S, Gadad BS. Prognosis and Diagnostic Biomarkers of Mild Traumatic Brain Injury: Current Status and Future Prospects. J Alzheimers Dis 2022; 86:943-959. [PMID: 35147534 DOI: 10.3233/jad-215158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mild traumatic brain injury (mTBI) is the most prevalent type of TBI (80-90%). It is characterized by a loss consciousness for less than 30 minutes, post-traumatic amnesia for less than 24 hours, and Glasgow Coma Score of 13-15. Accurately diagnosing mTBIs can be a challenge because the majority of these injuries do not show noticeable or visible changes on neuroimaging studies. Appropriate determination of mTBI is tremendously important because it might lead in some cases to post-concussion syndrome, cognitive impairments including attention, memory, and speed of information processing problems. The scientists have studied different methods to improve mTBI diagnosis and enhanced approaches that would accurately determine the severity of the trauma. The present review focuses on discussing the role of biomarkers as potential key factors in diagnosing mTBI. The present review focuses on 1) protein based peripheral and CNS markers, 2) genetic biomarkers, 3) imaging biomarkers, 4) neurophysiological biomarkers, and 5) the studies and clinical trials in mTBI. Each section provides information and characteristics on different biomarkers for mTBI.
Collapse
Affiliation(s)
- Valeria Diaz-Pacheco
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA.,Southwest Brain Bank, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Javier Vargas-Medrano
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA.,Southwest Brain Bank, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Eric Tran
- Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Meza Nicolas
- Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Diamond Price
- The Chicago School of Professional Psychology, Irvine, CA, USA
| | - Richa Patel
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Silvina Tonarelli
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Bharathi S Gadad
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA.,Southwest Brain Bank, Texas Tech University Health Science Center, El Paso, TX, USA
| |
Collapse
|
6
|
Soda K. Overview of Polyamines as Nutrients for Human Healthy Long Life and Effect of Increased Polyamine Intake on DNA Methylation. Cells 2022; 11:cells11010164. [PMID: 35011727 PMCID: PMC8750749 DOI: 10.3390/cells11010164] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Polyamines, spermidine and spermine, are synthesized in every living cell and are therefore contained in foods, especially in those that are thought to contribute to health and longevity. They have many physiological activities similar to those of antioxidant and anti-inflammatory substances such as polyphenols. These include antioxidant and anti-inflammatory properties, cell and gene protection, and autophagy activation. We have first reported that increased polyamine intake (spermidine much more so than spermine) over a long period increased blood spermine levels and inhibited aging-associated pathologies and pro-inflammatory status in humans and mice and extended life span of mice. However, it is unlikely that the life-extending effect of polyamines is exerted by the same bioactivity as polyphenols because most studies using polyphenols and antioxidants have failed to demonstrate their life-extending effects. Recent investigations revealed that aging-associated pathologies and lifespan are closely associated with DNA methylation, a regulatory mechanism of gene expression. There is a close relationship between polyamine metabolism and DNA methylation. We have shown that the changes in polyamine metabolism affect the concentrations of substances and enzyme activities involved in DNA methylation. I consider that the increased capability of regulation of DNA methylation by spermine is a key of healthy long life of humans.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Department Cardiovascular Institute for Medical Research, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma, Saitama-City 330-0834, Saitama, Japan
| |
Collapse
|
7
|
Nichols P, Urriola J, Miller S, Bjorkman T, Mahady K, Vegh V, Nasrallah F, Winter C. Blood-brain barrier dysfunction significantly correlates with serum matrix metalloproteinase-7 (MMP-7) following traumatic brain injury. NEUROIMAGE-CLINICAL 2021; 31:102741. [PMID: 34225019 PMCID: PMC8264212 DOI: 10.1016/j.nicl.2021.102741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023]
Abstract
Matrix metalloproteinase (MMP) 7 is elevated in traumatic brain injury. Blood brain barrier dysfunction as measured by DCE MRI can be expressed as KTrans. MMP-7 shows a strong correlation with BBB dysfunction shown on MRI. MMP-7 shows potential to function as a serum biomarker.
Objectives To determine if radiological evidence of blood brain barrier (BBB) dysfunction, measured using Dynamic Contrast Enhanced MRI (DCE-MRI), correlates with serum matrix metalloproteinase (MMP) levels in traumatic brain injury (TBI) patients, and thereby, identify a potential biomarker for BBB dysfunction. Patients and Methods 20 patients with a mild, moderate, or severe TBI underwent a DCE-MRI scan and BBB dysfunction was interpreted from KTrans. KTrans is a measure of capillary permeability that reflects the efflux of gadolinium contrast into the extra-cellar space. The serum samples were concurrently collected and later analysed for MMP-1, −2, −7, −9, and −10 levels using an ELISA assay. Statistical correlations between MMP levels and the KTrans value were calculated. Multiple testing was corrected using the Benjamin–Hochberg method to control the false‐discovery rate (FDR). Results Serum MMP-1 values ranged from 1.5 to 49.6 ng/ml (12 ± 12.7), MMP-2 values from 58.3 to 174.1 ng/ml (109.5 ± 26.7), MMP-7 from 1.5 to 31.5 ng/mL (10 ± 7.4), MMP-9 from 128.6 to 1917.5 ng/ml (647.7 ± 749.6) and MMP-10 from 0.1 to 0.6 ng/mL (0.3 ± 0.2). Non-parametric Spearman correlation analysis on the data showed significant positive relationship between KTrans and MMP-7 (r = 0.55, p < 0.01). Correlations were also found between KTrans and MMP-1 (r = 0.74, p < 0.0002) and MMP-2 (r = 0.5, p < 0.025) but the actual MMP values were not above reference ranges, limiting the interpretation of results. Statistically significant correlations between KTrans and either MMP-9 or −10 were not found. Conclusion This is the first study to show a correlation between DCE measures and MMP values in patients with a TBI. Our results support the suggestion that serum MMP-7 may be considered as a peripheral biomarker quantifying BBB dysfunction in TBI patients.
Collapse
Affiliation(s)
- Paul Nichols
- Department of Neurosurgery, Royal Brisbane and Women's Hospital, Australia.
| | - Javier Urriola
- Queensland Brain Institute, The University of Queensland, Australia; Australian e-Health Research Centre, CSIRO, Brisbane, Australia
| | - Stephanie Miller
- University of Queensland Centre for Clinical Research, The University of Queensland, Royal Brisbane and Women's Hospital, Australia
| | - Tracey Bjorkman
- University of Queensland Centre for Clinical Research, The University of Queensland, Royal Brisbane and Women's Hospital, Australia
| | - Kate Mahady
- Department of Radiology, Royal Brisbane and Women's Hospital, Australia
| | - Viktor Vegh
- The Centre for Advanced Imaging, The University of Queensland, Australia; The ARC Centre for Innovation in Biomedical Imaging Technology, Brisbane, Australia
| | - Fatima Nasrallah
- Queensland Brain Institute, The University of Queensland, Australia
| | - Craig Winter
- Department of Neurosurgery, Royal Brisbane and Women's Hospital, Australia; Faculty of Medicine, The University of Queensland, Australia; School of Clinical Sciences, Queensland University of Technology, Australia
| |
Collapse
|
8
|
Oh SS, Lee EH, Kim JH, Seo YB, Choo YJ, Park J, Chang MC. The Use of Dynamic Contrast-Enhanced Magnetic Resonance Imaging for the Evaluation of Blood-Brain Barrier Disruption in Traumatic Brain Injury: What Is the Evidence? Brain Sci 2021; 11:brainsci11060775. [PMID: 34208047 PMCID: PMC8230721 DOI: 10.3390/brainsci11060775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Blood brain barrier (BBB) disruption following traumatic brain injury (TBI) results in a secondary injury by facilitating the entry of neurotoxins to the brain parenchyma without filtration. In the current paper, we aimed to review previous dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) studies to evaluate the occurrence of BBB disruption after TBI. (2) Methods: In electronic databases (PubMed, Scopus, Embase, and the Cochrane Library), we searched for the following keywords: dynamic contrast-enhanced OR DCE AND brain injury. We included studies in which BBB disruption was evaluated in patients with TBI using DCE-MRI. (3) Results: Four articles were included in this review. To assess BBB disruption, linear fit, Tofts, extended Tofts, or Patlak models were used. KTrans and ve were increased, and the values of vp were decreased in the cerebral cortex and predilection sites for diffusion axonal injury. These findings are indicative of BBB disruption following TBI. (4) Conclusions: Our analysis supports the possibility of utilizing DCE-MRI for the detection of BBB disruption following TBI.
Collapse
Affiliation(s)
- Sung Suk Oh
- Medical Interdisciplinary Team, Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.S.O.); (E.-H.L.); (Y.J.C.)
| | - Eun-Hee Lee
- Medical Interdisciplinary Team, Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.S.O.); (E.-H.L.); (Y.J.C.)
| | - Jong-Hoon Kim
- Department of Neurosurgery, College of Medicine, Yeungnam University, Daegu 41061, Korea; (J.-H.K.); (Y.B.S.)
| | - Young Beom Seo
- Department of Neurosurgery, College of Medicine, Yeungnam University, Daegu 41061, Korea; (J.-H.K.); (Y.B.S.)
| | - Yoo Jin Choo
- Medical Interdisciplinary Team, Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.S.O.); (E.-H.L.); (Y.J.C.)
| | - Juyoung Park
- Medical Interdisciplinary Team, Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.S.O.); (E.-H.L.); (Y.J.C.)
- Correspondence: (J.P.); (M.C.C.)
| | - Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu 41061, Korea
- Correspondence: (J.P.); (M.C.C.)
| |
Collapse
|
9
|
Amoo M, O'Halloran PJ, Henry J, Husien MB, Brennan P, Campbell M, Caird J, Curley GF. Permeability of the Blood-Brain Barrier after Traumatic Brain Injury; Radiological Considerations. J Neurotrauma 2021; 39:20-34. [PMID: 33632026 DOI: 10.1089/neu.2020.7545] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, especially in young persons, and constitutes a major socioeconomic burden worldwide. It is regarded as the leading cause of mortality and morbidity in previously healthy young persons. Most of the mechanisms underpinning the development of secondary brain injury are consequences of disruption of the complex relationship between the cells and proteins constituting the neurovascular unit or a direct result of loss of integrity of the tight junctions (TJ) in the blood-brain barrier (BBB). A number of changes have been described in the BBB after TBI, including loss of TJ proteins, pericyte loss and migration, and altered expressions of water channel proteins at astrocyte end-feet processes. There is a growing research interest in identifying optimal biological and radiological biomarkers of severity of BBB dysfunction and its effects on outcomes after TBI. This review explores the microscopic changes occurring at the neurovascular unit, after TBI, and current radiological adjuncts for its evaluation in pre-clinical and clinical practice.
Collapse
Affiliation(s)
- Michael Amoo
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland.,Beacon Academy, Beacon Hospital, Sandyford, Dublin, Ireland
| | - Philip J O'Halloran
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Neurosurgery, Royal London Hospital, Whitechapel, London, United Kingdom
| | - Jack Henry
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Mohammed Ben Husien
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul Brennan
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | | | - John Caird
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Gerard F Curley
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
10
|
Lindblad C, Pin E, Just D, Al Nimer F, Nilsson P, Bellander BM, Svensson M, Piehl F, Thelin EP. Fluid proteomics of CSF and serum reveal important neuroinflammatory proteins in blood-brain barrier disruption and outcome prediction following severe traumatic brain injury: a prospective, observational study. Crit Care 2021; 25:103. [PMID: 33712077 PMCID: PMC7955664 DOI: 10.1186/s13054-021-03503-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Severe traumatic brain injury (TBI) is associated with blood-brain barrier (BBB) disruption and a subsequent neuroinflammatory process. We aimed to perform a multiplex screening of brain enriched and inflammatory proteins in blood and cerebrospinal fluid (CSF) in order to study their role in BBB disruption, neuroinflammation and long-term functional outcome in TBI patients and healthy controls. METHODS We conducted a prospective, observational study on 90 severe TBI patients and 15 control subjects. Clinical outcome data, Glasgow Outcome Score, was collected after 6-12 months. We utilized a suspension bead antibody array analyzed on a FlexMap 3D Luminex platform to characterize 177 unique proteins in matched CSF and serum samples. In addition, we assessed BBB disruption using the CSF-serum albumin quotient (QA), and performed Apolipoprotein E-genotyping as the latter has been linked to BBB function in the absence of trauma. We employed pathway-, cluster-, and proportional odds regression analyses. Key findings were validated in blood samples from an independent TBI cohort. RESULTS TBI patients had an upregulation of structural CNS and neuroinflammatory pathways in both CSF and serum. In total, 114 proteins correlated with QA, among which the top-correlated proteins were complement proteins. A cluster analysis revealed protein levels to be strongly associated with BBB integrity, but not carriage of the Apolipoprotein E4-variant. Among cluster-derived proteins, innate immune pathways were upregulated. Forty unique proteins emanated as novel independent predictors of clinical outcome, that individually explained ~ 10% additional model variance. Among proteins significantly different between TBI patients with intact or disrupted BBB, complement C9 in CSF (p = 0.014, ΔR2 = 7.4%) and complement factor B in serum (p = 0.003, ΔR2 = 9.2%) were independent outcome predictors also following step-down modelling. CONCLUSIONS This represents the largest concomitant CSF and serum proteomic profiling study so far reported in TBI, providing substantial support to the notion that neuroinflammatory markers, including complement activation, predicts BBB disruption and long-term outcome. Individual proteins identified here could potentially serve to refine current biomarker modelling or represent novel treatment targets in severe TBI.
Collapse
Affiliation(s)
- Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Elisa Pin
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - David Just
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Faiez Al Nimer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Yoen H, Yoo RE, Choi SH, Kim E, Oh BM, Yang D, Hwang I, Kang KM, Yun TJ, Kim JH, Sohn CH. Blood-Brain Barrier Disruption in Mild Traumatic Brain Injury Patients with Post-Concussion Syndrome: Evaluation with Region-Based Quantification of Dynamic Contrast-Enhanced MR Imaging Parameters Using Automatic Whole-Brain Segmentation. Korean J Radiol 2020; 22:118-130. [PMID: 32783413 PMCID: PMC7772380 DOI: 10.3348/kjr.2020.0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/05/2020] [Accepted: 05/24/2020] [Indexed: 12/29/2022] Open
Abstract
Objective This study aimed to investigate the blood-brain barrier (BBB) disruption in mild traumatic brain injury (mTBI) patients with post-concussion syndrome (PCS) using dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging and automatic whole brain segmentation. Materials and Methods Forty-two consecutive mTBI patients with PCS who had undergone post-traumatic MR imaging, including DCE MR imaging, between October 2016 and April 2018, and 29 controls with DCE MR imaging were included in this retrospective study. After performing three-dimensional T1-based brain segmentation with FreeSurfer software (Laboratory for Computational Neuroimaging), the mean Ktrans and vp from DCE MR imaging (derived using the Patlak model and extended Tofts and Kermode model) were analyzed in the bilateral cerebral/cerebellar cortex, bilateral cerebral/cerebellar white matter (WM), and brainstem. Ktrans values of the mTBI patients and controls were calculated using both models to identify the model that better reflected the increased permeability owing to mTBI (tendency toward higher Ktrans values in mTBI patients than in controls). The Mann-Whitney U test and Spearman rank correlation test were performed to compare the mean Ktrans and vp between the two groups and correlate Ktrans and vp with neuropsychological tests for mTBI patients. Results Increased permeability owing to mTBI was observed in the Patlak model but not in the extended Tofts and Kermode model. In the Patlak model, the mean Ktrans in the bilateral cerebral cortex was significantly higher in mTBI patients than in controls (p = 0.042). The mean vp values in the bilateral cerebellar WM and brainstem were significantly lower in mTBI patients than in controls (p = 0.009 and p = 0.011, respectively). The mean Ktrans of the bilateral cerebral cortex was significantly higher in patients with atypical performance in the auditory continuous performance test (commission errors) than in average or good performers (p = 0.041). Conclusion BBB disruption, as reflected by the increased Ktrans and decreased vp values from the Patlak model, was observed throughout the bilateral cerebral cortex, bilateral cerebellar WM, and brainstem in mTBI patients with PCS.
Collapse
Affiliation(s)
- Heera Yoen
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Roh Eul Yoo
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul, Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| | - Eunkyung Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Korea.,National Traffic Injury Rehabilitation Hospital, Yangpyeong, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dongjin Yang
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Inpyeong Hwang
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Jin Yun
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chul Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Lindblad C, Nelson DW, Zeiler FA, Ercole A, Ghatan PH, von Horn H, Risling M, Svensson M, Agoston DV, Bellander BM, Thelin EP. Influence of Blood-Brain Barrier Integrity on Brain Protein Biomarker Clearance in Severe Traumatic Brain Injury: A Longitudinal Prospective Study. J Neurotrauma 2020; 37:1381-1391. [PMID: 32013731 PMCID: PMC7249468 DOI: 10.1089/neu.2019.6741] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brain protein biomarker clearance to blood in traumatic brain injury (TBI) is not fully understood. The aim of this study was to analyze the effect that a disrupted blood–brain barrier (BBB) had on biomarker clearance. Seventeen severe TBI patients admitted to Karolinska University Hospital were prospectively included. Cerebrospinal fluid (CSF) and blood concentrations of S100 calcium binding protein B (S100B) and neuron-specific enolase (NSE) were analyzed every 6–12 h for ∼1 week. Blood and CSF albumin were analyzed every 12–24 h, and BBB integrity was assessed using the CSF:blood albumin quotient (QA). We found that time-dependent changes in the CSF and blood levels of the two biomarkers were similar, but that the correlation between the biomarkers and QA was lower for NSE (ρ = 0.444) than for S100B (ρ = 0.668). Because data were longitudinal, we also conducted cross correlation analyses, which indicated a directional flow and lag-time of biomarkers from CSF to blood. For S100B, this lag-time could be ascribed to BBB integrity, whereas for NSE it could not. Upon inferential modelling, using generalized least square estimation (S100B) or linear mixed models (NSE), QA (p = 0.045), time from trauma (p < 0.001), time from trauma2 (p = 0.023), and CSF biomarker levels (p = 0.008) were independent predictors of S100B in blood. In contrast, for NSE, only time from trauma was significant (p < 0.001). These findings are novel and important, but must be carefully interpreted because of different characteristics between the two proteins. Nonetheless, we present the first data that indicate that S100B and NSE are cleared differently from the central nervous system, and that both the disrupted BBB and additional alternative pathways, such as the recently described glymphatic system, may play a role. This is of importance both for clinicians aiming to utilize these biomarkers and for the pathophysiological understanding of brain protein clearance, but warrants further examination.
Collapse
Affiliation(s)
- Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Address correspondence to: Caroline Lindblad, MD, Karolinska Universitetssjukhuset Solna J5:20, Tema Neuro, forskargrupp Svensson, SE-17176 Stockholm, Sweden
| | - David W. Nelson
- Department of Section for Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Frederick A. Zeiler
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, and University of Manitoba, Winnipeg, Manitoba, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, and Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ari Ercole
- Division of Anaesthesia, Department of Medicine, and Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Per Hamid Ghatan
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Henrik von Horn
- Department of Division of Clinical Chemistry, and Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, and Karolinska Institutet, Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Denes V. Agoston
- Department of Neuroscience, and Karolinska Institutet, Stockholm, Sweden
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Department of Theme Neuro, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Yue JK, Upadhyayula PS, Avalos LN, Deng H, Wang KKW. The Role of Blood Biomarkers for Magnetic Resonance Imaging Diagnosis of Traumatic Brain Injury. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E87. [PMID: 32098419 PMCID: PMC7074393 DOI: 10.3390/medicina56020087] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 01/21/2023]
Abstract
Background and Objectives: The annual global incidence of traumatic brain injury (TBI) is over 10 million. An estimated 29% of TBI patients with negative computed tomography (CT-) have positive magnetic resonance imaging (MRI+) findings. Judicious use of serum biomarkers with MRI may aid in diagnosis of CT-occult TBI. The current manuscript aimed to evaluate the diagnostic, therapeutic and risk-stratification utility of known biomarkers and intracranial MRI pathology. Materials and Methods: The PubMed database was queried with keywords (plasma OR serum) AND (biomarker OR marker OR protein) AND (brain injury/trauma OR head injury/trauma OR concussion) AND (magnetic resonance imaging/MRI) (title/abstract) in English. Seventeen articles on TBI biomarkers and MRI were included: S100 calcium-binding protein B (S100B; N = 6), glial fibrillary acidic protein (GFAP; N = 3), GFAP/ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1; N = 2), Tau (N = 2), neurofilament-light (NF-L; N = 2), alpha-synuclein (N = 1), and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor peptide (AMPAR; N = 1). Results: Acute GFAP distinguished CT-/MRI+ from CT-/MRI- (AUC = 0.777, 0.852 at 9-16 h). GFAP discriminated CT-/diffuse axonal injury (DAI+) from controls (AUC = 0.903). Tau correlated directly with number of head strikes and inversely with white matter fractional anisotropy (FA), and a cutoff > 1.5 pg/mL discriminated between DAI+ and DAI- (sensitivity = 74%/specificity = 69%). NF-L had 100% discrimination of DAI in severe TBI and correlated with FA. Low alpha-synuclein was associated with poorer functional connectivity. AMPAR cutoff > 0.4 ng/mL had a sensitivity of 91% and a specificity of 92% for concussion and was associated with minor MRI findings. Low/undetectable S100B had a high negative predictive value for CT/MRI pathology. UCH-L1 showed no notable correlations with MRI. Conclusions: An acute circulating biomarker capable of discriminating intracranial MRI abnormalities is critical to establishing diagnosis for CT-occult TBI and can triage patients who may benefit from outpatient MRI, surveillance and/or follow up with TBI specialists. GFAP has shown diagnostic potential for MRI findings such as DAI and awaits further validation. Tau shows promise in detecting DAI and disrupted functional connectivity. Candidate biomarkers should be evaluated within the context of analytical performance of the assays used, as well as the post-injury timeframe for blood collection relative to MRI abnormalities.
Collapse
Affiliation(s)
- John K. Yue
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA;
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Pavan S. Upadhyayula
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10027, USA;
- Department of Neurological Surgery, University of California Diego, San Diego, CA 92093, USA
| | - Lauro N. Avalos
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA;
| | - Kevin K. W. Wang
- Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, FL 32608, USA;
| |
Collapse
|
14
|
Abstract
Sports-related traumatic brain injuries (TBIs) range in severity from severe to subconcussive. Although technologies exist for clinical diagnosis of more severe injuries, methods for diagnosis of milder forms of brain injury are limited. Developing objective measures to indicate pathogenic processes after a suspected mild TBI is challenging for multiple reasons. The field of biomarker discovery for diagnosing TBI continues to expand, with newly identified candidate biomarkers being reported regularly. Brain-specific biomarkers include proteins derived from neurons and glia, and are often measured to assess neural injury and repair, and to predict outcomes. Ideally, changes in biomarker levels should indicate pathologic events and answer critical questions for accurate diagnosis and prognosis. For example, does the presence or a change in the biomarker level suggest greater vulnerability for sustaining a second concussion or show that the window of increased vulnerability has passed? Likewise, do changes in biomarker levels predict postconcussion syndrome or recovery/repair? Although there are numerous promising candidates for fluid biomarkers that may diagnose mild TBI or concussion, none has reached the clinic to date. In this chapter, we will define biomarkers, discuss the importance of understanding their normal and pathologic functions, and outline some considerations for interpreting detection assay results in TBI. We will then review five proposed blood and cerebrospinal fluid biomarkers (tau, neurofilament, ubiquitin carboxyl-terminal hydrolase L1, S100β, and glial fibrillary acidic protein) used currently to address TBI. Lastly, we will discuss a future trajectory for developing new, clinically useful fluid biomarkers.
Collapse
|
15
|
Erickson MA, Liang WS, Fernandez EG, Bullock KM, Thysell JA, Banks WA. Genetics and sex influence peripheral and central innate immune responses and blood-brain barrier integrity. PLoS One 2018; 13:e0205769. [PMID: 30325961 PMCID: PMC6191122 DOI: 10.1371/journal.pone.0205769] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023] Open
Abstract
Lipopolysaccharide (LPS) is a stimulator of the innate immune system and is routinely used in animal models to study blood-brain barrier (BBB) dysfunction under inflammatory conditions. It is appreciated that both humans and mice have sexually dimorphic immune responses, which could influence the brain’s response to a systemic inflammatory insult. Mouse strain is also an important factor that can contribute to pathophysiological responses to inflammatory stimuli. Therefore, we aimed to test whether BBB disruption and the associated cytokine profiles in response to LPS differed in male and female mice from two mouse strains most commonly used in blood-brain barrier studies: CD-1 and C57BL6/J (C57). Mice were treated with saline, a single injection of 0.3, or 3mg/kg LPS, or three injections of 3mg/kg LPS, and studied 28 hours after the first LPS injection. To assay BBB disruption, we utilized the tracer 99mTc-DTPA. A 23-plex panel of cytokines was assayed in brain and blood of the same cohort of mice, which allowed us to compare differences in the levels of individual cytokines as well as correlations among cytokines and 99mTc-DTPA uptake. We found that only the three-injection dose of LPS induced significant BBB disruption in all sexes and strains. The treatment, strain, and sex, as well as treatment-by- strain and treatment-by-sex interactions significantly contributed to the variance. The mean brain/serum ratios of 99mTc-DTPA in the three-injection LPS group were ranked CD-1 male < CD-1 female < C57 male < C57 female. There were significant sex and strain differences in cytokine profiles in brain and blood, and pro-inflammatory cytokines and chemokines in brain were most strongly correlated with 99mTc-DTPA brain/serum ratios.
Collapse
Affiliation(s)
- Michelle A. Erickson
- Geriatric Research, Education and Clinical Center (GRECC), Veterans Administration Puget Sound Healthcare System, Seattle, Washington, United States of America
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - W. Sandy Liang
- Geriatric Research, Education and Clinical Center (GRECC), Veterans Administration Puget Sound Healthcare System, Seattle, Washington, United States of America
| | - Elizabeth G. Fernandez
- Geriatric Research, Education and Clinical Center (GRECC), Veterans Administration Puget Sound Healthcare System, Seattle, Washington, United States of America
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kristin M. Bullock
- Geriatric Research, Education and Clinical Center (GRECC), Veterans Administration Puget Sound Healthcare System, Seattle, Washington, United States of America
| | - Jarl A. Thysell
- Geriatric Research, Education and Clinical Center (GRECC), Veterans Administration Puget Sound Healthcare System, Seattle, Washington, United States of America
| | - William A. Banks
- Geriatric Research, Education and Clinical Center (GRECC), Veterans Administration Puget Sound Healthcare System, Seattle, Washington, United States of America
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
16
|
Yoo RE, Choi SH, Oh BM, Do Shin S, Lee EJ, Shin DJ, Jo SW, Kang KM, Yun TJ, Kim JH, Sohn CH. Quantitative dynamic contrast-enhanced MR imaging shows widespread blood-brain barrier disruption in mild traumatic brain injury patients with post-concussion syndrome. Eur Radiol 2018; 29:1308-1317. [DOI: 10.1007/s00330-018-5656-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/01/2018] [Accepted: 07/04/2018] [Indexed: 12/27/2022]
|
17
|
Cole JH. Neuroimaging Studies Illustrate the Commonalities Between Ageing and Brain Diseases. Bioessays 2018; 40:e1700221. [PMID: 29882974 DOI: 10.1002/bies.201700221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/23/2018] [Indexed: 12/19/2022]
Abstract
The lack of specificity in neuroimaging studies of neurological and psychiatric diseases suggests that these different diseases have more in common than is generally considered. Potentially, features that are secondary effects of different pathological processes may share common neurobiological underpinnings. Intriguingly, many of these mechanisms are also observed in studies of normal (i.e., non-pathological) brain ageing. Different brain diseases may be causing premature or accelerated ageing to the brain, an idea that is supported by a line of "brain ageing" research that combines neuroimaging data with machine learning analysis. In reviewing this field, I conclude that such observations could have important implications, suggesting that we should shift experimental paradigm: away from characterizing the average case-control brain differences resulting from a disease toward methods that place individuals in their age-appropriate context. This will also lead naturally to clinical applications, whereby neuroimaging can contribute to a personalized-medicine approach to improve brain health.
Collapse
Affiliation(s)
- James H Cole
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience King's College London, London, SE5 8AF, UK
| |
Collapse
|
18
|
|
19
|
Blood biomarkers for brain injury: What are we measuring? Neurosci Biobehav Rev 2016; 68:460-473. [PMID: 27181909 DOI: 10.1016/j.neubiorev.2016.05.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 12/28/2022]
Abstract
Accurate diagnosis for mild traumatic brain injury (mTBI) remains challenging, as prognosis and return-to-play/work decisions are based largely on patient reports. Numerous investigations have identified and characterized cellular factors in the blood as potential biomarkers for TBI, in the hope that these factors may be used to gauge the severity of brain injury. None of these potential biomarkers have advanced to use in the clinical setting. Some of the most extensively studied blood biomarkers for TBI include S100β, neuron-specific enolase, glial fibrillary acidic protein, and Tau. Understanding the biological function of each of these factors may be imperative to achieve progress in the field. We address the basic question: what are we measuring? This review will discuss blood biomarkers in terms of cellular origin, normal and pathological function, and possible reasons for increased blood levels. Considerations in the selection, evaluation, and validation of potential biomarkers will also be addressed, along with mechanisms that allow brain-derived proteins to enter the bloodstream after TBI. Lastly, we will highlight perspectives and implications for repetitive neurotrauma in the field of blood biomarkers for brain injury.
Collapse
|
20
|
SOD2 Mediates Amifostine-Induced Protection against Glutamate in PC12 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4202437. [PMID: 26770652 PMCID: PMC4685138 DOI: 10.1155/2016/4202437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 12/31/2022]
Abstract
Background. Cytoprotectant amifostine attenuates radiation-induced oxidative injury by increasing intracellular manganese superoxide dismutase (SOD2) in peripheral tissue. However, whether amifostine could protect neuronal cells against oxidative injury has not been reported. The purpose of this study is to explore the protection of amifostine in PC12 cells. Methods. PC12 cells exposed to glutamate were used to mimic neuronal oxidative injury. SOD assay kit was taken to evaluate intracellular Cu/Zn SOD (SOD1) and SOD2 activities; western blot analysis and immunofluorescence staining were performed to investigate SOD2 protein expression; MTT, lactate dehydrogenase (LDH), release and cell morphology were used to evaluate cell injury degree, and apoptotic rate and cleaved caspase-3 expression were taken to assess apoptosis; mitochondrial superoxide production, intracellular reactive oxygen species (ROS), and glutathione (GSH) and catalase (CAT) levels were evaluated by reagent kits. Results. Amifostine increased SOD2 activity and expression, decreased cell injury and apoptosis, reduced mitochondrial superoxide production and intracellular ROS generation, and restored intracellular GSH and CAT levels in PC12 cells exposed to glutamate. SOD2-siRNA, however, significantly reversed the amifostine-induced cytoprotective and antioxidative actions. Conclusion. SOD2 mediates amifostine-induced protection in PC12 cells exposed to glutamate.
Collapse
|