1
|
Okawara H, Sawada T, Onuki S, Sugai K, Okubo T, Ozaki M, Tsuji O, Nagoshi N, Sato Y, Nakamura M. Exercise therapy can effectively improve trunk performance and sitting balance in spinal cord injury: a systematic review and meta-analysis. Neurol Sci 2024:10.1007/s10072-024-07960-4. [PMID: 39739273 DOI: 10.1007/s10072-024-07960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
OBJECTIVE To determine the effects of exercise on trunk performance and balance in patients with spinal cord injury (SCI). METHODS We searched the databases MEDLINE, Cochrane Library, EMBASE, Physiotherapy Evidence Database, Web of Science, PsycINFO, and CINAHL from inception to June 2020. Our search targeted studies such as randomized or non-randomized controlled trials and randomized crossover trials that evaluated the effects of exercise on trunk performance and balance in patients with SCI. RESULTS Seventeen eligible studies with 432 patients with SCI were included in the meta-analysis. The exercise significantly improved several measures: Berg Balance Scale (mean differences [MD] = 4.58; 95% confidence intervals [CI], 0.35, 8.8; p = 0.03), Modified Functional Reach Test (MD = 5.29; 95% CI, 4.16, 6.42; p < 0.01), T-shirt test (MD = 5.62; 95% CI, - 3.82, - 7.42; p < 0.01), Timed Up and Go (MD = - 1.70; 95% CI, - 0.23, - 3.16; p = 0.02). Improvements were also noted in total static sitting balance (standardized mean differences [SMD] = 1.21; 95% CI, 0.79, 1.63; p < 0.01), and total dynamic sitting balance (SMD = 1.01; 95% CI, 0.30, 1.73; p < 0.01). In the subgroup analysis, exercise with sensory input enhancement significantly improved total static (SMD = 1.37; 95% CI, 0.64, 2.11; p < 0.01) and total dynamic sitting balance (SMD = 1.78; 95% CI, 0.28, 3.29; p = 0.02). CONCLUSIONS Exercise may improve sitting balance in patients with SCI. Moreover, enhancement of sensory input had an add-on effect in improving sitting balance. REGISTRATION PROSPERO (CRD42020185904).
Collapse
Affiliation(s)
- Hiroki Okawara
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tomonori Sawada
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Saki Onuki
- Department of Rehabilitation, St. Luke's International Hospital, Tokyo, Japan
| | - Keiko Sugai
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.
| | - Toshiki Okubo
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Ozaki
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Osahiko Tsuji
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Sato
- Department of Biostatistics, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Ponzano M, Buren R, Adams NT, Jun J, Jetha A, Mack DE, Ginis KAM. Effect of Exercise on Mental Health and Health-related Quality of Life in Adults With Spinal Cord Injury: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2024; 105:2350-2361. [PMID: 38556188 DOI: 10.1016/j.apmr.2024.02.737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVES To determine the effect of exercise interventions on mental health and health-related quality of life (HRQoL) in individuals with SCI. DATA SOURCES We searched Embase, CINAHL, Medline, PsychINFO, and SPORTDiscus from inception to September 2023. STUDY SELECTION We included randomized controlled trials that (1) involved participants ≥18 years old with a SCI; (2) administered an exercise intervention; and (3) measured subjective well-being, psychological well-being, social well-being, and/or HRQoL as outcomes. We reported standardized means differences (d) with a 95% confidence interval (CI), assessed the risk of bias by using the Revised Cochrane Risk-of-bias Tool for Randomized Trials (RoB 2), and the certainty of the evidence using GRADE. DATA SYNTHESIS Nineteen studies (797 participants, mean age <65 years in every study) were included. Exercise improved overall well-being (d=0.494; 95% CI 0.268, 0.720; low certainty evidence), subjective well-being (d=0.543; 95% CI 0.270, 0.816; low certainty evidence), psychological well-being (d=0.499; 95% CI 0.193, 0.805; low certainty evidence), social well-being (d=0.452; 95% CI 0.151, 0.752; low certainty evidence), and HRQoL (d=0.323; 95% CI 0.072, 0.574; low certainty evidence). Four serious adverse events probably attributable to the interventions were reported in 3 studies. CONCLUSIONS Exercise interventions can improve well-being and HRQoL in adults with SCI <65 years of age. Additional research is needed to determine effectiveness in adults ≥65 years of age.
Collapse
Affiliation(s)
- Matteo Ponzano
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada; International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (BSCC), University of British Columbia, Vancouver, Canada.
| | - Robert Buren
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada; International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (BSCC), University of British Columbia, Vancouver, Canada
| | - Nathan T Adams
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada; International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (BSCC), University of British Columbia, Vancouver, Canada
| | - Jane Jun
- Division of Physical Medicine & Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Arif Jetha
- Institute for Work & Health, Toronto, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Diane E Mack
- Department of Kinesiology, Brock University, St Catharines, Canada
| | - Kathleen A Martin Ginis
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada; International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (BSCC), University of British Columbia, Vancouver, Canada; Division of Physical Medicine & Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, Canada; Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, Canada
| |
Collapse
|
3
|
Sakaguchi T, Heyder A, Tanaka M, Uotani K, Omori T, Kodama Y, Takamatsu K, Yasuda Y, Sugyo A, Takeda M, Nakagawa M. Rehabilitation to Improve Outcomes after Cervical Spine Surgery: Narrative Review. J Clin Med 2024; 13:5363. [PMID: 39336849 PMCID: PMC11432758 DOI: 10.3390/jcm13185363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
PURPOSE The increasing elderly patient population is contributing to the rising worldwide load of cervical spinal disorders, which is expected to result in a global increase in the number of surgical procedures in the foreseeable future. Cervical rehabilitation plays a crucial role in optimal recovery after cervical spine surgeries. Nevertheless, there is no agreement in the existing research regarding the most suitable postsurgical rehabilitation program. Consequently, this review assesses the ideal rehabilitation approach for adult patients following cervical spine operations. MATERIALS AND METHODS This review covers activities of daily living and encompasses diverse treatment methods, including physiotherapy, specialized tools, and guidance for everyday activities. The review is organized under three headings: (1) historical perspectives, (2) patient-reported functional outcomes, and (3) general and disease-specific rehabilitation. RESULTS Rehabilitation programs are determined on the basis of patient-reported outcomes, performance tests, and disease prognosis. CSM requires strengthening of the neck and shoulder muscles that have been surgically invaded. In contrast, the CCI requires mobility according to the severity of the spinal cord injury and functional prognosis. The goal of rehabilitation for CCTs, as for CCIs, is to achieve ambulation, but the prognosis and impact of cancer treatment must be considered. CONCLUSIONS Rehabilitation of the cervical spine after surgery is essential for improving physical function and the ability to perform daily activities and enhancing overall quality of life. The rehabilitation process should encompass general as well as disease-specific exercises. While current rehabilitation protocols heavily focus on strengthening muscles, they often neglect the crucial aspect of spinal balance. Therefore, giving equal attention to muscle reinforcement and the enhancement of spinal balance following surgery on the cervical spine is vital.
Collapse
Affiliation(s)
- Tomoyoshi Sakaguchi
- Department of Rehabilitation, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (T.S.); (K.T.); (Y.Y.); (M.N.)
| | - Ahmed Heyder
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (A.H.); (K.U.); (T.O.); (Y.K.)
| | - Masato Tanaka
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (A.H.); (K.U.); (T.O.); (Y.K.)
| | - Koji Uotani
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (A.H.); (K.U.); (T.O.); (Y.K.)
| | - Toshinori Omori
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (A.H.); (K.U.); (T.O.); (Y.K.)
| | - Yuya Kodama
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (A.H.); (K.U.); (T.O.); (Y.K.)
| | - Kazuhiko Takamatsu
- Department of Rehabilitation, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (T.S.); (K.T.); (Y.Y.); (M.N.)
| | - Yosuke Yasuda
- Department of Rehabilitation, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (T.S.); (K.T.); (Y.Y.); (M.N.)
| | - Atsushi Sugyo
- Department of Rehabilitation, Spinal Injuries Center, 550-4 Igisu, Fukuoka 820-8508, Japan;
| | - Masanori Takeda
- Department of Rehabilitation, Kansai Rosai Hospital, 3-1-69 Inabasou, Amagasaki City 660-8511, Japan;
| | - Masami Nakagawa
- Department of Rehabilitation, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (T.S.); (K.T.); (Y.Y.); (M.N.)
| |
Collapse
|
4
|
Benn NL, Jervis-Rademeyer H, Souza WH, Pakosh M, Inness EL, Musselman KE. Balance Interventions to Improve Upright Balance Control and Balance Confidence in People With Motor-Incomplete Spinal Cord Injury or Disease: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2024:S0003-9993(24)01162-6. [PMID: 39111646 DOI: 10.1016/j.apmr.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVES To assist with clinical decision making, evidence syntheses are needed to demonstrate the efficacy of available interventions and examine the intervention components and dosage parameters. This systematic review and meta-analysis described the efficacy, components and dosage of interventions targeting upright balance control, balance confidence, and/or falls in adults with motor-incomplete spinal cord injury/disease (SCI/D). DATA SOURCES A search strategy following the population, intervention, control, outcome framework was developed. Six databases were searched: APA PsychInfo, Cumulative Index to Nursing and Allied Health Literature, Embase, Emcare Nursing, Web of Science CC, and Medline. STUDY SELECTION Title, abstract, and full-text screening were conducted by 2 researchers independently. Inclusion criteria included the following: (1) adults with chronic, motor-incomplete SCI/D; (2) physical intervention targeting upright postural control; and (3) clinical and/or biomechanical measures of upright balance control and/or balance confidence and/or documentation of falls. DATA EXTRACTION Participant characteristics, balance intervention details, adverse events, and study results were extracted. The Downs and Black Checklist was used to assess methodological quality. Meta-analyses on pre-post intervention outcomes and a meta-regression of dosage were completed. Grading of Recommendations, Assessment, Development, and Evaluations approach was used to evaluate the quality of the evidence. DATA SYNTHESIS The search returned 1664 unique studies; 26 were included. Methodological quality was moderate to good. Participants were 500 individuals with SCI/D, aged 18-74 years (males: females = 2.4:1). Minor adverse events were reported in 8 studies (eg, muscle soreness and fatigue). Walking interventions and upright balance training with visual feedback had clinically meaningful and significant pooled effects on improving standing balance control. Only walking interventions had a significant pooled effect on improving balance confidence. There were no significant findings on dosage response. Few studies evaluated the effects of balance interventions on the occurrence of falls. CONCLUSIONS Walking interventions and upright balance training with visual feedback had greater effects on upright balance control than conventional physiotherapy; however, the quality of the evidence was very low.
Collapse
Affiliation(s)
- Natasha L Benn
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
| | | | - Wagner H Souza
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
| | - Maureen Pakosh
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
| | - Elizabeth L Inness
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada; Department of Physical Therapy, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Kristin E Musselman
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada; Department of Physical Therapy, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
5
|
Ettema S, Pennink GH, Buurke TJW, David S, van Bennekom CAM, Houdijk H. Clinical indications and protocol considerations for selecting initial body weight support levels in gait rehabilitation: a systematic review. J Neuroeng Rehabil 2024; 21:97. [PMID: 38849899 PMCID: PMC11157893 DOI: 10.1186/s12984-024-01389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Body weight support (BWS) training devices are frequently used to improve gait in individuals with neurological impairments, but guidance in selecting an appropriate level of BWS is limited. Here, we aim to describe the initial BWS levels used during gait training, the rationale for this selection and the clinical goals aligned with BWS training for different diagnoses. METHOD A systematic literature search was conducted in PubMed, Embase and Web of Science, including terms related to the population (individuals with neurological disorders), intervention (BWS training) and outcome (gait). Information on patient characteristics, type of BWS device, BWS level and training goals was extracted from the included articles. RESULTS Thirty-three articles were included, which described outcomes using frame-based (stationary or mobile) and unidirectional ceiling-mounted devices on four diagnoses (multiple sclerosis (MS), spinal cord injury (SCI), stroke, traumatic brain injury (TBI)). The BWS levels were highest for individuals with MS (median: 75%, IQR: 6%), followed by SCI (median: 40%, IQR: 35%), stroke (median: 30%, IQR: 4.75%) and TBI (median: 15%, IQR: 0%). The included studies reported eleven different training goals. Reported BWS levels ranged between 30 and 75% for most of the training goals, without a clear relationship between BWS level, diagnosis, training goal and rationale for BWS selection. Training goals were achieved in all included studies. CONCLUSION Initial BWS levels differ considerably between studies included in this review. The underlying rationale for these differences was not clearly motivated in the included studies. Variation in study designs and populations does not allow to draw a conclusion on the effectiveness of BWS levels. Hence, it remains difficult to formulate guidelines on optimal BWS settings for different diagnoses, BWS devices and training goals. Further efforts are required to establish clinical guidelines and to experimentally investigate which initial BWS levels are optimal for specific diagnoses and training goals.
Collapse
Affiliation(s)
- Sanne Ettema
- Research and Development, Heliomare Rehabilitation, Wijk aan Zee, the Netherlands.
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Geertje H Pennink
- Research and Development, Heliomare Rehabilitation, Wijk aan Zee, the Netherlands
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Tom J W Buurke
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Sina David
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Coen A M van Bennekom
- Research and Development, Heliomare Rehabilitation, Wijk aan Zee, the Netherlands
- Department of Public and Occupational Health, Amsterdam UMC, Amsterdam, the Netherlands
| | - Han Houdijk
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Ringsten M, Ivanic B, Iwarsson S, Lexell EM. Interventions to improve outdoor mobility among people living with disabilities: A systematic review. CAMPBELL SYSTEMATIC REVIEWS 2024; 20:e1407. [PMID: 38882933 PMCID: PMC11177337 DOI: 10.1002/cl2.1407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 06/18/2024]
Abstract
Background Around 15% of the global population live with some form of disabilities and experience worse health outcomes, less participation in the community and are part of fewer activities outside the home. Outdoor mobility interventions aim to improve the ability to move, travel and orient outside the home and could influence the number of activities outside the home, participation and quality of life. However, outdoor mobility interventions may also lead to harm like falls or injuries or have unforeseen effects which could lead to mortality or hospitalization. Objectives To assess the efficacy of interventions aiming to improve outdoor mobility for adults living with disabilities and to explore if the efficacy varies between different conditions and different intervention components. Search Methods Standard, extensive Campbell search methods were used, including a total of 12 databases searched during January 2023, including trial registries. Selection Criteria Only randomized controlled trials were included, focusing on people living with disabilities, comparing interventions to improve outdoor mobility to control interventions as well as comparing different types of interventions to improve outdoor mobility. Data Collection and Analysis Standard methodological procedures expected by Campbell were used. The following important outcomes were 1. Activity outside the home; 2. Engagement in everyday life activities; 3. Participation; 4. Health-related Quality of Life; 5. Major harms; 6. Minor harms. The impact of the interventions was evaluated in the shorter (≤6 months) and longer term (≥7 months) after starting the intervention. Results are presented using risk ratios (RR), risk difference (RD), and standardized mean differences (SMD), with the associated confidence intervals (CI). The risk of bias 2-tool and the GRADE-framework were used to assess the certainty of the evidence. Main Results The screening comprised of 12.894 studies and included 22 studies involving 2.675 people living with disabilities and identified 12 ongoing studies. All reported outcomes except one (reported in one study, some concerns of bias) had overall high risk of bias. Thirteen studies were conducted in participants with disabilities due to stroke, five studies with older adults living with disabilities, two studies with wheelchair users, one study in participants with disabilities after a hip fracture, and one study in participants with cognitive impairments. Skill training interventions versus control interventions (16 studies) The evidence is very uncertain about the benefits and harms of skill training interventions versus control interventions not aimed to improve outdoor mobility among all people living with disabilities both in the shorter term (≤6 months) and longer term (≥7 months) for Activity outside the home; Participation; Health-related Quality of Life; Major harms; and Minor harms, based on very low certainty evidence. Skill training interventions may improve engagement in everyday life activities among people with disabilities in the shorter term (RR: 1.46; 95% CI: 1.16 to 1.84; I 2 = 7%; RD: 0.15; 95% CI: -0.02 to 0.32; I 2 = 71%; 692 participants; three studies; low certainty evidence), but the evidence is very uncertain in the longer term, based on very low certainty evidence. Subgroup analysis of skill training interventions among people living with disabilities due to cognitive impairments suggests that such interventions may improve activity outside the home in the shorter term (SMD: 0.44; 95% CI: 0.07 to 0.81; I 2 = NA; 118 participants; one study; low certainty evidence). Subgroup analysis of skill training interventions among people living with cognitive impairments suggests that such interventions may improve health-related quality of life in the shorter term (SMD: 0.49; 95% CI: 0.12 to 0.88; I 2 = NA; 118 participants; one study; low certainty evidence). Physical training interventions versus control interventions (five studies) The evidence is very uncertain about the benefits and harms of physical training interventions versus control interventions not aimed to improve outdoor mobility in the shorter term (≤6 months) and longer term (≥7 months) for: Engagement in everyday life activities; Participation; Health-related Quality of Life; Major harms; and Minor harms, based on very low certainty evidence. Physical training interventions may improve activity outside the home in the shorter (SMD: 0.35; 95% CI: 0.08 to 0.61; I 2 = NA; 228 participants; one study; low certainty evidence) and longer term (≥7 months) (SMD: 0.27; 95% CI: 0.00 to 0.54; I 2 = NA; 216 participants; one study; low certainty evidence). Comparison of different outdoor mobility interventions (one study) The evidence is very uncertain about the benefits and harms of outdoor mobility interventions of different lengths in the shorter term (≤6 months) and longer term (≥7 months) for Activity outside the home; Engagement in everyday life activities; Participation; Health-related Quality of Life; Major harms; and Minor harms, based on very low certainty evidence. No studies explored the efficacy of other types of interventions. Authors’ Conclusions Twenty-two studies of interventions to improve outdoor mobility for people living with disabilities were identified, but the evidence still remains uncertain about most benefits and harms of these interventions, both in the short- and long term. This is primarily related to risk of bias, small underpowered studies and limited reporting of important outcomes for people living with disabilities. For people with disabilities, skill training interventions may improve engagement in everyday life in the short term, and improve activity outside the home and health-related quality of life for people with cognitive impairments in the short term. Still, this is based on low certainty evidence from few studies and should be interpreted with caution. One study with low certainty evidence suggests that physical training interventions may improve activity outside the home in the short term. In addition, the effect sizes across all outcomes were considered small or trivial, and could be of limited relevance to people living with disabilities. The evidence is currently uncertain if there are interventions that can improve outdoor mobility for people with disabilities, and can improve other important outcomes, while avoiding harms. To guide decisions about the use of interventions to improve outdoor mobility, future studies should use more rigorous design and report important outcomes for people with disabilities to reduce the current uncertainty.
Collapse
Affiliation(s)
- Martin Ringsten
- Cochrane Sweden, Research and Development Skåne University Hospital Lund Sweden
- Department of Health Sciences Lund University Lund Sweden
| | | | | | - Eva Månsson Lexell
- Department of Health Sciences Lund University Lund Sweden
- Department of Neurology, Rehabilitation Medicine, Cognitive Medicine and Geriatrics Skåne University Hospital Lund-Malmö Sweden
| |
Collapse
|
7
|
Zwijgers E, van Dijsseldonk RB, Vos-van der Hulst M, Hijmans JM, Geurts ACH, Keijsers NLW. Efficacy of Walking Adaptability Training on Walking Capacity in Ambulatory People With Motor Incomplete Spinal Cord Injury: A Multicenter Pragmatic Randomized Controlled Trial. Neurorehabil Neural Repair 2024; 38:413-424. [PMID: 38661122 PMCID: PMC11097615 DOI: 10.1177/15459683241248088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
BACKGROUND AND OBJECTIVE Balance and walking capacity are often impaired in people with motor incomplete spinal cord injury (iSCI), frequently resulting in reduced functional ambulation and participation. This study aimed to assess the efficacy of walking adaptability training compared to similarly dosed conventional locomotor and strength training for improving walking capacity, functional ambulation, balance confidence, and participation in ambulatory people with iSCI. METHODS We conducted a 2-center, parallel-group, pragmatic randomized controlled trial. Forty-one people with iSCI were randomized to 6 weeks of (i) walking adaptability training (11 hours of Gait Real-time Analysis Interactive Lab (GRAIL) training-a treadmill in a virtual reality environment) or (ii) conventional locomotor and strength training (11 hours of treadmill training and lower-body strength exercises). The primary measure of walking capacity was maximal walking speed, measured with an overground 2-minute walk test. Secondary outcome measures included the Spinal Cord Injury Functional Ambulation Profile (SCI-FAP), the Activities-specific Balance Confidence (ABC) scale, and the Utrecht Scale for Evaluation of Rehabilitation-Participation (USER-P). RESULTS No significant difference in maximal walking speed between the walking adaptability (n = 17) and conventional locomotor and strength (n = 18) training groups was found 6 weeks after training at follow-up (-0.05 m/s; 95% CI = -0.12-0.03). In addition, no significant group differences in secondary outcomes were found. However, independent of intervention, significant improvements over time were found for maximal walking speed, SCI-FAP, ABC, and USER-P restrictions scores. Conclusions. Our findings suggest that walking adaptability training may not be superior to conventional locomotor and strength training for improving walking capacity, functional ambulation, balance confidence, or participation in ambulatory people with iSCI. TRIAL REGISTRATION Dutch Trial Register; Effect of GRAIL training in iSCI.
Collapse
Affiliation(s)
- Eline Zwijgers
- Department of Rehabilitation, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Research, Sint Maartenskliniek, Nijmegen, The Netherlands
| | - Rosanne B. van Dijsseldonk
- Department of Rehabilitation, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Research, Sint Maartenskliniek, Nijmegen, The Netherlands
| | | | - Juha M. Hijmans
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander C. H. Geurts
- Department of Rehabilitation, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands
| | - Noël L. W. Keijsers
- Department of Rehabilitation, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Research, Sint Maartenskliniek, Nijmegen, The Netherlands
- Department of Sensorimotor Neuroscience, Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Klamruen P, Suttiwong J, Aneksan B, Muangngoen M, Denduang C, Klomjai W. Effects of Anodal Transcranial Direct Current Stimulation With Overground Gait Training on Lower Limb Performance in Individuals With Incomplete Spinal Cord Injury. Arch Phys Med Rehabil 2024; 105:857-867. [PMID: 37926224 DOI: 10.1016/j.apmr.2023.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To determine the effects of anodal transcranial direct current stimulation (tDCS) combined with overground gait training on gait performance, dynamic balance, sit-to-stand performance, and quality of life in individuals with incomplete spinal cord injuries (iSCI). DESIGN Double-blind sham-controlled trial with a matched-pair design. SETTING Sirindhorn National Medical Rehabilitation Institute, Thailand. PARTICIPANTS Individuals with iSCI (n=34) were allocated to the anodal or sham groups. INTERVENTION Anodal tDCS was administered over the M1 lower-limb motor area at an intensity of 2 mA for 20 min in the anodal group, while the sham group received a 30-s stimulation. Both groups received 40 min of overground gait training after tDCS for 5 consecutive daily sessions. MAIN OUTCOME MEASURES The 10-meter walk test (10MWT) was the primary outcome, while spatiotemporal gait parameters, the timed Up and Go test, Five-Time Sit-to-Stand Test, and World Health Organization Quality of Life-BREF were secondary outcomes. Outcomes were assessed at baseline, post-intervention, and at 1-month (1M) and 2-month (2M) follow-ups. RESULT Improvements in walking speed measured using the 10MWT were observed in both groups. However, the anodal group showed a greater improvement than the sham group. For fast speed, the mean between-group differences were 0.10 m/s, 95% CI (0.02 to 0.17) (post-intervention), 0.11 m/s, (0.03 to 0.19) (1M), and 0.11 m/s, (0.03 to 0.20) (2M), while for self-selected speed, the median differences were 0.10 m/s, 95% CI (0.06 to 0.14) (post-intervention) and 0.09 m/s, (0.01 to 0.19) (2M). The anodal group also had a greater stride length difference post-intervention (median difference: 0.07 m, 95% CI (0.01 to 0.14)). No significant between-group differences were found for other outcomes. CONCLUSION Five-session of anodal tDCS with gait training slightly improved walking speed, sustained for 2 months post-intervention. However, effect on spatiotemporal gait parameters was limited and dynamic balance, functional tasks (ie, sit-to-stand), and quality of life were unaffected compared with overground gait training.
Collapse
Affiliation(s)
- Pipat Klamruen
- Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand; Neuro Electrical Stimulation Laboratory (NeuE), Mahidol University, Nakhon Pathom, Thailand; Physical Therapy Unit, Sirindhorn National Medical Rehabilitation Institute, Nonthaburi, Thailand
| | - Jatuporn Suttiwong
- Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | - Benchaporn Aneksan
- Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand; Neuro Electrical Stimulation Laboratory (NeuE), Mahidol University, Nakhon Pathom, Thailand
| | - Monticha Muangngoen
- Physical Therapy Unit, Sirindhorn National Medical Rehabilitation Institute, Nonthaburi, Thailand
| | - Chanapass Denduang
- Physical Therapy Unit, Sirindhorn National Medical Rehabilitation Institute, Nonthaburi, Thailand
| | - Wanalee Klomjai
- Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand; Neuro Electrical Stimulation Laboratory (NeuE), Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
9
|
Scheuber MI, Guidolin C, Martins S, Sartori AM, Hofer AS, Schwab ME. Electrical stimulation of the cuneiform nucleus enhances the effects of rehabilitative training on locomotor recovery after incomplete spinal cord injury. Front Neurosci 2024; 18:1352742. [PMID: 38595973 PMCID: PMC11002271 DOI: 10.3389/fnins.2024.1352742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Most human spinal cord injuries are anatomically incomplete, leaving some fibers still connecting the brain with the sublesional spinal cord. Spared descending fibers of the brainstem motor control system can be activated by deep brain stimulation (DBS) of the cuneiform nucleus (CnF), a subnucleus of the mesencephalic locomotor region (MLR). The MLR is an evolutionarily highly conserved structure which initiates and controls locomotion in all vertebrates. Acute electrical stimulation experiments in female adult rats with incomplete spinal cord injury conducted in our lab showed that CnF-DBS was able to re-establish a high degree of locomotion five weeks after injury, even in animals with initially very severe functional deficits and white matter lesions up to 80-95%. Here, we analyzed whether CnF-DBS can be used to support medium-intensity locomotor training and long-term recovery in rats with large but incomplete spinal cord injuries. Rats underwent rehabilitative training sessions three times per week in an enriched environment, either with or without CnF-DBS supported hindlimb stepping. After 4 weeks, animals that trained under CnF-DBS showed a higher level of locomotor performance than rats that trained comparable distances under non-stimulated conditions. The MLR does not project to the spinal cord directly; one of its main output targets is the gigantocellular reticular nucleus in the medulla oblongata. Long-term electrical stimulation of spared reticulospinal fibers after incomplete spinal cord injury via the CnF could enhance reticulospinal anatomical rearrangement and in this way lead to persistent improvement of motor function. By analyzing the spared, BDA-labeled giganto-spinal fibers we found that their gray matter arborization density after discontinuation of CnF-DBS enhanced training was lower in the lumbar L2 and L5 spinal cord in stimulated as compared to unstimulated animals, suggesting improved pruning with stimulation-enhanced training. An on-going clinical study in chronic paraplegic patients investigates the effects of CnF-DBS on locomotor capacity.
Collapse
Affiliation(s)
- Myriam I. Scheuber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
| | - Carolina Guidolin
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
| | - Suzi Martins
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
| | - Andrea M. Sartori
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
| | - Anna-Sophie Hofer
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Martin E. Schwab
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Tefertiller C, Wojciehowski S, Sevigny M, Ketchum JM, Rozwod M. Comparison of One-Year Postinjury Mobility Outcomes Between Locomotor Training and Usual Care After Motor Incomplete Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2024; 30:87-97. [PMID: 38433742 PMCID: PMC10906373 DOI: 10.46292/sci23-00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Objectives To compare 1-year mobility outcomes of individuals with traumatic motor incomplete spinal cord injury (miSCI) who participated in standardized locomotor training (LT) within the first year of injury to those who did not. Methods This retrospective case-control analysis conducted with six US rehabilitation hospitals used SCI Model Systems (SCIMS) data comparing 1-year postinjury outcomes between individuals with miSCI who participated in standardized LT to those who received usual care (UC). Participants were matched on age, gender, injury year, mode of mobility, and rehabilitation center. The primary outcome is the FIM Total Motor score. Other outcomes include the FIM Transfer Index, FIM Stairs, and self-reported independence with household mobility, community mobility, and stairs. Results LT participants reported significantly better FIM Total Motor (difference = 2.812, 95% confidence interval [CI] = 5.896, 17.282) and FIM Transfer Index scores (difference = 0.958, 95% CI = 0.993, 4.866). No significant between-group differences were found for FIM Stairs (difference = 0.713, 95% CI = -0.104, 1.530) or self-reported household mobility (odds ratio [OR] = 5.065, CI = 1.435, 17.884), community mobility (OR = 2.933, 95% CI = 0.868, 9.910), and stairs (OR = 5.817, 95% CI = 1.424, 23.756) after controlling for multiple comparisons. Conclusion LT participants reported significantly greater improvements in primary and secondary measures of mobility and independence (FIM Total Motor score; FIM Transfer Index) compared to UC participants. Self-reported mobility outcomes were not significant between groups.
Collapse
|
11
|
Arroyo-Fernández R, Menchero-Sánchez R, Pozuelo-Carrascosa DP, Romay-Barrero H, Fernández-Maestra A, Martínez-Galán I. Effectiveness of Body Weight-Supported Gait Training on Gait and Balance for Motor-Incomplete Spinal Cord Injuries: A Systematic Review with Meta-Analysis. J Clin Med 2024; 13:1105. [PMID: 38398415 PMCID: PMC10888564 DOI: 10.3390/jcm13041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE This review aims to analyse the effectiveness of body weight-supported gait training for improving gait and balance in patients with motor-incomplete spinal cord injuries. METHOD Relevant articles were systematically searched in electronic databases to identify randomised controlled trials of body weight-supported gait training (either with methods of robotic, manual, and functional electrical stimulation assistance) versus conventional physical therapy or no intervention. Subjects were >16 years-old with motor-incomplete spinal cord injury (AIS C or D). Primary outcomes were gait-related parameters (functionality, endurance, and speed) and balance. Quality of life was included as a secondary outcome. Articles were selected up to 31 December 2023. RESULTS Fifteen studies met the inclusion criteria (n = 673). Nine studies used robotic assistance, four trials performed manual assistance, one study functional electrical stimulation assistance, and one trial performed the intervention without guidance. Robot-assisted body weight-supported gait training improved walking functionality (SMD = 1.74, CI 95%: 1.09 to 2.39), walking endurance (MD = 26.59 m, CI 95% = 22.87 to 30.31), and balance (SMD = 0.63, CI 95% = 0.24 to 1.02). CONCLUSIONS Body weight-supported gait training is not superior to conventional physiotherapy in gait and balance training in patients with motor-incomplete spinal cord injury. However, body weight-supported gait training with robotic assistance does improve walking functionality, walking endurance, and balance, but not walking speed.
Collapse
Affiliation(s)
- Rubén Arroyo-Fernández
- Faculty of Physical Therapy and Nursing, University of Castilla-La Mancha, 45071 Toledo, Spain
- Water and Health Research Group (GIAS), University of Castilla-La Mancha, 45004 Toledo, Spain
- Department of Physical Medicine and Rehabilitation, Hospital General Universitario Nuestra Señora del Prado, 45600 Talavera de la Reina, Spain
| | - Raquel Menchero-Sánchez
- Faculty of Physical Therapy and Nursing, University of Castilla-La Mancha, 45071 Toledo, Spain
- Water and Health Research Group (GIAS), University of Castilla-La Mancha, 45004 Toledo, Spain
| | | | - Helena Romay-Barrero
- Faculty of Physical Therapy and Nursing, University of Castilla-La Mancha, 45071 Toledo, Spain
- Water and Health Research Group (GIAS), University of Castilla-La Mancha, 45004 Toledo, Spain
| | - Araceli Fernández-Maestra
- Department of Physical Medicine and Rehabilitation, National Hospital for Paraplegics, 45004 Toledo, Spain
| | - Inés Martínez-Galán
- Faculty of Physical Therapy and Nursing, University of Castilla-La Mancha, 45071 Toledo, Spain
- Water and Health Research Group (GIAS), University of Castilla-La Mancha, 45004 Toledo, Spain
| |
Collapse
|
12
|
Ben M, Glinsky JV, Chu J, Spooren AI, Roberts S, Chen LW, Denis S, Lorusso M, Jorgensen V, Gollan EJ, Agostinello J, Van Laake-Geelen CCM, Lincoln C, Stolwijk JM, Bell C, Paddison S, Rainey D, Tranter K, Ilha J, Oostra K, Sherrington C, Harvey LA. Early and intensive Motor Training for people with spinal cord injuries (the SCI-MT Trial): description of the intervention. Spinal Cord 2023; 61:600-607. [PMID: 37468607 PMCID: PMC10645584 DOI: 10.1038/s41393-023-00911-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023]
Abstract
STUDY DESIGN Descriptive. OBJECTIVES The primary objective is to describe the intervention that will be provided in a large multi-centre randomised controlled trial titled: Early and Intensive Motor Training for people with Spinal Cord Injuries (the SCI-MT Trial). The secondary objective is to describe the strategies that will be used to operationalise and standardise the Motor Training provided to participants while keeping the intervention person-centred. METHODS The paper focuses on the rationale and principles of Motor Training for people with spinal cord injuries (SCI). The description of the intervention is based on the Template for Intervention Description and Replication (TIDieR) checklist. Specifically, it addresses the following 6 criteria of the TIDieR checklist: why the effectiveness of Motor Training is being examined; what, how, where and when the Motor Training will be administered; and how much Motor Training will be provided. RESULTS A detailed intervention manual has been developed to help standardise the delivery of the intervention. CONCLUSIONS This paper describes the details of a complex intervention administered as part of a large randomised controlled trial. It will facilitate the subsequent interpretation of the trial results and enable the intervention to be reproduced in clinical practice and future trials.
Collapse
Affiliation(s)
- M Ben
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- John Walsh Centre for Rehabilitation Research, Northern Sydney Local Health District, St Leonards, Sydney, NSW, Australia
| | - J V Glinsky
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- John Walsh Centre for Rehabilitation Research, Northern Sydney Local Health District, St Leonards, Sydney, NSW, Australia
| | - J Chu
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- John Walsh Centre for Rehabilitation Research, Northern Sydney Local Health District, St Leonards, Sydney, NSW, Australia
| | | | - S Roberts
- Fiona Stanley Hospital, Murdoch, WA, Australia
| | - L W Chen
- Royal North Shore Hospital, St Leonards, NSW, Australia
| | - S Denis
- The Prince of Wales Hospital, Wales, NSW, Australia
| | - M Lorusso
- I.R.C.C.S. Foundation Santa Lucia, Rome, Italy
| | - V Jorgensen
- Sunnaas Rehabilitation Hospital, Nesodden, Norway
| | - E J Gollan
- The Princess Alexandra Hospital, Harlow, QLD, Australia
| | - J Agostinello
- The Royal Talbot Rehabilitation Centre, Kew Vic, VIC, Australia
| | - C C M Van Laake-Geelen
- Adelante Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, The Netherlands
- Department of Rehabilitation Medicine, Research School CAPHRI, Maastricht University, Maastricht, The Netherlands
| | - C Lincoln
- Queen Elizabeth National Spinal Injures Unit, Glasgow, Scotland
| | - J M Stolwijk
- Center of Excellence for Rehabilitation Medicine, University Medical Center Utrecht Brain Center, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
| | - C Bell
- Spinal Cord Injury Rehabilitation, Repat Health Precinct, Daw Park, SA, Australia
| | - S Paddison
- London Spinal Cord Injury Centre, Royal National Orthopaedic Hospital Trust, Middlesex, UK
| | - D Rainey
- Royal Rehab, Ryde, NSW, Australia
| | - K Tranter
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- John Walsh Centre for Rehabilitation Research, Northern Sydney Local Health District, St Leonards, Sydney, NSW, Australia
| | - J Ilha
- Universidade do Estado de Santa Catarina - UDESC, College of Health and Sport Science, Florianopolis, SC, Brazil
| | - K Oostra
- Ghent University Hospital, Ghent, Belgium
| | - C Sherrington
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - L A Harvey
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- John Walsh Centre for Rehabilitation Research, Northern Sydney Local Health District, St Leonards, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Alrashidi AA, Nightingale TE, Bhangu GS, Bissonnette-Blais V, Krassioukov AV. Post-processing Peak Oxygen Uptake Data Obtained During Cardiopulmonary Exercise Testing in Individuals With Spinal Cord Injury: A Scoping Review and Analysis of Different Post-processing Strategies. Arch Phys Med Rehabil 2023; 104:965-981. [PMID: 36584803 DOI: 10.1016/j.apmr.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To review the evidence regarding the most common practices adopted with cardiopulmonary exercise testing (CPET) in individuals with spinal cord injury (SCI), with the following specific aims to (1) determine the most common averaging strategies of peak oxygen uptake (V̇o2peak), (2) review the endpoint criteria adopted to determine a valid V̇o2peak, and (3) investigate the effect of averaging strategies on V̇o2peak values in a convenience sample of individuals with SCI (between the fourth cervical and sixth thoracic spinal segments). DATA SOURCES Searches for this scoping review were conducted in MEDLINE (PubMed), EMBASE, and Web Science. STUDY SELECTION Studies were included if (1) were original research on humans published in English, (2) recruited adults with traumatic and non-traumatic SCI, and (3) V̇o2peak reported and measured directly during CPET to volitional exhaustion. Full-text review identified studies published before April 2021 for inclusion. DATA EXTRACTION Extracted data included authors name, journal name, publication year, participant characteristics, and comprehensive information relevant to CPET. DATA SYNTHESIS We extracted data from a total of 197 studies involving 4860 participants. We found that more than 50% of studies adopted a 30-s averaging strategy. A wide range of endpoint criteria were used to confirm the attainment of maximal effort. In the convenience sample of individuals with SCI (n=30), the mean V̇o2peak decreased as epoch (ie, time) lengths increased. Reported V̇o2peak values differed significantly (P<.001) between averaging strategies, with epoch length explaining 56% of the variability. CONCLUSIONS The adoption of accepted and standardized methods for processing and analyzing CPET data are needed to ensure high-quality, reproducible research, and inform population-specific normative values for individuals with SCI.
Collapse
Affiliation(s)
- Abdullah A Alrashidi
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada; Department of Physical Therapy, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Tom E Nightingale
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, UK; Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gurjeet S Bhangu
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada
| | - Virgile Bissonnette-Blais
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada
| | - Andrei V Krassioukov
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada; Division of Physical Medicine and Rehabilitation, UBC, Vancouver, Canada; G.F. Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, Canada.
| |
Collapse
|
14
|
Walia S, Kumar P, Kataria C. Interventions to Improve Standing Balance in Individuals With Incomplete Spinal Cord Injury: A Systematic Review and Meta-Analysis. Top Spinal Cord Inj Rehabil 2023; 29:56-83. [PMID: 37235196 PMCID: PMC10208260 DOI: 10.46292/sci21-00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Background Incomplete spinal cord injury (iSCI) often results in impaired balance leading to functional impairments. Recovery of standing balance ability is an important aim of rehabilitative programs. However, limited information is available on effective balance training protocols for individuals with iSCI. Objectives To assess the methodological quality and effectiveness of various rehabilitation interventions for improving standing balance in individuals with iSCI. Methods A systematic search was performed in SCOPUS, PEDro, PubMed, and Web of Science from inception until March 2021. Two independent reviewers screened articles for inclusion, extracted data, and evaluated methodological quality of the trials. PEDro Scale was used to assess the quality of randomized controlled trials (RCT) and crossover studies while pre-post trials were assessed using the modified Downs and Black tool. A meta-analysis was performed to quantitatively describe the results. The random effects model was applied to present the pooled effect. Results Ten RCTs with a total of 222 participants and 15 pre-post trials with 967 participants were analyzed. The mean PEDro score and modified Downs and Black score was 7/10 and 6/9, respectively. The pooled standardized mean difference (SMD) for controlled and uncontrolled trials of body weight-supported training (BWST) interventions was -0.26 (95% CI, -0.70 to 0.18; p = .25) and 0.46 (95% CI, 0.33 to 0.59; p < .001), respectively. The pooled effect size of -0.98 (95% CI, -1.93 to -0.03; p = .04) indicated significant improvements in balance after a combination of BWST and stimulation. Pre-post studies analyzing the effect of virtual reality (VR) training interventions on Berg Balance Scale (BBS) scores in individuals with iSCI reported a mean difference (MD) of 4.22 (95% CI, 1.78 to 6.66; p = .0007). Small effect sizes were seen in pre-post studies of VR+stimulation and aerobic exercise training interventions indicating no significant improvements after training on standing balance measures. Conclusion This study demonstrated weak evidence to support the use of BWST interventions for overground training for balance rehabilitation in individuals with iSCI. A combination of BWST with stimulation however showed promising results. There is a need for further RCTs in this field to generalize findings. Virtual reality-based balance training has shown significant improvement in standing balance post iSCI. However, these results are based on single group pre-post trials and lack appropriately powered RCTs involving a larger sample size to support this intervention. Given the importance of balance control underpinning all aspects of daily activities, there is a need for further well-designed and appropriately powered RCTs to evaluate specific features of training interventions to improve standing balance function in iSCI.
Collapse
Affiliation(s)
- Shefali Walia
- Amity Institute of Physiotherapy, Amity University, Noida, Uttar Pradesh, India
- Indian Spinal Injuries Centre, New Delhi, India
| | - Pragya Kumar
- Amity Institute of Physiotherapy, Amity University, Noida, Uttar Pradesh, India
| | | |
Collapse
|
15
|
Patathong T, Klaewkasikum K, Woratanarat P, Rattanasiri S, Anothaisintawee T, Woratanarat T, Thakkinstian A. The efficacy of gait rehabilitations for the treatment of incomplete spinal cord injury: a systematic review and network meta-analysis. J Orthop Surg Res 2023; 18:60. [PMID: 36683024 PMCID: PMC9869518 DOI: 10.1186/s13018-022-03459-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/16/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Recent pieces of evidence about the efficacy of gait rehabilitation for incomplete spinal cord injury remain unclear. We aimed to estimate the treatment effect and find the best gait rehabilitation to regain velocity, distance, and Walking Index Spinal Cord Injury (WISCI) among incomplete spinal cord injury patients. METHOD PubMed and Scopus databases were searched from inception to October 2022. Randomized controlled trials (RCTs) were included in comparison with any of the following: conventional physical therapy, treadmill, functional electrical stimulation and robotic-assisted gait training, and reported at least one outcome. Two reviewers independently selected the studies and extracted the data. Meta-analysis was performed using random-effects or fixed-effect model according to the heterogeneity. Network meta-analysis (NMA) was indirectly compared with all interventions and reported as pooled unstandardized mean difference (USMD) and 95% confidence interval (CI). Surface under the cumulative ranking curve (SUCRA) was calculated to identify the best intervention. RESULTS We included 17 RCTs (709 participants) with the mean age of 43.9 years. Acute-phase robotic-assisted gait training significantly improved the velocity (USMD 0.1 m/s, 95% CI 0.05, 0.14), distance (USMD 64.75 m, 95% CI 27.24, 102.27), and WISCI (USMD 3.28, 95% CI 0.12, 6.45) compared to conventional physical therapy. In NMA, functional electrical stimulation had the highest probability of being the best intervention for velocity (66.6%, SUCRA 82.1) and distance (39.7%, SUCRA 67.4), followed by treadmill, functional electrical stimulation plus treadmill, robotic-assisted gait training, and conventional physical therapy, respectively. CONCLUSION Functional electrical stimulation seems to be the best treatment to improve walking velocity and distance for incomplete spinal cord injury patients. However, a large-scale RCT is required to study the adverse events of these interventions. TRIAL REGISTRATION PROSPERO number CRD42019145797.
Collapse
Affiliation(s)
- Tanyaporn Patathong
- grid.10223.320000 0004 1937 0490Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Payathai, Ratchathewi, Bangkok, 10400 Thailand
| | - Krongkaew Klaewkasikum
- grid.10223.320000 0004 1937 0490Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Payathai, Ratchathewi, Bangkok, 10400 Thailand
| | - Patarawan Woratanarat
- grid.10223.320000 0004 1937 0490Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Payathai, Ratchathewi, Bangkok, 10400 Thailand
| | - Sasivimol Rattanasiri
- grid.10223.320000 0004 1937 0490Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400 Thailand
| | - Thunyarat Anothaisintawee
- grid.10223.320000 0004 1937 0490Department of Family Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400 Thailand
| | - Thira Woratanarat
- grid.7922.e0000 0001 0244 7875Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Ammarin Thakkinstian
- grid.10223.320000 0004 1937 0490Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400 Thailand
| |
Collapse
|
16
|
Tefertiller C, Rozwod M, Wojciehowski S, Sevigny M, Charlifue S, Ketchum JM, Berliner J, Taylor HB, Behrman AL, Harkema S, Forrest G, Schmidt Read M, Basso M. A comparison of one year outcomes between standardized locomotor training and usual care after motor incomplete spinal cord injury: Community participation, quality of life and re-hospitalization. J Spinal Cord Med 2023; 46:35-44. [PMID: 34612793 PMCID: PMC9897794 DOI: 10.1080/10790268.2021.1977060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CONTEXT/OBJECTIVE Spinal cord injury (SCI) often results in a significant loss of mobility and independence coinciding with reports of decreased quality of life (QOL), community participation, and medical complications often requiring re-hospitalization. Locomotor training (LT), the repetition of stepping-like patterning has shown beneficial effects for improving walking ability after motor incomplete SCI, but the potential impact of LT on psychosocial outcomes has not been well-established. The purpose of this study was to evaluate one year QOL, community participation and re-hospitalization outcomes between individuals who participated in a standardized LT program and those who received usual care (UC). DESIGN/SETTING/PARTICIPANTS A retrospective (nested case/control) analysis was completed using SCI Model Systems (SCIMS) data comparing one year post-injury outcomes between individuals with traumatic motor incomplete SCI who participated in standardized LT to those who received UC. OUTCOME MEASURES Outcomes compared include the following: Satisfaction with Life Scale (SWLS™), Craig Handicap Assessment and Reporting Technique-Short Form (CHART-SF™), and whether or not an individual was re-hospitalized during the first year of injury. RESULTS Statistically significant improvements for the LT group were found in the following outcomes: SWLS (P = 0.019); and CHART subscales [mobility (P = <0.001)]; occupation (P = 0.028); with small to medium effects sizes. CONCLUSION Individuals who completed a standardized LT intervention reported greater improvements in satisfaction with life, community participation, and fewer re-hospitalizations at one year post-injury in comparison to those who received UC. Future randomized controlled trials are needed to verify these findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Heather B Taylor
- The Institute for Rehabilitation and Research (TIRR) Memorial Hermann, Houston, Texas, USA
| | - Andrea L Behrman
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Susan Harkema
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Gail Forrest
- Kessler Institute of Rehabilitation, West Orange, New Jersey, USA
| | - Mary Schmidt Read
- Magee Rehabilitation/Jefferson Health, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
17
|
Gouveia D, Cardoso A, Carvalho C, Almeida A, Gamboa Ó, Ferreira A, Martins Â. Approach to Small Animal Neurorehabilitation by Locomotor Training: An Update. Animals (Basel) 2022; 12:ani12243582. [PMID: 36552502 PMCID: PMC9774773 DOI: 10.3390/ani12243582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Neurorehabilitation has a wide range of therapies to achieve neural regeneration, reorganization, and repair (e.g., axon regeneration, remyelination, and restoration of spinal circuits and networks) to achieve ambulation for dogs and cats, especially for grade 1 (modified Frankel scale) with signs of spinal shock or grade 0 (deep pain negative), similar to humans classified with ASIA A lesions. This review aims to explain what locomotor training is, its importance, its feasibility within a clinical setting, and some possible protocols for motor recovery, achieving ambulation with coordinated and modulated movements. In addition, it cites some of the primary key points that must be present in the daily lives of veterinarians or rehabilitation nurses. These can be the guidelines to improve this exciting exercise necessary to achieve ambulation with quality of life. However, more research is essential in the future years.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Correspondence:
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- CIISA—Centro Interdisciplinar-Investigaçāo em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universi dade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| |
Collapse
|
18
|
Yang FA, Chen SC, Chiu JF, Shih YC, Liou TH, Escorpizo R, Chen HC. Body weight-supported gait training for patients with spinal cord injury: a network meta-analysis of randomised controlled trials. Sci Rep 2022; 12:19262. [PMID: 36357483 PMCID: PMC9649733 DOI: 10.1038/s41598-022-23873-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Different body weight-supported gait-training strategies are available for improving ambulation in individuals with spinal cord injury (SCI). These include body weight-supported overground training (BWSOGT), body weight-supported treadmill training (BWSTT), and robot-assisted gait training (RAGT). We conducted a network meta-analysis of randomised controlled trials (RCTs) to assess the effect and priority of each training protocol. We searched the PubMed, Cochrane Library, Scopus, and Embase databases from inception to 6 August 2022. The eligibility criteria were as follows: (1) being RCTs, (2) recruiting participants with SCI diagnosis and requiring gait training, (3) comparing different body weight-supported gait training strategies, and (4) involving ambulatory assessments. We conducted a network meta-analysis to compare different training strategies using the standard mean difference and its 95% credible interval. To rank the efficacy of training strategies, we used the P score as an indicator. Inconsistency in network meta-analysis was evaluated using loop-specific heterogeneity. We included 15 RCTs in this analysis. RAGT was had significantly more favourable performance than had the control intervention. The ranking probabilities indicated that the most effective approach was RAGT, followed by BWSOGT, BWSTT, and the control intervention. No significant inconsistency was noted between the results of the direct and indirect comparisons.
Collapse
Affiliation(s)
- Fu-An Yang
- grid.412896.00000 0000 9337 0481School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ching Chen
- Taiwan Society of Neurorehabilitation, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412897.10000 0004 0639 0994Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jing-Fang Chiu
- grid.412896.00000 0000 9337 0481Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, No. 291 Zhongjheng Road, Zhonghe District, New Taipei City, 235 Taiwan
| | - Ya-Chu Shih
- grid.412896.00000 0000 9337 0481School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsan-Hon Liou
- grid.412896.00000 0000 9337 0481Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, No. 291 Zhongjheng Road, Zhonghe District, New Taipei City, 235 Taiwan
| | - Reuben Escorpizo
- grid.59062.380000 0004 1936 7689Department of Rehabilitation and Movement Science, University of Vermont, College of Nursing and Health Sciences, Burlington, VT USA ,grid.419770.cSwiss Paraplegic Research, Nottwil, Switzerland
| | - Hung-Chou Chen
- Taiwan Society of Neurorehabilitation, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, No. 291 Zhongjheng Road, Zhonghe District, New Taipei City, 235 Taiwan
| |
Collapse
|
19
|
Evans NH, Field-Fote EC. A Pilot Study of Intensive Locomotor-Related Skill Training and Transcranial Direct Current Stimulation in Chronic Spinal Cord Injury. J Neurol Phys Ther 2022; 46:281-292. [PMID: 35544283 DOI: 10.1097/npt.0000000000000403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Improved walking function is a priority among persons with motor-incomplete spinal cord injury (PwMISCI). Accessibility and cost limit long-term participation in locomotor training offered in specialized centers. Intensive motor training that facilitates neuroplastic mechanisms that support skill learning and can be implemented in the home/community may be advantageous for promoting long-term restoration of walking function. Additionally, increasing corticospinal drive via transcranial direct current stimulation (tDCS) may enhance training effects. In this pilot study, we investigated whether a moderate-intensity motor skill training (MST) circuit improved walking function in PwMISCI and whether augmenting training with tDCS influenced outcomes. METHODS Twenty-five adults (chronic, motor-incomplete spinal cord injury) were randomized to a 3-day intervention of a locomotor-related MST circuit and concurrent application of sham tDCS (MST+tDCS sham ) or active tDCS (MST+tDCS). The primary outcome was overground walking speed. Secondary outcomes included walking distance, cadence, stride length, and step symmetry index (SI). RESULTS Analyses revealed significant effects of the MST circuit on walking speed, walking distance, cadence, and bilateral stride length but no effect on interlimb SI. No significant between-groups differences were observed. Post hoc analyses revealed within-groups change in walking speed (ΔM = 0.13 m/s, SD = 0.13) that app-roached the minimally clinically important difference of 0.15 m/s. DISCUSSION AND CONCLUSIONS Brief, intensive MST involving locomotor-related activities significantly increased walking speed, walking distance, and spatiotemporal measures in PwMISCI. Significant additive effects of tDCS were not observed; however, participation in only 3 days of MST was associated with changes in walking speed that were comparable to longer locomotor training studies.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A386 ).
Collapse
Affiliation(s)
- Nicholas H Evans
- Crawford Research Institute, Shepherd Center, Atlanta, Georgia (N.H.E., E.F.F.); Program in Applied Physiology, Georgia Institute of Technology, Atlanta (N.H.E., E.F.F.); and Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia (E.F.F.)
| | | |
Collapse
|
20
|
The effects of active upper-limb versus passive lower-limb exercise on quality of life among individuals with motor-complete spinal cord injury. Spinal Cord 2022; 60:805-811. [PMID: 35396456 DOI: 10.1038/s41393-022-00796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 01/22/2023]
Abstract
STUDY DESIGN Multi-centre randomized clinical trial. OBJECTIVES (1) compare the effects of arm-cycle ergometry (ACET) and body weight supported treadmill training (BWSTT) on quality of life (QOL) and intermediary variables in individuals with spinal cord injury (SCI); (2) examine correlations between baseline measures, and changes in physical activity, QOL, and intermediaries. SETTING Hospital-based research institutes (Vancouver, Toronto) and University-based exercise program (Hamilton). METHODS 35 participants with motor-complete SCI above T6 completed baseline assessments of physical activity, life satisfaction, independence, autonomy, positive and negative affect, and pain. Twenty-eight participants were randomized to 72 sessions of ACET (n = 14) or BWSTT (n = 14) with measures repeated following 36 sessions, 72 sessions, and 6-months post-intervention. RESULTS Neither intervention significantly impacted QOL. Pain was reduced in ACET compared to BWSTT (interaction effect p = 0.022) and was significantly less at 72 sessions vs. baseline in the ACET group (p = 0.009). At baseline, QOL was positively correlated with independence, autonomy, and positive affect and negatively correlated with negative affect (all p < 0.05). Following BWSTT, changes in moderate-vigorous physical activity correlated with changes in QOL (r = 0.87, p = 0.010). Following ACET, changes in autonomy and independence were positively correlated with changes in QOL (both r > 0.64, p < 0.048). CONCLUSIONS Contrary to previous studies, there was no benefit of either intervention on measures of QOL. The social context of exercise may be important for improving QOL. However, individuals may benefit more from active (ACET) than passive (BWSTT) exercise modalities through reduced pain. Exercise interventions that improve autonomy and independence may lead to improvements in QOL.
Collapse
|
21
|
Evans NH, Suri C, Field-Fote EC. Walking and Balance Outcomes Are Improved Following Brief Intensive Locomotor Skill Training but Are Not Augmented by Transcranial Direct Current Stimulation in Persons With Chronic Spinal Cord Injury. Front Hum Neurosci 2022; 16:849297. [PMID: 35634208 PMCID: PMC9130633 DOI: 10.3389/fnhum.2022.849297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Motor training to improve walking and balance function is a common aspect of rehabilitation following motor-incomplete spinal cord injury (MISCI). Evidence suggests that moderate- to high-intensity exercise facilitates neuroplastic mechanisms that support motor skill acquisition and learning. Furthermore, enhancing corticospinal drive via transcranial direct current stimulation (tDCS) may augment the effects of motor training. In this pilot study, we investigated whether a brief moderate-intensity locomotor-related motor skill training (MST) circuit, with and without tDCS, improved walking and balance outcomes in persons with MISCI. In addition, we examined potential differences between within-day (online) and between-day (offline) effects of MST. Twenty-six adults with chronic MISCI, who had some walking ability, were enrolled in a 5-day double-blind, randomized study with a 3-day intervention period. Participants were assigned to an intensive locomotor MST circuit and concurrent application of either sham tDCS (MST+tDCSsham) or active tDCS (MST+tDCS). The primary outcome was overground walking speed measured during the 10-meter walk test. Secondary outcomes included spatiotemporal gait characteristics (cadence and stride length), peak trailing limb angle (TLA), intralimb coordination (ACC), the Berg Balance Scale (BBS), and the Falls Efficacy Scale-International (FES-I) questionnaire. Analyses revealed a significant effect of the MST circuit, with improvements in walking speed, cadence, bilateral stride length, stronger limb TLA, weaker limb ACC, BBS, and FES-I observed in both the MST+tDCSsham and MST+tDCS groups. No differences in outcomes were observed between groups. Between-day change accounted for a greater percentage of the overall change in walking outcomes. In persons with MISCI, brief intensive MST involving a circuit of ballistic, cyclic locomotor-related skill activities improved walking outcomes, and selected strength and balance outcomes; however, concurrent application of tDCS did not further enhance the effects of MST.
Collapse
Affiliation(s)
- Nicholas H. Evans
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States
- Department of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Cazmon Suri
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States
| | - Edelle C. Field-Fote
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States
- Department of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, United States
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Edelle C. Field-Fote,
| |
Collapse
|
22
|
Sawada T, Okawara H, Matsubayashi K, Sugai K, Kawakami M, Tashiro S, Nori S, Tsuji O, Nagoshi N, Matsumoto M, Nakamura M. Influence of body weight-supported treadmill training with voluntary-driven exoskeleton on the quality of life of persons with chronic spinal cord injury: a pilot study. Int J Rehabil Res 2021; 44:343-349. [PMID: 34483288 DOI: 10.1097/mrr.0000000000000496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate whether body weight-supported treadmill training with voluntary-driven exoskeleton body weight-supported treadmill training (VDE-BWSTT) improves the quality of life (QOL) of persons with chronic spinal cord injury (SCI). Nineteen individuals with chronic SCI with walking limitation underwent a total of 20 sessions of VDE-BWSTT using the hybrid assistant limb. The QOL was measured using the Short Form-36v2 (SF-36v2) questionnaire at preintervention and postintervention. The Walking Index for SCI-II (WISCI-II), Functional Independence Measure (FIM) motor score, and Neuropathic Pain Symptom Inventory (NPSI) self-questionnaire were also administered/completed. In SF-36v2, the mean values of all subscales in our participants were lower than those in healthy individuals. None of the measures showed significant improvement, even in individuals with some residual walking ability (baseline WISCI-II score of 6 or higher). In the correlation analysis between the baselines WISCI-II, FIM, or NPSI values and the mean SF-36v2 subscale changes throughout the training, the baseline FIM motor score was positively correlated with the mean changes in Role Emotional and Mental Health. In addition, NPSI was negatively correlated with the mean change in Vitality and Mental Health. In our protocol, although VDE-BWSTT did not improve the QOL of persons with chronic SCI, those with higher functional independence or lower pain at preintervention likely improved. Further study with combination of task-specific training or pain-targeting treatment with more patients should be considered to more effectively improve their QOL.
Collapse
Affiliation(s)
- Tomonori Sawada
- Department of Orthopaedic Surgery, Keio University School of Medicine
| | - Hiroki Okawara
- Department of Orthopaedic Surgery, Keio University School of Medicine
| | - Kohei Matsubayashi
- Department of Orthopaedic Surgery, National Hospital Organization, Murayama Medical Center
| | - Keiko Sugai
- Department of Orthopaedic Surgery, Keio University School of Medicine
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine
| | - Syoichi Tashiro
- Department of Rehabilitation, Kyorin University, Tokyo, Japan
| | - Satoshi Nori
- Department of Orthopaedic Surgery, Keio University School of Medicine
| | - Osahiko Tsuji
- Department of Orthopaedic Surgery, Keio University School of Medicine
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine
| |
Collapse
|
23
|
Walia S, Kumar P, Kataria C. Efficacy of Electrical Stimulation-Augmented Virtual Reality Training in Improving Balance in Individuals with Incomplete Spinal Cord Injury: Study Protocol of a Randomized Controlled Trial. Asian Spine J 2021; 15:865-873. [PMID: 33371624 PMCID: PMC8696057 DOI: 10.31616/asj.2020.0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 11/23/2022] Open
Abstract
STUDY DESIGN This study is a single-blind, parallel, three-group, and randomized controlled trial. PURPOSE This study aimed to investigate the effectiveness of electrical stimulation-augmented virtual reality training in improving balance in individuals with incomplete spinal cord injury (iSCI). OVERVIEW OF LITERATURE Individuals with iSCI often face significant balance and mobility impairments affecting their quality of life. Scientific studies focusing on standing balance training in the iSCI population are limited. Virtual reality-based balance training has shown positive results in several neurological populations. Electrical stimulation has also proved to be effective in improving voluntary muscle strength in partially paralyzed muscles after iSCI as well as promoting neuroplasticity. METHODS Forty-eight iSCI participants will be recruited based on the inclusion criteria. The participants will be randomly assigned to any of the three groups: virtual reality-based balance training along with the electrical stimulation group, virtual reality-based balance training along with sham stimulation group, or virtual reality-based balance training group. The intervention will be delivered as 60-minute sessions, thrice a week for 4 weeks. RESULTS The performance of the participants will be assessed using the lower extremity motor score, static and dynamic balance assessment using TechnoBody ProKin tilting platform and Berg Balance Scale, Walking Index for Spinal Cord Injury, and World Health Organization Quality of Life-BREF at pre-intervention, after 4 weeks post-intervention, and at 1-month follow-up. CONCLUSIONS The trial will provide new knowledge about the effectiveness of electrical stimulation-augmented virtual reality training in improving balance in individuals with iSCI. The study results will contribute to the design of better rehabilitation programs for individuals with iSCI.
Collapse
Affiliation(s)
- Shefali Walia
- Amity Institute of Physiotherapy, Amity University Uttar Pradesh, Noida,
India
- ISIC Institute of Rehabilitation Sciences, Indian Spinal Injuries Centre, New Delhi,
India
| | - Pragya Kumar
- Amity Institute of Physiotherapy, Amity University Uttar Pradesh, Noida,
India
| | - Chitra Kataria
- ISIC Institute of Rehabilitation Sciences, Indian Spinal Injuries Centre, New Delhi,
India
| |
Collapse
|
24
|
Selph SS, Skelly AC, Wasson N, Dettori JR, Brodt ED, Ensrud E, Elliot D, Dissinger KM, McDonagh M. Physical Activity and the Health of Wheelchair Users: A Systematic Review in Multiple Sclerosis, Cerebral Palsy, and Spinal Cord Injury. Arch Phys Med Rehabil 2021; 102:2464-2481.e33. [PMID: 34653376 DOI: 10.1016/j.apmr.2021.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/10/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To understand the benefits and harms of physical activity in people who may require a wheelchair with a focus on people with multiple sclerosis (MS), cerebral palsy (CP), and spinal cord injury (SCI). DATA SOURCES Searches were conducted in MEDLINE, Cumulative Index to Nursing and Allied Health, PsycINFO, Cochrane CENTRAL, and Embase (January 2008 through November 2020). STUDY SELECTION Randomized controlled trials, nonrandomized trials, and cohort studies of observed physical activity (at least 10 sessions on 10 days) in participants with MS, CP, and SCI. DATA EXTRACTION We conducted dual data abstraction, quality assessment, and strength of evidence. Measures of physical functioning are reported individually where sufficient data exist and grouped as "function" where data are scant. DATA SYNTHESIS No studies provided evidence for prevention of cardiovascular conditions, development of diabetes, or obesity. Among 168 included studies, 44% enrolled participants with MS (38% CP, 18% SCI). Studies in MS found walking ability may be improved with treadmill training and multimodal exercises; function may be improved with treadmill, balance exercises, and motion gaming; balance is likely improved with balance exercises and may be improved with aquatic exercises, robot-assisted gait training (RAGT), motion gaming, and multimodal exercises; activities of daily living (ADL), female sexual function, and spasticity may be improved with aquatic therapy; sleep may be improved with aerobic exercises and aerobic fitness with multimodal exercises. In CP, balance may be improved with hippotherapy and motion gaming; function may be improved with cycling, treadmill, and hippotherapy. In SCI, ADL may be improved with RAGT. CONCLUSIONS Depending on population and type of exercise, physical activity was associated with improvements in walking, function, balance, depression, sleep, ADL, spasticity, female sexual function, and aerobic capacity. Few harms of physical activity were reported in studies. Future studies are needed to address evidence gaps and to confirm findings.
Collapse
Affiliation(s)
- Shelley S Selph
- Pacific Northwest Evidence-based Practice Center, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon.
| | | | - Ngoc Wasson
- Pacific Northwest Evidence-based Practice Center, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon
| | | | | | - Erik Ensrud
- Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Diane Elliot
- Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Kristin M Dissinger
- Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Marian McDonagh
- Pacific Northwest Evidence-based Practice Center, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
25
|
Effect of robotic-assisted gait training on functional status, walking and quality of life in complete spinal cord injury. Int J Rehabil Res 2021; 44:262-268. [PMID: 34356038 DOI: 10.1097/mrr.0000000000000486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to investigate the effect of robotic-assisted gait training (RAGT) on functional status and the quality of life in patients with subacute complete spinal cord injury (SCI). Thirty-seven patients with complete SCI were included in this study. All patients underwent conventional rehabilitation 5 days a week for 8 weeks. The patients were divided into two groups: those who received RAGT (group I, n = 17) and those who received only conventional rehabilitation (group II, n = 20) for 30 min twice a week for a total of 8 weeks. Evaluations were performed using the Walking Index SCI II (WISCI II) for ambulation, Functional Independence Measure (FIM) for functional status and Short Form 36 (SF-36) for the quality of life at the beginning and end of rehabilitation. The mean duration of injury was 3.5 ± 2.1 months in group I and 3.8 ± 2.6 months in group II (P > 0.05). Significant improvement was observed in both groups as per WISCI II and FIM scores (P < 0.05). However, no significant inter-group difference was noted in pre- and post-treatment FIM and WISCI II change scores (P > 0.05). In groups I and II, there was significant improvement only in physical activity scores of SF-36 compared with baseline scores (P < 0.05); however, other SF-36 subparameter scores did not differ significantly between pre- and post-treatment (P > 0.05). Treatment with RAGT has positive effects on functional independence, ambulation and the quality of life in patients with subacute complete SCI. RAGT combined with conventional therapy in patients with complete SCI may facilitate the improvement of patient condition more than conventional therapy alone.
Collapse
|
26
|
Zilundu PLM, Xu X, Liaquat Z, Wang Y, Zhong K, Fu R, Zhou L. Long-Term Suppression of c-Jun and nNOS Preserves Ultrastructural Features of Lower Motor Neurons and Forelimb Function after Brachial Plexus Roots Avulsion. Cells 2021; 10:1614. [PMID: 34203264 PMCID: PMC8307634 DOI: 10.3390/cells10071614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
Brachial plexus root avulsions cause debilitating upper limb paralysis. Short-term neuroprotective treatments have reported preservation of motor neurons and function in model animals while reports of long-term benefits of such treatments are scarce, especially the morphological sequelae. This morphological study investigated the long-term suppression of c-Jun- and neuronal nitric oxide synthase (nNOS) (neuroprotective treatments for one month) on the motor neuron survival, ultrastructural features of lower motor neurons, and forelimb function at six months after brachial plexus roots avulsion. Neuroprotective treatments reduced oxidative stress and preserved ventral horn motor neurons at the end of the 28-day treatment period relative to vehicle treated ones. Motor neuron sparing was associated with suppression of c-Jun, nNOS, and pro-apoptotic proteins Bim and caspases at this time point. Following 6 months of survival, neutral red staining revealed a significant loss of most of the motor neurons and ventral horn atrophy in the avulsed C6, 7, and 8 cervical segments among the vehicle-treated rats (n = 4). However, rats that received neuroprotective treatments c-Jun JNK inhibitor, SP600125 (n = 4) and a selective inhibitor of nNOS, 7-nitroindazole (n = 4), retained over half of their motor neurons in the ipsilateral avulsed side compared. Myelinated axons in the avulsed ventral horns of vehicle-treated rats were smaller but numerous compared to the intact contralateral ventral horns or neuroprotective-treated groups. In the neuroprotective treatment groups, there was the preservation of myelin thickness around large-caliber axons. Ultrastructural evaluation also confirmed the preservation of organelles including mitochondria and synapses in the two groups that received neuroprotective treatments compared with vehicle controls. Also, forelimb functional evaluation demonstrated that neuroprotective treatments improved functional abilities in the rats. In conclusion, neuroprotective treatments aimed at suppressing degenerative c-Jun and nNOS attenuated apoptosis, provided long-term preservation of motor neurons, their organelles, ventral horn size, and forelimb function.
Collapse
Affiliation(s)
- Prince Last Mudenda Zilundu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (P.L.M.Z.); (X.X.); (K.Z.)
| | - Xiaoying Xu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (P.L.M.Z.); (X.X.); (K.Z.)
| | - Zaara Liaquat
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Shenzhen 518100, China;
| | - Yaqiong Wang
- Department of Electron Microscopy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
| | - Ke Zhong
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (P.L.M.Z.); (X.X.); (K.Z.)
| | - Rao Fu
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Shenzhen 518100, China;
| | - Lihua Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (P.L.M.Z.); (X.X.); (K.Z.)
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Shenzhen 518100, China;
| |
Collapse
|
27
|
Do any physiotherapy interventions increase spinal cord independence measure or functional independence measure scores in people with spinal cord injuries? A systematic review. Spinal Cord 2021; 59:705-715. [PMID: 34099880 DOI: 10.1038/s41393-021-00638-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Systematic review. OBJECTIVE To determine whether any physiotherapy interventions increase Spinal Cord Independence Measure or Functional Independence Measure scores (SCIM/FIM) in people with spinal cord injury (SCI), with the overall aim of determining whether any physiotherapy interventions need to be controlled for in studies examining the effects of novel experimental interventions on SCIM/FIM. METHODS A systematic review was conducted to identify all randomised controlled trials examining the effect of any physiotherapy intervention on SCIM/FIM in people with SCI. PEDro scores were used to rate risk of bias. The results of similar trials and comparisons were pooled using meta-analyses. RESULTS Thirty-three trials met the inclusion criteria but only 27 provided useable data. The median (IQR) PEDro score was 6.0 (4.0-7.0). A meta-analysis of four trials comparing robotic gait training with overground gait training that used a combination of FIM/SCIM indicated a pooled mean (95% CI) between-group difference of 0.38 standardised mean difference (SMD; 95% CI, 0.08-0.67). A second meta-analysis of two trials comparing upper limb training with and without functional electrical stimulation using FIM indicated a pooled (95% CI) between-group difference of 1.31 SMD (0.62-1.99). Another six trials examining a range of different physiotherapy interventions reported a statistically significant mean between-group difference on SCIM/FIM. CONCLUSION There is low-quality evidence to indicate that a small number of physiotherapy interventions increase SCIM/FIM. The importance of controlling for all physiotherapy interventions in studies examining the effects of novel experimental interventions on SCIM/FIM is as yet unclear.
Collapse
|
28
|
Martins Â, Gouveia D, Cardoso A, Gamboa Ó, Millis D, Ferreira A. Nervous system modulation through electrical stimulation in companion animals. Acta Vet Scand 2021; 63:22. [PMID: 34053462 PMCID: PMC8167506 DOI: 10.1186/s13028-021-00585-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Domestic animals with severe spontaneous spinal cord injury (SCI), including dogs and cats that are deep pain perception negative (DPP-), can benefit from specific evaluations involving neurorehabilitation integrative protocols. In human medicine, patients without deep pain sensation, classified as grade A on the American Spinal Injury Association (ASIA) impairment scale, can recover after multidisciplinary approaches that include rehabilitation modalities, such as functional electrical stimulation (FES), transcutaneous electrical spinal cord stimulation (TESCS) and transcranial direct current stimulation (TDCS). This review intends to explore the history, biophysics, neurophysiology, neuroanatomy and the parameters of FES, TESCS, and TDCS, as safe and noninvasive rehabilitation modalities applied in the veterinary field. Additional studies need to be conducted in clinical settings to successfully implement these guidelines in dogs and cats.
Collapse
|
29
|
Clinical Benefit of Rehabilitation Training in Spinal Cord Injury: A Systematic Review and Meta-Analysis. Spine (Phila Pa 1976) 2021; 46:E398-E410. [PMID: 33620185 DOI: 10.1097/brs.0000000000003789] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A systematic review and meta-analysis. OBJECTIVE This study was performed to evaluate the effects of different rehabilitation interventions in spinal cord injury. SUMMARY OF BACKGROUND DATA Several activity-based interventions have been widely applied in spinal cord injury in the past, but the effects of these rehabilitation exercises are controversial. METHODS Publications were searched from databases (PubMed, Embase, Cochrane, the database of the U.S. National Institutes of Health and World Health Organization International Clinical Trials Registry Platform) using the searching terms like spinal cord injury, transcranial magnetic stimulation, functional electrical stimulation, activity-based therapy, and robotic-assisted locomotor training. Randomized controlled trials and controlled trials were included. The primary outcomes included functional upper/lower extremity independence, walking capacity, spasticity, and life quality of individuals with spinal cord injury. Meta-analysis was performed using Revman 5.0 software. RESULTS Thirty-one articles were included. Meta-analysis showed that transcranial magnetic stimulation improved walking speed (95% confidence interval [CI] 0.01, 0.16) and lower extremity function (95% CI 1.55, 7.27); functional electrical stimulation significantly increased upper extremity independence (95% CI 0.37, 5.48). Robotic-assisted treadmill training improved lower extremity function (95% CI 3.44, 6.56) compared with related controls. CONCLUSION Activity-based intervention like transcranial magnetic stimulation, functional electrical stimulation, and robotic-assisted treadmill training are effective in improving function in individuals with spinal cord injury.Level of Evidence: 1.
Collapse
|
30
|
Clinical Practice Guideline to Improve Locomotor Function Following Chronic Stroke, Incomplete Spinal Cord Injury, and Brain Injury. J Neurol Phys Ther 2021; 44:49-100. [PMID: 31834165 DOI: 10.1097/npt.0000000000000303] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Individuals with acute-onset central nervous system (CNS) injury, including stroke, motor incomplete spinal cord injury, or traumatic brain injury, often experience lasting locomotor deficits, as quantified by decreases in gait speed and distance walked over a specific duration (timed distance). The goal of the present clinical practice guideline was to delineate the relative efficacy of various interventions to improve walking speed and timed distance in ambulatory individuals greater than 6 months following these specific diagnoses. METHODS A systematic review of the literature published between 1995 and 2016 was performed in 4 databases for randomized controlled clinical trials focused on these specific patient populations, at least 6 months postinjury and with specific outcomes of walking speed and timed distance. For all studies, specific parameters of training interventions including frequency, intensity, time, and type were detailed as possible. Recommendations were determined on the basis of the strength of the evidence and the potential harm, risks, or costs of providing a specific training paradigm, particularly when another intervention may be available and can provide greater benefit. RESULTS Strong evidence indicates that clinicians should offer walking training at moderate to high intensities or virtual reality-based training to ambulatory individuals greater than 6 months following acute-onset CNS injury to improve walking speed or distance. In contrast, weak evidence suggests that strength training, circuit (ie, combined) training or cycling training at moderate to high intensities, and virtual reality-based balance training may improve walking speed and distance in these patient groups. Finally, strong evidence suggests that body weight-supported treadmill training, robotic-assisted training, or sitting/standing balance training without virtual reality should not be performed to improve walking speed or distance in ambulatory individuals greater than 6 months following acute-onset CNS injury to improve walking speed or distance. DISCUSSION The collective findings suggest that large amounts of task-specific (ie, locomotor) practice may be critical for improvements in walking function, although only at higher cardiovascular intensities or with augmented feedback to increase patient's engagement. Lower-intensity walking interventions or impairment-based training strategies demonstrated equivocal or limited efficacy. LIMITATIONS As walking speed and distance were primary outcomes, the research participants included in the studies walked without substantial physical assistance. This guideline may not apply to patients with limited ambulatory function, where provision of walking training may require substantial physical assistance. SUMMARY The guideline suggests that task-specific walking training should be performed to improve walking speed and distance in those with acute-onset CNS injury although only at higher intensities or with augmented feedback. Future studies should clarify the potential utility of specific training parameters that lead to improved walking speed and distance in these populations in both chronic and subacute stages following injury. DISCLAIMER These recommendations are intended as a guide for clinicians to optimize rehabilitation outcomes for persons with chronic stroke, incomplete spinal cord injury, and traumatic brain injury to improve walking speed and distance.
Collapse
|
31
|
Hou J, Nelson R, Mohammad N, Mustafa G, Plant D, Thompson FJ, Bose P. Effect of Simultaneous Combined Treadmill Training and Magnetic Stimulation on Spasticity and Gait Impairments after Cervical Spinal Cord Injury. J Neurotrauma 2020; 37:1999-2013. [DOI: 10.1089/neu.2019.6961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jiamei Hou
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Rachel Nelson
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Naweed Mohammad
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Golam Mustafa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Daniel Plant
- Research Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Floyd J. Thompson
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Prodip Bose
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
- Department of Anesthesiology, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
32
|
Nogueira F, Shirahige L, Brito R, Monte-Silva K. Independent community walking after a short protocol of repetitive transcranial magnetic stimulation associated with body weight-support treadmill training in a patient with chronic spinal cord injury: a case report. Physiother Theory Pract 2020; 38:839-845. [PMID: 32787480 DOI: 10.1080/09593985.2020.1802797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Our report describes the effect of repetitive transcranial magnetic stimulation (rTMS) combined with body weight-supported treadmill training (BWSTT) on independent gait recovery in a patient with incomplete spinal cord injury (iSCI). CASE DESCRIPTION The patient was a 31-year-old male, household ambulator (aid walker) and community wheelchair user who was 8.5 year post traumatic iSCI (T8 vertebra injury, AIS D). INTERVENTION The patient participated in 12 sessions (three times/week for four weeks) of rTMS (1800 pulses, 10 Hz, intensity of 90% resting motor threshold) followed by BWSTT (15-20 min, moderate intensity). OUTCOMES After treatment, the patient's score increased 3 points on the Walking Index for Spinal Cord Injury II (walking independence) and he became a community ambulator with crutches. His American Spinal Injury Association (ASIA) lower extremities motor score (motor function) increased from 33 to 45 points and the Spinal Cord Independence Measure III (functional independence) score increased from 23 to 29 for the mobility indoors/outdoors subscale. The patient's lower limb spasticity was reduced (Modified Ashworth Scale), and quality of life improved based on the Short-Form Health Survey - 36, and the Patient Global Impression of Change Scale showed considerable perception of improvement. CONCLUSION Our report suggests that a short protocol of rTMS combined with BWSTT improved walking independence, motor function, spasticity, functional mobility and quality of life in this patient with iSCI.
Collapse
Affiliation(s)
- Fernanda Nogueira
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Brazil
| | - Lívia Shirahige
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Brazil
| | - Rodrigo Brito
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Brazil
| | - Katia Monte-Silva
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
33
|
Lotter JK, Henderson CE, Plawecki A, Holthus ME, Lucas EH, Ardestani MM, Schmit BD, Hornby TG. Task-Specific Versus Impairment-Based Training on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study. Neurorehabil Neural Repair 2020; 34:627-639. [PMID: 32476619 PMCID: PMC7329565 DOI: 10.1177/1545968320927384] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background. Many research studies attempting to improve locomotor function following motor incomplete spinal cord injury (iSCI) focus on providing stepping practice. However, observational studies of physical therapy strategies suggest the amount of stepping practice during clinical rehabilitation is limited; rather, many interventions focus on mitigating impairments underlying walking dysfunction. Objective. The purpose of this blinded-assessor randomized trial was to evaluate the effects of task-specific versus impairment-based interventions on walking outcomes in individuals with iSCI. Methods. Using a crossover design, ambulatory participants with iSCI >1-year duration performed either task-specific (upright stepping) or impairment-based training for up to 20 sessions over ≤6 weeks, with interventions alternated after >4 weeks delay. Both strategies focused on achieving higher cardiovascular intensities, with training specificity manipulated by practicing only stepping practice in variable contexts or practicing tasks targeting impairments underlying locomotor dysfunction (strengthening, balance tasks, and recumbent stepping). Results. Significantly greater increases in fastest overground and treadmill walking speeds were observed following task-specific versus impairment-based training, with moderate associations between differences in amount of practice and outcomes. Gains in balance confidence were also observed following task-specific vs impairment-based training, although incidence of falls was also increased with the former protocol. Limited gains were observed with impairment-based training except for peak power during recumbent stepping tests. Conclusion. The present study reinforces work from other patient populations that the specificity of task practice is a critical determinant of locomotor outcomes and suggest impairment-based exercises may not translate to improvements in functional tasks. Clinical Trial Registration URL. https://clinicaltrials.gov/ ; Unique Identifier: NCT02115685.
Collapse
Affiliation(s)
| | - Christopher E Henderson
- Rehabilitation Hospital of Indiana, Indianapolis, IN, USA
- Indiana University, Indianapolis, IN, USA
| | - Abbey Plawecki
- Rehabilitation Hospital of Indiana, Indianapolis, IN, USA
| | | | - Emily H Lucas
- Rehabilitation Hospital of Indiana, Indianapolis, IN, USA
| | - Marzieh M Ardestani
- Rehabilitation Hospital of Indiana, Indianapolis, IN, USA
- Indiana University, Indianapolis, IN, USA
| | | | - T George Hornby
- Rehabilitation Hospital of Indiana, Indianapolis, IN, USA
- Indiana University, Indianapolis, IN, USA
| |
Collapse
|
34
|
Duffell LD, Donaldson NDN. A Comparison of FES and SCS for Neuroplastic Recovery After SCI: Historical Perspectives and Future Directions. Front Neurol 2020; 11:607. [PMID: 32714270 PMCID: PMC7344227 DOI: 10.3389/fneur.2020.00607] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
There is increasing evidence that neuroplastic changes can occur even years after spinal cord injury, leading to reduced disability and better health which should reduce the cost of healthcare. In motor-incomplete spinal cord injury, recovery of leg function may occur if repetitive training causes afferent input to the lumbar spinal cord. The afferent input may be due to activity-based therapy without electrical stimulation but we present evidence that it is faster with electrical stimulation. This may be spinal cord stimulation or peripheral nerve stimulation. Recovery is faster if the stimulation is phasic and that the patient is trying to use their legs during the training. All the published studies are small, so all conclusions are provisional, but it appears that patients with more disability (AIS A and B) may need to continue using stimulation and for them, an implanted stimulator is likely to be convenient. Patients with less disability (AIS C and D) may make useful recovery and improve their quality of life from a course of therapy. This might be locomotion therapy but we argue that cycling with electrical stimulation, which uses biofeedback to encourage descending drive, causes rapid recovery and might be used with little supervision at home, making it much less expensive. Such an electrical therapy followed by conventional physiotherapy might be affordable for the many people living with chronic SCI. To put this in perspective, we present some information about what treatments are funded in the UK and the US.
Collapse
Affiliation(s)
- Lynsey D Duffell
- Implanted Devices Group, University College London, London, United Kingdom.,Aspire CREATe, University College London, London, United Kingdom
| | | |
Collapse
|
35
|
Donovan J, Snider B, Miller A, Kirshblum S. Walking after Spinal Cord Injury: Current Clinical Approaches and Future Directions. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020. [DOI: 10.1007/s40141-020-00277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Lotter JK, Henderson CE, Plawecki A, Holthus ME, Lucas EH, Ardestani MM, Schmit BD, Hornby TG. Task-Specific Versus Impairment-Based Training on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study. Neurorehabil Neural Repair 2020. [PMID: 32476619 DOI: 10.1177/1545968320927384,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background. Many research studies attempting to improve locomotor function following motor incomplete spinal cord injury (iSCI) focus on providing stepping practice. However, observational studies of physical therapy strategies suggest the amount of stepping practice during clinical rehabilitation is limited; rather, many interventions focus on mitigating impairments underlying walking dysfunction. Objective. The purpose of this blinded-assessor randomized trial was to evaluate the effects of task-specific versus impairment-based interventions on walking outcomes in individuals with iSCI. Methods. Using a crossover design, ambulatory participants with iSCI >1-year duration performed either task-specific (upright stepping) or impairment-based training for up to 20 sessions over ≤6 weeks, with interventions alternated after >4 weeks delay. Both strategies focused on achieving higher cardiovascular intensities, with training specificity manipulated by practicing only stepping practice in variable contexts or practicing tasks targeting impairments underlying locomotor dysfunction (strengthening, balance tasks, and recumbent stepping). Results. Significantly greater increases in fastest overground and treadmill walking speeds were observed following task-specific versus impairment-based training, with moderate associations between differences in amount of practice and outcomes. Gains in balance confidence were also observed following task-specific vs impairment-based training, although incidence of falls was also increased with the former protocol. Limited gains were observed with impairment-based training except for peak power during recumbent stepping tests. Conclusion. The present study reinforces work from other patient populations that the specificity of task practice is a critical determinant of locomotor outcomes and suggest impairment-based exercises may not translate to improvements in functional tasks. Clinical Trial Registration URL. https://clinicaltrials.gov/ ; Unique Identifier: NCT02115685.
Collapse
Affiliation(s)
| | - Christopher E Henderson
- Rehabilitation Hospital of Indiana, Indianapolis, IN, USA.,Indiana University, Indianapolis, IN, USA
| | - Abbey Plawecki
- Rehabilitation Hospital of Indiana, Indianapolis, IN, USA
| | | | - Emily H Lucas
- Rehabilitation Hospital of Indiana, Indianapolis, IN, USA
| | - Marzieh M Ardestani
- Rehabilitation Hospital of Indiana, Indianapolis, IN, USA.,Indiana University, Indianapolis, IN, USA
| | | | - T George Hornby
- Rehabilitation Hospital of Indiana, Indianapolis, IN, USA.,Indiana University, Indianapolis, IN, USA
| |
Collapse
|
37
|
Quality of life and psychological outcomes of body-weight supported locomotor training in spinal cord injured persons with long-standing incomplete lesions. Spinal Cord 2019; 58:560-569. [DOI: 10.1038/s41393-019-0401-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/08/2022]
|
38
|
High-Intensity Variable Stepping Training in Patients With Motor Incomplete Spinal Cord Injury: A Case Series. J Neurol Phys Ther 2019; 42:94-101. [PMID: 29547484 DOI: 10.1097/npt.0000000000000217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Previous data suggest that large amounts of high-intensity stepping training in variable contexts (tasks and environments) may improve locomotor function, aerobic capacity, and treadmill gait kinematics in individuals poststroke. Whether similar training strategies are tolerated and efficacious for patients with other acute-onset neurological diagnoses, such as motor incomplete spinal cord injury (iSCI), is unknown. Individuals with iSCI potentially have greater bilateral impairments. This case series evaluated the feasibility and preliminary short- and long-term efficacy of high-intensity variable stepping practice in ambulatory participants for more than 1 year post-iSCI. CASE SERIES DESCRIPTION Four participants with iSCI (neurological levels C5-T3) completed up to 40 one-hour sessions over 3 to 4 months. Stepping training in variable contexts was performed at up to 85% maximum predicted heart rate, with feasibility measures of patient tolerance, total steps/session, and intensity of training. Clinical measures of locomotor function, balance, peak metabolic capacity, and gait kinematics during graded treadmill assessments were performed at baseline and posttraining, with more than 1-year follow-up. OUTCOMES Participants completed 24 to 40 sessions over 8 to 15 weeks, averaging 2222 ± 653 steps per session, with primary adverse events of fatigue and muscle soreness. Modest improvements in locomotor capacity where observed at posttraining, with variable changes in lower extremity kinematics during treadmill walking. DISCUSSION High-intensity, variable stepping training was feasible and tolerated by participants with iSCI although only modest gains in gait function or quality were observed. The utility of this intervention in patients with more profound impairments may be limited.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A200).
Collapse
|
39
|
Exercise in the Aquatic Environment for Patients With Chronic Spinal Cord Injury and Invasive Appliances: Successful Integration and Therapeutic Interventions. Am J Phys Med Rehabil 2019; 99:109-115. [PMID: 31361621 DOI: 10.1097/phm.0000000000001278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Our primary objectives of this initial "proof-of-principle" trial were to evaluate the interventions used in skilled aquatic therapy and to identify any clinical benefits for individuals with spinal cord injuries who use invasive appliances including pressure injury dressings, suprapubic catheters, indwelling catheters, colostomy bags, and tracheostomy tubes. DESIGN This is a retrospective chart review of patients with chronic spinal cord injuries using invasive appliances who had also undergone skilled aquatic therapy. RESULTS Forty-nine patients with traumatic spinal cord injuries demonstrated scores showing statistically significant improvement using their total mobility and self-care of the Spinal Cord Independence Measure III (P ≤ 0.021, 0.039, 0.021) scores. Forty-five patients with traumatic spinal cord injuries demonstrated significant improvement of ASIA Impairment Scale motor scores (P ≤ 0.002) and nine patients with traumatic spinal cord injuries walked longer distances in 6-min walk test (P ≤ 0.011). The Spinal Cord Independence Measure III efficiency was 0.26 per hour (95% confidence interval = 0.037-0.475). There was one reported unplanned bowel evacuation that occurred but did not prevent future therapy. All patients successfully completed a sequence of aquatic therapy. CONCLUSIONS Spinal cord injury patients with various invasive appliances can safely participate in specialized aquatic therapy without complications and seem to achieve clinically significant benefits. We recommend that spinal cord injury rehabilitation centers seek out and connect with opportunities for aquatic therapy within their institutions and communities.
Collapse
|
40
|
Aravind N, Harvey LA, Glinsky JV. Physiotherapy interventions for increasing muscle strength in people with spinal cord injuries: a systematic review. Spinal Cord 2019; 57:449-460. [PMID: 30723256 DOI: 10.1038/s41393-019-0242-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN A systematic review. OBJECTIVE The aim of this review was to determine the effectiveness of physiotherapy (PT) interventions for increasing voluntary muscle strength in people with spinal cord injuries (SCI). METHODS We included randomised controlled trials of PT interventions for people with SCI. We were interested in two comparisons: PT interventions compared with sham or no intervention, and PT interventions compared to each other. The outcome of interest was voluntary strength of muscles directly affected by SCI. All included studies were rated according to the Cochrane Risk of Bias Tool and results of similar trials were pooled using meta-analyses where possible. RESULTS Twenty-six trials met the inclusion criteria and provided useable data. A statistically significant between-group difference was found in four comparisons, namely, resistance training versus no intervention (standardised mean difference (SMD) = 0.64; 95% CI, 0.22-1.07; p = 0.003); resistance training combined with electrical stimulation versus no intervention (mean difference (MD) = 14 Nm; 95% CI, 1-27; p = 0.03); a package of PT interventions versus no intervention (MD = 4.8/50 points on the Lower Extremity Motor Score (LEMS); 95% CI 1.9-7.7; p = 0.01); and robotic gait training versus overground gait training (MD = 3.1/50 points on the LEMS; 95% CI, 1.3-5.0; p = 0.0008). CONCLUSION There is evidence that a small number of PT interventions increase voluntary strength in muscles directly affected by SCI.
Collapse
Affiliation(s)
- Nisha Aravind
- John Walsh Centre for Rehabilitation Research, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Lisa A Harvey
- John Walsh Centre for Rehabilitation Research, Sydney Medical School, University of Sydney, Sydney, Australia.
| | - Joanne V Glinsky
- John Walsh Centre for Rehabilitation Research, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
41
|
Ardestani MM, Henderson CE, Salehi SH, Mahtani GB, Schmit BD, Hornby TG. Kinematic and Neuromuscular Adaptations in Incomplete Spinal Cord Injury after High- versus Low-Intensity Locomotor Training. J Neurotrauma 2019; 36:2036-2044. [PMID: 30362878 DOI: 10.1089/neu.2018.5900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent data demonstrate improved locomotion with high-intensity locomotor training (LT) in individuals with incomplete spinal cord injury (iSCI), although concerns remain regarding reinforcement of abnormal motor strategies. The present study evaluated the effects of LT intensity on kinematic and neuromuscular coordination in individuals with iSCI. Using a randomized, crossover design, participants with iSCI received up to 20 sessions of high-intensity LT, with attempts to achieve 70-85% of age-predicted maximum heart rate (HRmax), or low-intensity LT (50-65% HRmax), following which the other intervention was performed. Specific measures included spatiotemporal variables, sagittal-plane gait kinematics, and neuromuscular synergies from electromyographic (EMG) recordings. Correlation analyses were conducted to evaluate associations between variables. Significant improvements in sagittal-plane joint excursions and intralimb hip-knee coordination were observed following high- but not low-intensity LT when comparing peak treadmill (TM) speed before and after LT. Neuromuscular complexity (i.e., number of synergies to explain >90% of EMG variance) was also increased following high- but not low-intensity LT. Comparison of speed-matched trials confirmed significant improvements in the knee excursion of the less impaired limb and intralimb hip-knee coordination, as well as improvements in neuromuscular complexity following high-intensity LT. These findings suggest greater neuromuscular complexity may be due to LT and not necessarily differences in speeds. Only selected kinematic changes (i.e., weak hip excursion) was correlated to improvements in treadmill speed. In conclusion, LT intensity can facilitate gains in kinematic variables and neuromuscular synergies in individuals with iSCI.
Collapse
Affiliation(s)
- Marzieh M Ardestani
- 1 Department of Physical Medicine and Rehabilitation, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Christopher E Henderson
- 1 Department of Physical Medicine and Rehabilitation, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Seyed H Salehi
- 1 Department of Physical Medicine and Rehabilitation, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Gordhan B Mahtani
- 1 Department of Physical Medicine and Rehabilitation, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Brian D Schmit
- 2 Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois.,3 Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | - T George Hornby
- 1 Department of Physical Medicine and Rehabilitation, School of Medicine, Indiana University, Indianapolis, Indiana.,2 Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| |
Collapse
|
42
|
Covarrubias-Escudero F, Rivera-Lillo G, Torres-Castro R, Varas-Díaz G. Effects of body weight-support treadmill training on postural sway and gait independence in patients with chronic spinal cord injury. J Spinal Cord Med 2019; 42:57-64. [PMID: 29058553 PMCID: PMC6340274 DOI: 10.1080/10790268.2017.1389676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To examine the effects of a six-week body weight-support treadmill training (BWSTT) program on center-of-mass control and gait independence in chronic, incomplete spinal cord injury (iSCI) patients. DESIGN Descriptive. SETTING Clinica Los Coihues. Neurorehabilitation center in Santiago, Chile. PARTICIPANTS 17 chronic iSCI patients and 17 healthy subjects. OUTCOME MEASURES An instrumented sway (ISway) test was performed before and after the implementation of a six-week BWSTT program. The standing balance of participants was measured by Normalized jerk (NJ) and root mean square (RMS). These values were used to assess the standing balance of participants, and were correlated with the scores obtained on the Walking Index Spinal Cord Injury (WISCI) II test. RESULTS Significant differences were found in standing balance (i.e., through NJ) after the BWSTT program (P = 0.016), but no significant differences were found in RMS values for postural sway (P = 0.693). None of the patients obtained improved WISCI II scores pre- vs. post-intervention. CONCLUSION While a BWSTT program can improve center-of-mass control in iSCI patients, no effects were recorded for gait independence. TRIAL REGISTRATION National Clinical Trials, registry number NCT02703883.
Collapse
Affiliation(s)
| | - Gonzalo Rivera-Lillo
- Center of Integrated Studies in Neurorehabilitation, Clínica Los Coihues, Santiago, Chile,Department of Physical Therapy, University of Chile, Santiago, Chile
| | - Rodrigo Torres-Castro
- Center of Integrated Studies in Neurorehabilitation, Clínica Los Coihues, Santiago, Chile,Department of Physical Therapy, University of Chile, Santiago, Chile
| | - Gonzalo Varas-Díaz
- Center of Integrated Studies in Neurorehabilitation, Clínica Los Coihues, Santiago, Chile,Correspondence to: Gonzalo Varas-Díaz Adress: Center of Integrated Studies in Neurorehabilitation, Clínica Los Coihues, Santiago, Chile, Laguna Sur 6561, Estación Central, Santiago, Chile; Ph: (+562)24657900.
| |
Collapse
|
43
|
Yu P, Zhang W, Liu Y, Sheng C, So KF, Zhou L, Zhu H. The effects and potential mechanisms of locomotor training on improvements of functional recovery after spinal cord injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:199-217. [DOI: 10.1016/bs.irn.2019.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
van Dijsseldonk RB, de Jong LAF, Groen BE, Vos-van der Hulst M, Geurts ACH, Keijsers NLW. Gait Stability Training in a Virtual Environment Improves Gait and Dynamic Balance Capacity in Incomplete Spinal Cord Injury Patients. Front Neurol 2018; 9:963. [PMID: 30524356 PMCID: PMC6256239 DOI: 10.3389/fneur.2018.00963] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/26/2018] [Indexed: 01/02/2023] Open
Abstract
Many patients with incomplete spinal cord injury (iSCI) have impaired gait and balance capacity, which may impact daily functioning. Reduced walking speed and impaired gait stability are considered important underlying factors for reduced daily functioning. With conventional therapy, patients are limited in training gait stability, but this can be trained on a treadmill in a virtual environment, such as with the Gait Real-time Analysis Interactive Lab (GRAIL). Our objective was to evaluate the effect of 6-weeks GRAIL-training on gait and dynamic balance in ambulatory iSCI patients. In addition, the long-term effect was assessed. Fifteen patients with chronic iSCI participated. The GRAIL training consisted of 12 one-hour training sessions during a 6-week period. Patients performed 2 minute walking tests on the GRAIL in a self-paced mode at the 2nd, and 3rd (baseline measurements) and at the 12th training session. Ten patients performed an additional measurement after 6 months. The primary outcome was walking speed. Secondary outcomes were stride length, stride frequency, step width, and balance confidence. In addition, biomechanical gait stability measures based on the position of the center of mass (CoM) or the extrapolated center of mass (XCoM) relative to the center of pressure (CoP) or the base of support (BoS) were derived: dynamic stability margin (DSM), XCoM-CoP distance in anterior-posterior (AP) and medial-lateral (ML) directions, and CoM-CoP inclination angles in AP and ML directions. The effect of GRAIL-training was tested with a one-way repeated measures ANOVA (α = 0.05) and post-hoc paired samples t-tests (α = 0.017). Walking speed was higher after GRAIL training (1.04 m/s) compared to both baseline measurements (0.85 and 0.93 m/s) (p < 0.001). Significant improvements were also found for stride length (p < 0.001) and stability measures in AP direction (XCoM-CoPAP (p < 0.001) and CoM-CoPAP-angle (p < 0.001)). Stride frequency (p = 0.27), step width (p = 0.19), and stability measures DSM (p = 0.06), XCoM-CoPML (p = 0.97), and CoM-CoPML-angle (p = 0.69) did not improve. Balance confidence was increased after GRAIL training (p = 0.001). The effects were remained at 6 months. Increased walking speed, stride length, AP gait stability, and balance confidence suggest that GRAIL-training improves gait and dynamic balance in patients with chronic iSCI. In contrast, stability measures in ML direction did not respond to GRAIL-training.
Collapse
Affiliation(s)
- Rosanne B. van Dijsseldonk
- Department of Research, Sint Maartenskliniek, Nijmegen, Netherlands
- Department of Rehabilitation, Cognition and Behavior, Radboud University Medical Center, Donders Institute for Brain, Nijmegen, Netherlands
| | | | - Brenda E. Groen
- Department of Research, Sint Maartenskliniek, Nijmegen, Netherlands
- Department of Rehabilitation, Cognition and Behavior, Radboud University Medical Center, Donders Institute for Brain, Nijmegen, Netherlands
| | | | - Alexander C. H. Geurts
- Department of Rehabilitation, Cognition and Behavior, Radboud University Medical Center, Donders Institute for Brain, Nijmegen, Netherlands
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, Netherlands
| | - Noel L. W. Keijsers
- Department of Research, Sint Maartenskliniek, Nijmegen, Netherlands
- Department of Rehabilitation, Cognition and Behavior, Radboud University Medical Center, Donders Institute for Brain, Nijmegen, Netherlands
| |
Collapse
|
45
|
Martinez SA, Nguyen ND, Bailey E, Doyle-Green D, Hauser HA, Handrakis JP, Knezevic S, Marett C, Weinman J, Romero AF, Santiago TM, Yang AH, Yung L, Asselin PK, Weir JP, Kornfeld SD, Bauman WA, Spungen AM, Harel NY. Multimodal cortical and subcortical exercise compared with treadmill training for spinal cord injury. PLoS One 2018; 13:e0202130. [PMID: 30092092 PMCID: PMC6084979 DOI: 10.1371/journal.pone.0202130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Spared fibers after spinal cord injury (SCI) tend to consist predominantly of subcortical circuits that are not under volitional (cortical) control. We aim to improve function after SCI by using targeted physical exercises designed to simultaneously stimulate cortical and spared subcortical neural circuits. METHODS Participants with chronic motor-incomplete SCI enrolled in a single-center, prospective interventional crossover study. Participants underwent 48 sessions each of weight-supported robotic-assisted treadmill training and a novel combination of balance and fine hand exercises, in randomized order, with a 6-week washout period. Change post-intervention was measured for lower extremity motor score, soleus H-reflex facilitation; seated balance function; ambulation; spasticity; and pain. RESULTS Only 9 of 21 enrolled participants completed both interventions. Thirteen participants completed at least one intervention. Although there were no statistically significant differences, multimodal training tended to increase short-interval H-reflex facilitation, whereas treadmill training tended to improve dynamic seated balance. DISCUSSION The low number of participants who completed both phases of the crossover intervention limited the power of this study to detect significant effects. Other potential explanations for the lack of significant differences with multimodal training could include insufficient engagement of lower extremity motor cortex using skilled upper extremity exercises; and lack of skill transfer from upright postural stability during multimodal training to seated dynamic balance during testing. To our knowledge, this is the first published study to report seated posturography outcomes after rehabilitation interventions in individuals with SCI. CONCLUSION In participants with chronic incomplete SCI, a novel mix of multimodal exercises incorporating balance exercises with skilled upper extremity exercises showed no benefit compared to an active control program of body weight-supported treadmill training. To improve participant retention in long-term rehabilitation studies, subsequent trials would benefit from a parallel group rather than crossover study design.
Collapse
Affiliation(s)
| | - Nhuquynh D. Nguyen
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Eric Bailey
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Denis Doyle-Green
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Henry A. Hauser
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - John P. Handrakis
- James J. Peters VA Medical Center, Bronx, New York, United States of America
- New York Institute of Technology, Old Westbury, New York, United States of America
| | - Steven Knezevic
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Casey Marett
- New York Institute of Technology, Old Westbury, New York, United States of America
| | - Jennifer Weinman
- New York Institute of Technology, Old Westbury, New York, United States of America
| | - Angelica F. Romero
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Tiffany M. Santiago
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Ajax H. Yang
- James J. Peters VA Medical Center, Bronx, New York, United States of America
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lok Yung
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Pierre K. Asselin
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Joseph P. Weir
- University of Kansas, Lawrence, Kansas, United States of America
| | - Stephen D. Kornfeld
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - William A. Bauman
- James J. Peters VA Medical Center, Bronx, New York, United States of America
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ann M. Spungen
- James J. Peters VA Medical Center, Bronx, New York, United States of America
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Noam Y. Harel
- James J. Peters VA Medical Center, Bronx, New York, United States of America
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
46
|
Borin JS, Capelari TV, Goldhardt MG, Issa MC, Santos DAPBD, Cechetti F. Advantage in muscle activation in gait with support of body weight in spinal cord injury. FISIOTERAPIA EM MOVIMENTO 2018. [DOI: 10.1590/1980-5918.031.ao29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Introduction: The locomotor training with body weight support has been proposed as an alternative for the rehabilitation of people with spinal cord injury, in order to develop most of the residual potential of the body. Objective: To compare the levels of muscle activation of the main muscle involved in gait during body weight-supported treadmill training and body weight-supported overground training in incomplete spinal cord injured patients. Methods: It was a prospective cross-sectional study, in which 11 incomplete injured patients were submitted to two modalities of gait with body weight support, the first one on the treadmill (two different speeds: 1 and 4km/h), and the second one with the walker on fixed floor. The electromyographical acquisition was done in the rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL) and gluteus maximus (GM). Results: There was a greater muscle activation of all muscles analyzed in the treadmill training as compared to the over groundtraining, both at 4 km/h (RF: p=0.00), (VM: p=0.00), (VL: p=0.00) e (GM: p=0.00) and at 1km/h (RF: p=0.00), (VM: p=0.00), (VL: p=0.00) e (GM: p=0.00). When comparing the two modalities of treadmill training, at 4 and 1km/h, there was no statically significant difference between them (RF: p=0.36), (VM: p=1.00), (VL: p=1.00) e (GM: p=0.16). Conclusion: The gait training with body weight support is more effective in activating the muscles involved in the gait training on treadmill compared to overground training in patients with incomplete spinal cord injury.
Collapse
|
47
|
Otzel DM, Lee J, Ye F, Borst SE, Yarrow JF. Activity-Based Physical Rehabilitation with Adjuvant Testosterone to Promote Neuromuscular Recovery after Spinal Cord Injury. Int J Mol Sci 2018; 19:E1701. [PMID: 29880749 PMCID: PMC6032131 DOI: 10.3390/ijms19061701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022] Open
Abstract
Neuromuscular impairment and reduced musculoskeletal integrity are hallmarks of spinal cord injury (SCI) that hinder locomotor recovery. These impairments are precipitated by the neurological insult and resulting disuse, which has stimulated interest in activity-based physical rehabilitation therapies (ABTs) that promote neuromuscular plasticity after SCI. However, ABT efficacy declines as SCI severity increases. Additionally, many men with SCI exhibit low testosterone, which may exacerbate neuromusculoskeletal impairment. Incorporating testosterone adjuvant to ABTs may improve musculoskeletal recovery and neuroplasticity because androgens attenuate muscle loss and the slow-to-fast muscle fiber-type transition after SCI, in a manner independent from mechanical strain, and promote motoneuron survival. These neuromusculoskeletal benefits are promising, although testosterone alone produces only limited functional improvement in rodent SCI models. In this review, we discuss the (1) molecular deficits underlying muscle loss after SCI; (2) independent influences of testosterone and locomotor training on neuromuscular function and musculoskeletal integrity post-SCI; (3) hormonal and molecular mechanisms underlying the therapeutic efficacy of these strategies; and (4) evidence supporting a multimodal strategy involving ABT with adjuvant testosterone, as a potential means to promote more comprehensive neuromusculoskeletal recovery than either strategy alone.
Collapse
Affiliation(s)
- Dana M Otzel
- Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Jimmy Lee
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Fan Ye
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Stephen E Borst
- Department of Applied Physiology, Kinesiology and University of Florida College of Health and Human Performance, Gainesville, FL 32603, USA.
| | - Joshua F Yarrow
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
- Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
48
|
Arora T, Oates A, Lynd K, Musselman KE. Current state of balance assessment during transferring, sitting, standing and walking activities for the spinal cord injured population: A systematic review. J Spinal Cord Med 2018; 43:10-23. [PMID: 29869951 PMCID: PMC7006707 DOI: 10.1080/10790268.2018.1481692] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
CONTEXT Comprehensive balance measures with high clinical utility and sound psychometric properties are needed to inform the rehabilitation of individuals with spinal cord injury (SCI). OBJECTIVE To identify the balance measures used in the SCI population, and to evaluate their clinical utility, psychometric properties and comprehensiveness. METHODS Medline, PubMed, Embase, Scopus, Web of Science, and the Allied and Complementary Medicine Database were searched from the earliest record to October 19/16. Two researchers independently screened abstracts for articles including a balance measure and adults with SCI. Extracted data included participant characteristics and descriptions of balance measures. Quality was evaluated by considering study design, sampling method and adequacy of description of research participants. Clinical utility of all balance measures was evaluated. Comprehensiveness was evaluated using the modified Systems Framework for Postural Control. RESULTS 2820 abstracts were returned and 127 articles included. Thirty-one balance measures were identified; 11 evaluated a biomechanical construct and 20 were balance scales. All balance scales had high clinical utility. The Berg Balance Scale and Functional Reach Test were valid and reliable, while the mini-BESTest was the most comprehensive. CONCLUSION No single measure had high clinical utility, strong psychometric properties and comprehensiveness. The mini-BESTest and/or Activity-based Balance Level Evaluation may fill this gap with further testing of their psychometric properties.
Collapse
Affiliation(s)
- Tarun Arora
- Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, Canada,School of Rehabilitation Science, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Alison Oates
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| | - Kaylea Lynd
- School of Rehabilitation Science, College of Medicine, University of Saskatchewan, Saskatoon, Canada,Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
| | - Kristin E. Musselman
- Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, Canada,School of Rehabilitation Science, College of Medicine, University of Saskatchewan, Saskatoon, Canada,Toronto Rehabilitation Institute-University Health Network, Toronto, Canada,Department of Physical Therapy, Faculty of Medicine, University of Toronto, Canada,Correspondence to: Kristin E. Musselman PT, PhD, SCI Mobility Lab, Lyndhurst Centre, Toronto Rehabilitation Institute-University Health Network, 520 Sutherland Drive, Toronto, ON, Canada, M4G 3V9; Ph: (416) 597-3422 x6190.
| |
Collapse
|
49
|
Tse CM, Chisholm AE, Lam T, Eng JJ. A systematic review of the effectiveness of task-specific rehabilitation interventions for improving independent sitting and standing function in spinal cord injury. J Spinal Cord Med 2018; 41:254-266. [PMID: 28738740 PMCID: PMC6055957 DOI: 10.1080/10790268.2017.1350340] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CONTEXT Impaired balance function after a spinal cord injury (SCI) hinders performance of daily activities. OBJECTIVE To assess the evidence on the effectiveness of task-specific training on sitting and standing function in individuals with SCI across the continuum of care. METHODS A systematic search was conducted on literature published to June 2016 using people (acute or chronic SCI), task-specific interventions compared to conventional physical therapy, and outcome (sitting or standing balance function). The PEDro scale was used to investigate the susceptibility to bias and trial quality of the randomized controlled trials (RCTs). A standardized mean difference (SMD) was conducted to investigate the effect size for interventions with sitting or standing balance outcomes. RESULTS Nineteen articles were identified; three RCTs, two prospective controlled trials, one cross-over study, nine pre-post studies and four prospective cohort studies. RCT and cross-over studies were rated from 6 to 8 indicating good quality on the PEDro scale. The SMD of task-specific interventions in sitting compared to active and inactive (no training) control groups was -0.09 (95% CI: -0.663 to 0.488) and 0.39 (95% CI: -0.165 to 0.937) respectively, indicating that the addition of task-specific exercises did not affect sit and reach test performance significantly. Similarly, the addition of BWS training did not significantly affect BBS compared to conventional physical therapy -0.36 (95% CI: -0.840 to 0.113). Task-specific interventions reported in uncontrolled trials revealed positive effects on sitting and standing balance function. CONCLUSION Few RCT studies provided balance outcomes, and those that were evaluated indicate negligible effect sizes. Given the importance of balance control underpinning all aspects of daily activities, there is a need for further research to evaluate specific features of training interventions to improve both sitting and standing balance function in SCI.
Collapse
Affiliation(s)
- Cynthia M. Tse
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada,International Collaboration On Repair Discoveries, Vancouver Costal Health Research Institute, Vancouver, BC, Canada
| | - Amanda E. Chisholm
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada,International Collaboration On Repair Discoveries, Vancouver Costal Health Research Institute, Vancouver, BC, Canada
| | - Tania Lam
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada,International Collaboration On Repair Discoveries, Vancouver Costal Health Research Institute, Vancouver, BC, Canada,Correspondence to: Tania Lam, School of Kinesiology, University of British Columbia, 210–6081 University Blvd, Vancouver, BC, Canada, V6T 1Z1.
| | - Janice J. Eng
- International Collaboration On Repair Discoveries, Vancouver Costal Health Research Institute, Vancouver, BC, Canada,Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada,GF Strong Rehabilitation Center, Vancouver, BC, Canada
| | | |
Collapse
|
50
|
Gollie JM. Fatigability during volitional walking in incomplete spinal cord injury: cardiorespiratory and motor performance considerations. Neural Regen Res 2018; 13:786-790. [PMID: 29862998 PMCID: PMC5998625 DOI: 10.4103/1673-5374.232461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2018] [Indexed: 02/06/2023] Open
Abstract
Fatigability describes the decline in force production (i.e., performance fatigability) and/or changes in sensations regulating performance (i.e., perceived fatigability) during whole-body activity and poses a major challenge to those living with spinal cord injuries (SCI). After SCI, the inability to overcome disruptions to metabolic homeostasis due to cardiorespiratory limitations and physical deconditioning may contribute to increased fatigability severity. The increased susceptibility to fatigability may have implications for motor control strategies and motor learning. Locomotor training approaches designed to reduce fatigability and enhance aerobic capacity in combination with motor learning may be advantageous for promoting functional recovery after SCI. Future research is required to advance the understanding of the relationship between fatigability, cardiorespiratory function and motor performance following SCI.
Collapse
Affiliation(s)
- Jared M. Gollie
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center-Human Performance Research Unit, Veteran Affairs Medical Center Washington, DC, USA
- Department of Health, Human Function, and Rehabilitation Sciences, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|