Caruncho HJ, Rodríguez-Pallares J, Guerra MJ, Labandeira-García JL. Mature intrastriatal striatal grafts revert the changes in the expression of pallidal and thalamic alpha 1, alpha 2 and beta 2/3 GABAA receptor subunit induced by ibotenic acid lesions in the rat striatum.
BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998;
57:301-9. [PMID:
9675428 DOI:
10.1016/s0169-328x(98)00101-6]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A between-side comparison of GABAA receptor subunit expression levels in the globus pallidus and anterior-pole motor thalamic nuclei of rats with an ibotenate lesion of the striatum, and rats receiving a fetal striatal graft in the lesioned area was made by using immunocytochemistry with subunit-specific antibodies, at different times post-lesion or different times post-grafting. At 10 days post-lesion, there was already an increase in the labeling of the alpha 1- and beta 2/3-subunits in the globus pallidus, entopeduncular nucleus and ventrolateral nucleus ipsilateral to the lesion when compared with the contralateral side, while there were no significant changes at the level of the ventromedial nucleus. Labeling of the alpha 2-subunit showed a clear increase in the entopeduncular nucleus compared with the contralateral side at 10 days post-lesion. Similar changes were also observed for the different subunits studied at 30 and 120 days after lesioning. Rats with 20-day old transplants of fetal striatal neurons that were implanted in the ibotenate lesioned striatum at 10 days post-lesioning, continued to show changes in the expression of GABAA receptor subunits, albeit at a lower level than those of ibotenate lesioned rats at similar age post-lesion. However, when examining rats with 70-day old transplants, the ibotenate-lesion induced between-side changes were almost completely compensated. These findings suggest a correlation between the maturation of the grafts and their capability to function in reestablishing neuronal circuits as shown by the reduction of changes in GABAergic transmission induced by ibotenate lesions, as indicated by the reversal of changes in GABAA receptor subunit in several areas of the basal ganglia circuit.
Collapse